Subsurface Investigation Report Twin Bridge Market Leeds, Maine

Revised February 7, 2011

Prepared for:

Maine Department of Environmental Protection

Prepared by:

1034 Broadway South Portland, Maine

John S. Marchewka, C.G., P.G. MAI Environmental

TABLE OF CONTENTS

Cover Let	ter	
SECTION	1. INTRODUCTION AND OBJECTIVES	1
SECTION	2. SCOPE OF WORK	2
SECTION	13. METHODOLOGY	3
3.1	General Methodology	3
3.2	Sample Collection and Testing Methodologies	3
SECTION	14. RESULTS	5
4.1	Quality Assurance	5
4.2	Soil Samples	5
4.3	Groundwater	6
4.4	Soil Gas	5
SECTION	5. CONCLUSIONS	8

LIST OF FIGURES

Figure 1: Site Location Map Figure 2: Site Map

LIST OF TABLES

Table 1: General Methodology
Table 2: Sample Collection and Testing Methodology
Table 3: Fixed Gas Data
Table 4: Soil Analytical Data
Table 5: Groundwater Analytical Data
Table 6: Soil Gas Analytical Data

LIST OF APPENDICES

Appendix 1: Figures and TablesAppendix 2: Boring Logs and Monitoring Well Construction DetailsAppendix 3: Soil Gas and Groundwater Sampling Field Data SheetsAppendix 4: Laboratory Reports

Page

SECTION 1. INTRODUCTION AND OBJECTIVES

This report documents the methods and results of a subsurface investigation at Twin Bridge Market, Leeds, Maine. The investigation was performed in two phases. The objective of the first phase, performed in October 2010, was to delineate the extent of petroleum impacted soil remaining at the Site following a MEDEP lead soil removal program in 1997 that was initiated during the removal and replacement of two gasoline USTs. The two replacement USTs still exist at the Site as does a dispenser pump located next to the north side of the building. The existing USTs and dispenser pump are out-of-service and the building is being remodeled for use as a restaurant. The Site and surrounding area are served by Private wells and septic systems. The well supply line and the septic system discharge pipe are located at the rear of the building (south side), which is on the opposite side of where the known petroleum impacted soil exists.

The objective of the second phase, performed in November 2010, was to determine if petroleum impacted soil or groundwater is causing vapor intrusion into the building that exceeds MEDEP guidelines. The second phase of the project was additionally designed to collected soil, groundwater, and soil vapor data that can be used by the State in MEDEP's on-going "Vapor Triage Study".

SECTION 2. SCOPE OF WORK

The completed scope of work included the following:

- Completion of 21 direct-push borings (B1 B10, B10A, B11 B20). Soils were logged and field screened using a PID.
- Installation of four (4) monitoring wells (MW1 MW4).
- Installation of four (4) soil vapor implants (SG1-SG4).
- Collection and laboratory analysis of one (1) soil sample for VPH analysis (B18, 8-9') by MAI and collection and analysis of four (4) soil samples for VPH and EPH analysis by the MEDEP.
- Collection and laboratory analysis of four (4) groundwater samples for VPH analysis (MW1 MW4).
- Collection and laboratory analysis of four (4) soil vapor samples (SG1-SG4) for:
 - o chlorinated volatile organic compounds by EPA method TO-15,
 - o volatile petroleum hydrocarbons in air (APH), and
 - o fixed gases oxygen, carbon dioxide and methane (O₂, CO₂ and CH₄)

SECTION 3. METHODOLOGY

The general methodological approach and specific sampling and testing methodologies are presented in Tables 1 and 2.

3.1 General Methodology

The general methodology of this investigation was to 1) delineate the extent of petroleum impacted soil at the Site to assist the MEDEP in developing volume estimates for the planned soil removal in 2011 and 2) test soil, groundwater and soil gas for concentrations of VPH compounds in the following categories of locations:

- Source area location; previously documented areas with high concentrations of petroleum hydrocarbons,
- Migration areas, offset from the documented source areas, for evaluation of contaminant migration (15 and 30 ft from source area),
- Potential receptors (Site building).

Co-located soil, groundwater and soil gas samples from the same location were collected for comparison of impacts in different media.

Table 1, General Methodology, Appendix 1, describes the samples collected in each category, and the rationale for each sample.

3.2 Sample Collection and Testing Methodologies

The sample collection and testing methodologies are described in Table 2, Sample Collection and Testing Methodologies, Appendix 1.

Soil boring logs are in Appendix 2, Boring Logs and Monitoring Well Construction Details.

Soil and groundwater samples collected by MAI were submitted to Analytics Environmental Laboratory LLC, via Maine Environmental Laboratory in Yarmouth, Maine, for analysis of VPH. A trip blank accompanied all groundwater samples. Soil samples collected by the MEDEP were submitted to the State Laboratory (HETL).

Soil gas samples were submitted to Alpha Analytical, Mansfield, Massachusetts for analysis of chlorinated organic compounds, petroleum hydrocarbons, and fixed gases. Field data sheets for soil gas sampling are in Appendix 3, Soil Gas Field Data Sheets.

Soil analytical results were compared to Leaching to Groundwater Scenario, Table 3, Tier 1 Cumulative Risk-Based Soil Remediation Guidelines for Petroleum Target Compounds and Hydrocarbon Fractions, in *Remediation Guidelines for Petroleum Contaminated Sites in Maine*, effective December 1, 2009.

Groundwater analytical results were compared to the following standards and guidelines:

• Maine Centers for Disease Control, Maximum Exposure Guidelines for drinking water, December 14, 2010, (MEGs),

- Massachusetts Contingency Plan Method 1 Groundwater Standards, Table 1, GW-2 Standards (310 CMR 40.0974(2), which apply to groundwater that is considered a potential source of indoor air contamination, and
- Draft (11/23/2010) Table B11, Groundwater Vapor Intrusion Screening Levels for Chronic Residential and Commercial Scenarios (ug/l), provided by MEDEP, (Draft MEDEP Screening Levels).

Soil gas analytical results were compared to MEDEP's Soil Gas Target concentrations (SGT), which are calculated by applying a 50 times factor to the MEDEP Indoor Air Target (IAT) concentrations in Table B6, Indoor Air Targets for Chronic Commercial Scenario (ug/m3) – 1/14/2010 Interim Final for Multi-Contaminant Sites, in *MEDEP Vapor Intrusion Evaluation Guidance, January 13, 2010*.

Full laboratory reports are in Appendix 4, Laboratory Reports. Laboratory data is summarized in Tables 3 through 6.

SECTION 4. RESULTS

4.1 Quality Assurance

Samples were collected in a consistent manner according to standard practices outlined in the Table 2.

The investigation resulted in data that appears to reasonably represent the contaminant concentrations in the media sampled.

Fixed gases were monitored in the field for quality assurance for soil gas samples. Ambient air and pre-sample and post-sample O_2 and CO_2 were measured during sample collection. CH4 was also monitored in the soil gas implants prior to sampling (pre-sample). O2, CO2 and CH4 were analyzed on soil gas samples submitted to the laboratory. The field and laboratory fixed gas data are presented in Table 3, Fixed Gas Data.

Fixed gas data for all samples shows ambient O2 at expected concentration (20.9) and CO2 at 0.1% by volume. Pre-sample concentrations are appropriately lower (O2) and higher (CO2) than ambient concentrations. Post-sample O2 were equal to pre-sample concentrations and post sample CO2 were within 0.1% of the pre-sample CO2. Pre- and post sample O2 and CO2 concentrations are not indicative of an anomaly in the sampling or testing.

Laboratory analyses of O2 concentrations were lower than post-sample concentrations by 1.9 to 3.1% by volume. These decreases translate to 9.5 to 15% of the post-sample concentrations, which are within the +/-20% acceptable surrogate recovery limits in matrix spike data for laboratories.

Laboratory analyses of CO2 showed consistent decreases in CO2 concentrations compared to the post-sample field analyses. The decreases were between 0.18 and 0.74% by volume. These translate to differences of 13 to 39% compared to post-sample concentrations. The percent difference in one of the samples (SG2) exceeded the \pm -20% acceptable surrogate recovery limits in matrix spike data for laboratories.

CH4 was not detected in field or laboratory analyses of soil gas samples.

4.2 Soil Samples

Twenty one (21) soil borings were completed during this investigation using Geoprobe direct push technology with continuous sampling and field screening for VOCs. Soil boring logs with field VOC concentrations are in Appendix 2. Four (4) soil samples were submitted for laboratory analysis of VPH and EPH and one (1) sample was submitted for VPH analysis only. A summary of the laboratory data is in Table 4. Laboratory analytical data for soil samples are included in Appendix 4, Soil Analytical Results. Field PID and laboratory testing data indicate that a zone of residual petroleum impacted soil exists in the front portion of the building, west of where the 1997 soil excavation work was conducted (**See Figure 1**). Laboratory results were compared to the MEDEP Leaching to Groundwater guideline. Based on the results, VPH parameters ethylbenzene, naphthalene, and C9-C10 aromatics exceed the remediation guideline in both B1 (8-9') and B18 (8-9'). The soil sample from B18 (8-9') also had total xylenes in excess of the remediation guideline. The sample from B2 (11-12') exceeded the guideline for naphthalene only and B6 exceeded the guideline for ethylbenzene only. No parameters were exceeded in the sample from B10 (7-8'). MTBE was not detected in any of the soil sample analyses.

EPH parameters were non-detect for samples B2 (11-12'), B6 (9-10'), and B10 (8-9'). EPH parameters were detected in B1 (8-9') and of the parameters detected, 2-methylnaphthalene exceeded the DEP Leaching to Groundwater guideline. EPH was not analyzed for the soil sample from B18 (8-9').

The petroleum constituent concentration in B1 and B18 soil samples (close to building) were higher than in B2 and B6 (close to road), indicating a decreasing trend in soil impacts from near source out towards the road. It is likely that impacted soil exists under the edge of the north side of the building, beginning at the east corner of the building to a point between B19 and B7, which is approximately 40 ft away. In addition, it is likely that impacted soil exists beneath the near side travel lane of Route 219 between B2 and B6.

The vertical extent of petroleum impacts within the zone of contamination extends from approximately 5 ft below ground surface (bgs) to 10-12 ft bgs.

4.3 Groundwater

Five groundwater samples were collected during this investigation, and submitted for laboratory analysis of VPH compounds and fractions. One of the five was collected from the basement sump in side the building and the remaining four were collected from monitoring wells. The analytical results, along with three sets of regulatory guidelines are shown in Table 5, and the laboratory reports are shown in Appendix 4.

The groundwater testing indicated elevated petroleum concentrations in MW1, located next to the fuel dispenser and within a small area adjacent to the building that did not get excavated as part of the 1997 removal program. At the time of the 1997 removal work, the dispenser was still in operation, thus soil removal close to the dispenser was limited. The results from MW1 show that ethylbenzene, naphthalene, and C9-C10 aromatics exceed the Maine MEGs. With regard to groundwater screening guidelines for vapor intrusion potential, none of the detected parameters in MW1 exceeded the MA GW2 standard. Ethylbenzene and C9-C10 aromatics exceeded the Maine Draft VI screening standard for commercial properties. MBTE was detected in trace concentration (1 J ug/l) in MW1 and in the basement sump.

4.4 Soil Gas

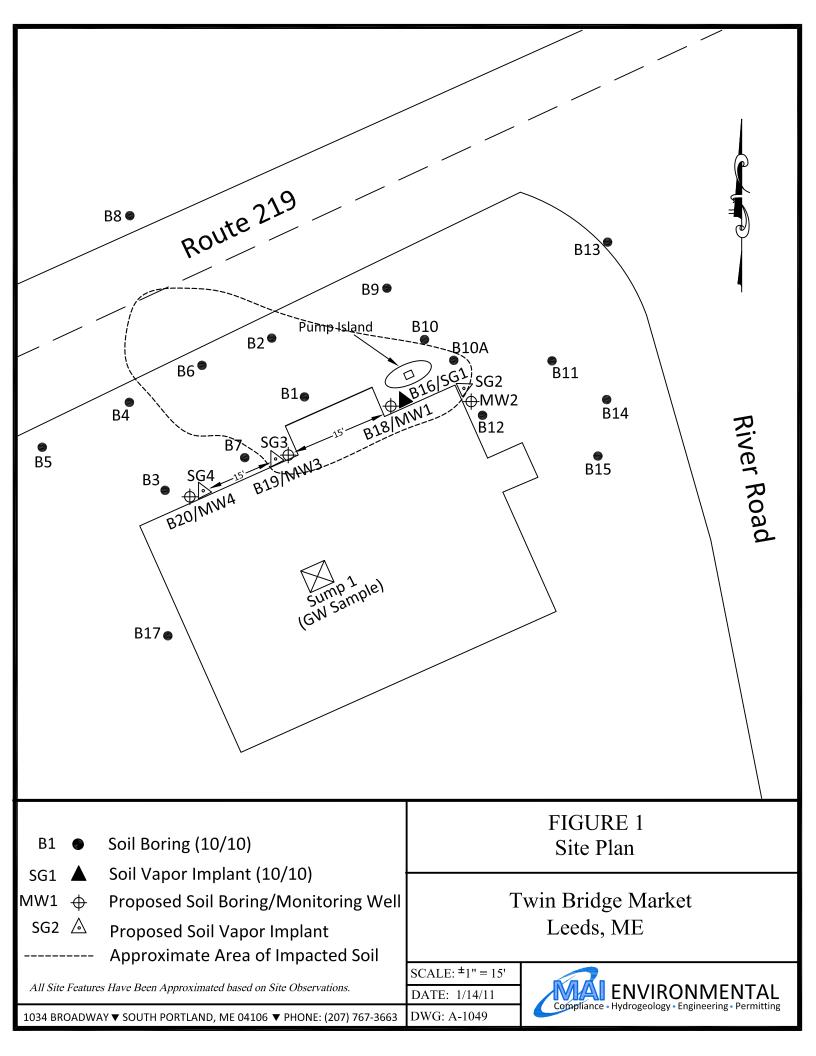
Four soil gas samples were collected during this investigation and submitted for laboratory analysis of air petroleum hydrocarbons by MA DEP's APH method, and a list of chlorinated organic compounds by EPA Method TO-15. The soil gas analytical results are summarized in Table 6, and the laboratory reports are provided in Appendix 4.

One chlorinated organic compound was detected in the laboratory analyses. PCE was detected at a concentration of 2.89 ug/m3, which does not exceed the MEDEP SGT of 105 ug/m3 for the chronic commercial scenario.

APH fractions were detected in all soil gas samples, but the concentrations were all below the MEDEP SGTs. Total APH fractions are most elevated in SG1 (106 ug/m3) and SG2 (190 ug/m3), which are the two soil gas implants closest to the source area. SG1 is co-located with MW1; MW1 being the only monitoring well that showed detections of petroleum constituents in the groundwater samples. SG3 and SG 4 which are located along the front of the building 15 ft and 30 ft respectively away from SG1 show lower APH fraction concentrations and no APH compounds. There does not appear to be strong correlation between the groundwater concentrations in the monitoring wells and the co-located soil gas concentrations. For example, VPH in groundwater was non-detect in MW2, MW3, and MW4, however, APH concentrations in the soil gas at co-located samples from SG2, SG3, and SG4 were positive. MW1 showed elevated VPH compounds in the groundwater, but its co-located soil gas sample from SG1 was similar in concentration to SG2, which is co-located with MW2 (non-detect for VPH in groundwater). The data indicate that although groundwater at MW3 and MW4 did not show detections of VPH in groundwater, soil gas from the source area has migrated along and likely beneath the front of the building, but at concentrations lower than the SGTs.

SECTION 5. CONCLUSIONS

This investigation has resulted in the following conclusions:


- Soil samples from B1, B2, B6, and B9 had petroleum constituent concentrations that exceed the Leaching to Groundwater remediation guidelines (*Remediation Guidelines for Petroleum Contaminated Sites in Maine, December 2009*), according to laboratory analytical data. Soil borings and samples from around the existing UST and in the area of the 1997 soil removal, did not show evidence of petroleum contamination that exceeds the remediation guidelines. The area in close proximity to the dispenser pump and in front of the building, where soil removal in 1997 was not performed, still has residual petroleum contamination to soil that exceeds the MEDEP guidelines for the Leaching to Groundwater standard.
- The amount of residually impacted soil that exceeds the remediation goals is estimated as follows:

Surface Area:	1,000 sqft
Vertical Zone:	5-12 ft bgs
Volume:	260 yds x 20% contingency factor = 315 yds.
Tonnage:	1.5 tons/yd, 315 yds x 1.5 tons/yd = 468 tons.

- Groundwater laboratory analyses in overburden monitoring well MW1 show regulatory guidelines for drinking water (Maine MEGs) and MEDEP Draft Groundwater Vapor Intrusion Screening Levels (Commercial) were exceeded for ethylbenzene and C9-C10 aromatics. Naphthalene exceeded the MEG only. None of the groundwater sample parameters exceeded the Massachusetts GW-2 standards for vapor intrusion.
- One chlorinated organic compounds was detected in soil gas testing. PCE was detected at a concentration of 2.89 ug/m3 (SG2), which does not exceed the MEDEP SGT of 105 ug/m3 for the chronic commercial scenario. APH fractions were detected in all soil gas samples, but the concentrations were all below the MEDEP SGTs. APH compounds were detected in SG1 and SG2 only, which are the two soil gas implants closest to the source area. The data indicate that soil gas from the source area has migrated along and likely beneath the front of the building, but at concentrations lower than the SGTs.

APPENDIX 1

Tables and Figures

Table 1 General Methodology

Category	Sample ID/Media	Rationale
Delineation	·	
	B1 – B17/Soil	Phase 1 soil borings completed around the Site to determine the horizontal and vertical extent of petroleum impacted soil.
	B1 (8-9'), B2 (11-12'), B6 (9-10'), B10 (7- 8')/Soil	EPH and VPH testing of selected soil samples to assist in delineation of impacted soil and to compare to MEDEP remediation standards.
Source Are	a	
	B1, B2, B6/Soil	Soil samples collected by DEP personnel. Assess contaminant concentrations in soil inside the impacted zone as determined from the direct-push borings and PID levels.
	B18/Soil	Soil sample collected to assess contaminant concentrations in soil inside the source area as determined from the direct-push borings, PID levels, and laboratory testing (EPH/VPH).
	MW1/Groundwater	Groundwater sampled to assess contaminant concentrations in source area groundwater to compare with soil gas samples inside source area and soil gas samples outside source area to assess migration.
	SG1/Soil Gas	Soil gas sample collected in source area and to assess near slab vapor intrusion potential.
Migration		
	MW2/Groundwater	To provide groundwater concentration data up gradient of source area (area of residual soil impacts).
	MW3/Groundwater	To provide groundwater concentration data 15 ft down to cross gradient of source area.
	MW4/Groundwater	To provide groundwater concentration data 30 ft down to cross gradient of source area.
	SG2/Soil Gas	Assess soil gas migration up gradient of known source area, co-located to MW2 and B12.
	SG3/Soil Gas	Assess soil gas migration 15 ft down to cross gradient of known source area, co-located to MW3 and B19.
	SG4/Soil Gas	Assess soil gas migration 30 ft down to cross gradient of known source area, co-located to MW4 and B20.
Receptor		
	SG-1/Soil Gas	Assess soil gas concentration in source area adjacent to building slab.
	Sump 1	To provide groundwater concentration data from sump water inside building basement.

Media	Sample Points (Depth ft)	Collection Methods	Field Testing	Laboratory Testing
Soil	B1 – B20	Soil borings were completed using MAI's Geoprobe 6620 DT direct-push drilling rig. Samples were collected in a 5' long disposable acetate liner at continuous depth intervals.	Thermo 580 B photoionization detector (PID). Calibrated using a 100 ppm isobutylene standard with a response factor of 1.0. MEDEP Poly-bag Headspace technique, MEDEP SOP DR #011	MADEP Hydrocarbon Fractions Analytical Methods. VPH - Volatile Petroleum Hydrocarbons. EPH – Extractable Petroleum Hydrocarbons.
Groundwater	MW1 – MW4	Monitoring wells were installed using MAI's Geoprobe 6620 DT direct-push drilling rig. Wells were made of 10' long, 1" dia. PVC well screen (10-slot) and solid riser pipe. The screens were placed across the observed water table such that 2' of screen extended above the water table and 8' below. The well screen sections were back filled with filter sand to 6" above top of implant and sealed with hydrated bentonite clay. Groundwater samples were collected using "Low flow" sampling methods.	Turbidity and water level.	MADEP Hydrocarbon Fractions Analytical Methods. VPH - Volatile Petroleum Hydrocarbons.
	Sump-1	Ran building sump pump from 9:00am – noon on day of sampling. Collected grab sample from sump at noon.	Turbidity, PID	MADEP Hydrocarbon Fractions Analytical Methods. VPH - Volatile Petroleum Hydrocarbons.
Soil Gas	SG1 (4.5') SG2 (3.25') SG3 (3.25') SG4 (3.25')	Soil gas implants (6" long) were installed to a depth of 2' above the observed water table using MAI's Geoprobe 6620 DT direct-push drilling rig. The implants were installed through the drill casing, backfilled with filter sand and sealed with bentonite clay. Soil gas was collected using a peristaltic pump at a low flow rate (100 ml/min) to minimize the potential for short circuiting.	RKI Eagle, or MSA Orion Plus IR detector, Multi-Gas Meter. Rotameter - model P single flow tube meter Dwyer instruments magnehelic gauge (Model 2000-00 has a range of 0-0.50" w.c., minor divisions .01, calibrated for vertical scale position)	 MADEP - Air Phase Petroleum Hydrocarbons MA-APH (Air Phase Petroleum Hydrocarbons) and breakdown products) EDB (ethylene dibromide) and TO-15 fixed gases (Methane, O2 and CO2)

Table 2	
Sample Collection and Testing Metho	dologies

Sample ID	SG-1	SG-2	SG-3	SG-4
Sample Date:	11/19/10	11/19/10	11/24/10	11/19/10
Sample Depth (ft):	4.5	3.5	3.5	3.5
Depth to Water (ft):	4.75	4.08	5.10	5.05
02				
Ambient O2 (%):	20.9	20.9	20.9	20.9
Pre-sample O2 (%):	20.4	19.9	20.4	19.9
Post Sample O2 (%):	20.4	20.0	20.4	19.8
Lab O2 (%):	17.3	18.1	18.0	17.9
CO2				
Ambient CO2 (%):	0.1	0.1	0.1	0.1
Pre-sample CO2 (%):	1.4	1.5	1.9	1.8
Post Sample CO2 (%):	1.4	1.5	1.9	1.8
Lab CO2 (%):	1.22	1.25	1.16	1.61
CH4				
Pre-sample CH4 (%LEL):	0	0	0	0
Lab CH4 (%):	ND	ND	ND	ND

 Table 3: Fixed Gas Data

TABLE 4Soil Analytical Data

Son Analytical Data											
Sample ID	B1 (8-9')	B2 (11-12')	B6 (9-10')	B10 (7-8')	B18 (8-9') MW1	GW Leaching Soil Guideline					
Sample Date	10/26/10	10/26/10	10/26/10	10/26/10	11/16/10						
VOCs by PID, ppmv	807	210	427	68.8	227						
VPH Analytes, mg/kg											
Toluene	0.25	ND (0.05)	ND (0.05)	ND (0.05)	0.881 J	8.1					
Ethylbenzene	2.9	0.13	0.89	ND (0.05)	7.73	0.81					
m/p- Xylenes	13	0.14	1.9	ND (0.1)	30.8						
o-Xylene	3.3	ND (0.05)	ND (0.05)	ND (0.05)	3.8						
Xylenes, total	16.3	0.14	1.9	ND	34.6	26					
Naphthalene	4.3	3.2	1.0	ND (0.1)	7.15	1.7					
C5-C8 Aliphatic	95	25	43	6.8	54.8	1600					
C9-C12 Aliphatic	15	8.3	22	34	ND (40.7)						
C9-C10 Aromatic	140	12	44	1.6	221	75					
EPH Analytes, mg/kg											
Naphthalene	1.6	ND (0.2)	ND (0.2)	ND (0.2)	NA	1.7					
2-Methylnaphthalene	5.0	ND (0.2)	ND (0.2)	ND (0.2)	NA	3.6					
C9-C18 Aliphatic	35	ND (20)	ND (20)	ND (20)	NA						
C19-C36 Aliphatic	ND (20)	ND (20)	ND (20)	ND (20)	NA						
C11-C22 Aromatic	37	ND (20)	ND (20)	ND (20)	NA	460					

NOTES - [1] Groundwater Leaching scenario, Table 3, Tier 1 Cumulative Risk-Based Soil Remediation Guidelines for Petroleum Target Compounds and Hydrocarbon Fractions, Remediation Guidelines for Petroleum Contaminated Sites in Maine, effective December 1, 2009

-- = No guideline for this compound

ND = Not detected above the laboratory reporting limit (Reporting Limit – RL)

J = Compound detected below calibrated range, concentration estimated

mg/kg = milligrams per kilogram

ppmv = parts per million by volume

Groundwater Analytical Results										
Sample ID	MW-1	MW-2	MW-3	MW-4	Sump-1	Trip Blank	MA GW2 Standard [1]	ME MEGs 2010 [3]	Draft VI Screening- Commercial [2]	
Sample Date	11/19/10	11/19/10	11/19/10	11/19/10	11/19/10	11/19/10				
Units]	Micrograms	per liter (ug	g/l)			
VPH Analytes										
Benzene	2	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	2000	4	6.9	
Toluene	2	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	50000	600	16000	
Ethylbenzene	34	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	20000	30	15	
m/p- Xylenes	77	ND (4)	ND (4)	ND (4)	ND (4)	ND (4)				
o-Xylene	18	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)				
Xylenes, total	95	ND	ND	ND	ND	ND	9000	1000	410	
Methyl tert butyl ether	1 J	ND (2)	ND (2)	ND (2)	1 J	ND (2)	50000	35	2000	
Naphthalene	12	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	1000	10	20	
C5-C8 Aliphatic	ND (50)	ND (50)	3000	300	3.2					
C9-C12 Aliphatics	ND (50)	ND (50)	5000	700	2.7					
C9-C10 Aromatic	244	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	7000	200	130	

TABLE 5Groundwater Analytical Results

NOTES - [1] Massachusetts Contingency Plan Method 1 Groundwater Standards, Table1, GW-2 Standards, (310 CMR 40.0974(2)), for groundwater that is considered a potential source of indoor air contamination; exceedances are shaded

[2] Draft (11/23/2010) Table B11, Groundwater Vapor Intrusion Screening Levels for Chronic Residential and Commercial Scenarios (ug/l), provided by MEDEP, (Draft MEDEP Screening Levels).

[3] Maine Department of Human Services, Centers for Disease Control, Maximum Exposure Guidelines (MEGs) for drinking water, December 14, 2010.; exceedances are in bold font

- VPH = Volatile Petroleum Hydrocarbons, MA DEP Method
- -- = No standard or guideline for this compound
- ND = Not detected above the laboratory reporting limit

J = Compound detected below calibrated range, concentration estimated

Son Gas Analytical Results										
Sample ID (depth)	SG-1 (4.5')	SG-2 (3.5')	SG-3 (3.5')	SG-4 (3.5')	Regulatory Guidelines					
Sample Date	11/19/10	11/19/10	11/24/10	11/19/10						
Analyte		Un	its ug/m ³		SGT [1]					
Chlorinated VOCs (TO-15) [2]										
Tetrachloroethene (PCE)	ND (1.36)	2.89	ND (1.36)	ND (1.36)	105					
АРН										
1,3-Butadiene	ND (2)	ND (2)	ND (2)	ND (2)	20.5					
Benzene	ND (2)	ND (2)	ND (2)	ND (2)	80					
Toluene	220	24	ND (2)	ND (2)	220000					
Ethylbenzene	ND (2)	5.9	ND (2)	ND (2)	245					
m/p- Xylenes	4.1	18	ND (4)	ND (4)	-					
o-Xylene	ND (2)	8.5	ND (2)	ND (2)	-					
Xylenes, total	4.1	36.5	ND	ND	4400					
Naphthalene	ND (2)	ND (2)	ND (2)	ND (2)	18					
Methyl tert butyl ether	ND (2)	ND (2)	ND (2)	ND (2)	23.5					
C5-C8 Aliphatic, Adjusted	18	58	13	22	9000					
C9-C12 Aliphatics, Adjusted	88	52	39	40	9000					
C9-C10 Aromatic, Total	ND (10)	80	ND (10)	19	2200					

TABLE 6 Soil Gas Analytical Results

NOTES - [1] Soil Gas Target (SGT) = 50 times the MEDEP Indoor Air Target for Chronic Commercial-Multi Contaminant Scenario, Table B6 - 01/14/10MEDEP Vapor Intrusion Evaluation Guidance; exceedances are shaded.

[2] Chlorinated volatile organic compounds by EPA Method TO-15. Analyte List: Vinyl chloride, 1,1-Dichloroethene, Trans-1,2-Dichloroethene, 1,1-Dichloroethane, Cis-1,2-Dichloroethene, 1,1,1-Trichloroethane, Trichloroethene, 1,2-Dibromomethane, Tetrachloroethene,

ND = Not detected above the laboratory reporting limit

APPENDIX 2

Boring Logs and Well Construction Details

MA	IE	nvironm	ental							
Twin Bri	dge Mar	ket - Route 219	Leeds, Maine	B	BORING DESIGNATION B1					
Project N	lumber:	1048		Di	rilling Rig:		Geoprobe	e 6620DT		
Geologis		John March			ampling Meth		Dual Tub			
Date Dri		October 26,		To	otal Depth of	Borehol	e: 18.8 Fee	et		
Drilling	Method:	Direct Push Sand Silt		Asphalt	Bentonite	Filtz	er Sand So	creen	Riser	
Sample ID	Lithology	D	escription		Depth (ft)	PID Reading (ppm)	Notes	S	Well Completion	
S1			AND, trace Silt and gr			0	PID Cali Using Set 1.(Point of		
S1					5	0.8				
S2		Brown fine to me (turns gray at 7.5	dium SAND, trace Silt			654	Wet at 7.5 Ode			
S2			& CLAY (dense)			807	Petrol Oc VPH,			
S 2	· · · · · · · · · · · ·	Dense gray fine t Gravel (Till)	o coarse SAND, some	Silt &		751	Petrol	Odor		
S3		Dense gray fine t Gravel (Till)	o coarse SAND, some			69.7				
S3		Gravel (Till)				12.7	Den	ise		
S4		Dense gray fine t Gravel (Till)	o coarse SAND, some	Silt &	15 	7.2				
		Bottom of Boring	g 18.8-feet (Refusal)		20					
1034 B	roadwa	ıy	South Portland	l, Mai	ne		(207) 7	767-3663	Page <u>1</u>	

MA	IE	nvironm	ental					
Twin Bri	idge Ma	ket - Route 219	Leeds, Maine	BC	DRING D	ESIG	NATION B2	
Project N		1048			lling Rig:		Geoprobe 6620DT	
Geologis		John March			npling Meth		Dual Tube	
Date Dri		October 26,		Tot	al Depth of	Borehol	e: 15 Feet	
Drilling Drilling	Method: lay	Direct Push Sand Silt		sphalt	Bentonite	Filt	er Sand Screen	Riser
Sample ID	Lithology	D	escription		Depth (ft)	PID Reading (ppm)	Notes	Well Completion
S1		Asphalt Brown fine to me and silt	dium SAND, trace Gra	vel		0	PID Calibrated Using Set Point of 1.0	
S1		Brown fine SANI Orange/Brown m	D, some Silt and clay edium SAND, trace Silt	 	5	0	Wet at 7.5' - Petrol	
S2	· · · · · · · · · · · · · · · · · · ·					0.4	Odor	
S2	<u> </u>	Olive gray SILT		1		42.7		
S 2	· · · · · ·	Gray medium SA	ND, trace Silt & Grave	1		590	Wet, Petrol Odor	
S2		Gravel (Till)	o coarse SAND, some S		10-	732	Petrol Odor	
S3						210	Petrol Odor Lab 11'- 12' VPH, EPH	
S3		some Silt & Grav	wn fine to coarse SAN el (Till) 15-feet (Refusal)	D,	15	1.4		
1034 B	roadw	av	South Portland	. Main	- 20- 		(207) 767-366	3 Page <u>1</u>
		~		,			())) 0 000	1 ugo <u>1</u>

MA	IE	nvironm	ental						
Twin Br	Twin Bridge Market - Route 219 Leeds, Maine BORIN						NATION	B3	
Project N	Number:	1048			Drilling Rig:		Geopro	be 6620DT	
Geologis		John March			Sampling Me		Dual Tu		
Date Dri		October 26,			Total Depth o	f Borehol	le: 15 Fee	t	
Drilling	Method: Clay	Direct Push Sand Silt	Silty Sand	Aspha	alt Bentoni	e Filt	er Sand	Screen	Riser
	Ż								
Sample ID	Lithology	D	escription		Depth (ft)	PID Reading (ppm)	Note	es	Well Completion
		Asphalt							
S1		Orange/Brown fi silt	ne to medium SAN	D, trace	-	1.7	Using Se	alibrated et Point of 0	
S 2		silt	ne to medium SAN	D, trace	5 - 	0			
S2		Olive gray SILT	& CLAY		_	0			
\$3		Olive gray SILT	& CLAY		— — 10- — —	0			
\$3	· · · · · · · · · · · · · · · · · · ·	Gravel (Till)	o coarse SAND, so	ome Silt o	& 15-	0			
					20	_			
1034 B	Broadw	ay	South Portle	and, M	laine		(207)	767-3663	Page <u>1</u>

MAI	Environm	ental				
Twin Bridge	Market - Route 219	Leeds, Maine	BORING D	DESIG		
Project Numb			Drilling Rig:		Geoprobe 6620DT Dual Tube	
Geologist:	John Marc		Sampling Meth			
Date Drilled:	October 26		Total Depth of	Boreho	le: 15 Feet	
Drilling Meth Clay	od: Direct Pus Sand Silt		phalt Bentonite	e Filt	er Sand Screen	Riser
Sample ID Lithology) 	Description	Depth (ft)	PID Reading (ppm)	Notes	Well Completion
S1 S2 S2 S3 S3	Silt Orange/Brown f silt Olive gray SILT Olive gray SILT Olive gray SILT Dense gray fine Gravel (Till)		ace 5	2.1 0.8 0 0 0	PID Calibrated Using Set Point of 1.0	
1034 Broad	lway	South Portland,	20 Maine	_	(207) 767-3663	Page <u>1</u>

MA	IE	nvironm	ental						
Twin Bri	dge Ma	rket - Route 219	Leeds, Maine	I	BORING D	ESIG	NATION	N B5	
Project N		1048			Orilling Rig:		Geopro Dual T	obe 6620DT	
Geologis		John March			Sampling Meth				
Date Dri		October 26,	2010		Fotal Depth of	Boreho	le: 10 Fe	et	
Drilling Drilling	lay	Direct Push Sand Silt	Silty Sand A	Asphalt	t Bentonite	Filt	er Sand	Screen	Riser
	\mathbb{Z}					2			
Sample ID	Lithology	De	escription		Depth (ft)	PID Reading (ppm)	No	tes	Well Completion
S1 S2 S2		silt Orange/Brown fin silt Olive gray SILT	he to medium SAND, t ne to medium SAND, t & CLAY 10-feet (No Refusal)	trace		0.8	Using S	Calibrated Set Point of 1.0	
1034 B	roadw	ay	South Portland	d, Ma	- 20- 		(207)) 767-3663	Page <u>1</u>

MA	MAI Environmental										
Twin Bri	dge Ma	rket - Route 219	Leeds, Maine		BORINO	G D	ESIG	NATIO	N B6		
Project N	lumber:	1048			Drilling Ri	g:		Geop	orobe 6620DT		
Geologis		John Marche			Sampling N				Tube		
Date Dri		October 26,	2010		Total Dept	h of	Borehol	le: 12.1	Feet		
Drilling Drilling	Method:	Direct Push Sand Silt	Silty Sand	Aspha	alt Bento	onite	Filt	er Sand	Screen	Riser	
Sample ID	Lithology	De	escription		Cont. (4)	(II) Indari	PID Reading (ppm)	N	otes	Well Completion	
S1 S2 S2 S3		silt Orange/Brown fin silt Olive gray SILT & Dense gray fine to Gravel (Till)	e to medium SAN	D, trace			2.1 0 427 6.4		Calibrated Set Point of 1.0		
1034 B	roadw	ay	South Portle	and, M	_		-	(20	7) 767-3663	Page <u>1</u>	
		-							· · · · · ·		

Twin Bridge Market - Route 219 Leeds, Maine BORING DESIGNATION B7 Project Number: 1048 Drilling, Rig: Geoprobe 66:20DT Geologist: John Marchewka Sampling Method: Dual Tube Date Drilled: October 26, 2010 Total Depth of Borehole: 15 Feet Drilling Method: Direct Push Filter Sand Screen Riser Clay Sand Silt Silty Sand Asphalt Bentonite Filter Sand Screen Riser Clay Sand Silt Silty Sand Asphalt Bentonite Filter Sand Screen Riser Clay Sand Orange/Brown fine to medium SAND, trace -
Geologist: John Marchewka Sampling Method: Dual Tube Date Drilled: October 26, 2010 Total Depth of Borehole: 15 Feet Drilling Method: Direct Push Filter Sand Screen Riser Clay Sand Silt Silty Sand Asphalt Bentonite Filter Sand Screen Riser Image: Silt Silt Silt Silty Sand Asphalt Bentonite Filter Sand Screen Riser Image: Silt Description Image: Silt Image
Date Drilled: October 26, 2010 Total Depth of Borehole: 15 Feet Drilling Method: Direct Push Filter Sand Screen Riser Image: Single Si
Drilling Method: Direct Push Clay Sand Silt Silty Sand Asphalt Bentonite Filter Sand Screen Riser Image: Silt Image: Silt Silty Sand Asphalt Bentonite Filter Sand Screen Riser Image: Silt Image: Silt<
Clay Sand Silt Silty Sand Asphalt Bentonite Filter Sand Screen Riser Image: Solution
G1 b0 Description title b0 Pip field Notes Well Completion S1 Asphalt Orange/Brown fine to medium SAND, trace silt 0.9 PID Calibrated Using Set Point of 1.0 0.9 PID Calibrated Using Set Point of 1.0 0.9 State Point of 1.0 0.4 <td< td=""></td<>
Image: Second
S1 Orange/Brown fine to medium SAND, trace
S3 Dense gray fine to coarse SAND, some Silt & 0 Gravel (Till) 0 Bottom of Boring 15-feet (No Refusal) 15
1034 Broadway South Portland, Maine (207) 767-3663 Page 1

MA	IE	nvironme	ntal						
Twin Br	idge Ma	rket - Route 219	Leeds, Maine	BO	RING D	ESIG	NATION	B8	
Project N	Number:	1048			ng Rig:		1	obe 6620DT	
Geologis		John Marchew			oling Meth		Dual T		
Date Dri		October 26, 20 Direct Push)10	Total	Depth of	Borehol	le: 11 Fe	et	
Drilling	Clay	Sand Silt	Silty Sand As	phalt	Bentonite	Filt	er Sand	Screen	Riser
	\mathbb{Z}								
Sample ID	Lithology	Des	cription		Depth (ft)	PID Reading (ppm)	No	tes	Well Completion
S1		Dark Brown fine to Gravel, little silt	medium SAND, some	:		0	Using S	Calibrated Set Point of 1.0	
S2			medium SAND, trace		5	0			
\$3		Dark brown fine to	inculuin 571(12), trace	Siit		0			
S 3		Olive gray SILT &	CLAY			0			
S4	· · · · · · · · · · · · · · · · · · ·	Brown SAND and g recovery) Bottom of Boring 1	ravel, little silt (poor		- 10-	0			
		Bottom of Boring 1	I-ieet (Keiusai)						
					- 15-				
1034 Broadway South Portland, Maine (207) 767-3663 Page 1									Page <u>1</u>

MA	IE	nvironm	ental							
Twin Bri	dge Mai	ket - Route 219	Leeds, Maine		BORI	NG D	ESIG	NATIO	N B9	
Project N		1048			Drilling			^	robe 6620DT	
Geologis		John Marche			Sampling	-		Dual '		
Date Dri		October 26, Direct Push	2010		Total De	pth of	Borehol	le: 14 Fe	eet	
Drilling Drilling	lay	Sand Silt	Silty Sand	Aspha	alt Ber	ntonite	Filt	er Sand	Screen	Riser
	\mathbb{Z}		0.00							
Sample ID	Lithology	De	escription			Depth (ft)	PID Reading (ppm)	No	otes	Well Completion
	· · · · · · · · · · · · · · · · · · ·	Asphalt Orange/Brown fir silt and gravel	e to medium SAN	ID, trace		_		PID	Calibrated	
S1					_	_	0.8		Set Point of 1.0	
S2		silt and gravel	e to medium SAN			- 5 —	0			
S2					_	_	0			
S3		Olive gray SILT a	¢ CLAY			- 10— 	0			
S 3	· · · · · · · · · · · · · · · · · · ·	Dense gray fine to Gravel (Till) Bottom of Boring	o coarse SAND, so 14-feet (Refusal)	ome Silt &		- - - 15—	0			
					_					
						_				
					_	- 20—	-			
1034 B	1034 Broadway South Portland, Maine (207) 767-3663 Page 1									

MA	IE	nvironme	ental							
Twin Bri	dge Ma	rket - Route 219	Leeds, Maine		BORING	DESI	GNATIO	N B10		
Project N	lumber:	1048			Drilling Rig	;:	Geopi	obe 6620DT		
Geologis		John Marche			Sampling Method: Dual Tube					
Date Dri		October 26,	2010		Total Depth of Borehole: 8.5 Feet					
Drilling Drilling	Method: lay	Direct Push Sand Silt	Silty Sand	Aspha	alt Bento	nite F	Filter Sand	Screen	Riser	
	\mathbb{Z}		0.000							
Sample ID	Lithology	De	scription		Denth (ft)	PID Reading	(udd) No	otes	Well Completion	
S1 S2 S2		Asphalt Orange/Brown me trace silt Orange/Brown me trace silt Olive gray SILT & Bottom of Boring rock/stone)	dium to coarse SA			_	Using	Calibrated Set Point of 1.0 Wet		
1024 2			Court D 1		2	 				
1034 B	roadw	ay	South Portle	and, M	laine		(207) 767-3663	Page <u>1</u>	

MA	MAI Environmental										
Twin Bri	dge Ma	rket - Route 219	Leeds, Maine		BORING	DESIG	NATION	B10A			
Project N		1048			Drilling Rig:			be 6620DT			
Geologis		John March			Sampling Me		Dual Tu				
Date Dri		October 26, Direct Push			Total Depth of	of Boreho	le: 13 Fee	et			
Drilling Drilling	lay	Sand Silt	Silty Sand	Aspha	lt Bentoni	te Filt	er Sand	Screen	Riser		
	\mathbb{Z}		9.000								
Sample ID	Lithology	D	escription		Depth (ft)	PID Reading (ppm)	Not	es	Well Completion		
S1 S2		gravel	edium SAND, trace edium SAND, trace			0 0 2.5	Using Se	alibrated et Point of 1.0			
S2 S3		Olive gray SILT	& CLAY — — –		10 	- 0.9 - 0 - 0	X	Vet			
		Bottom of Boring	13-feet (Refusal)		15 20	_					
1034 B	roadw	ay	South Portle	and, M	laine		(207)	767-3663	Page <u>1</u>		

MA	IE	nvironm	nental							
Twin Br	idge Ma	rket - Route 219	Leeds, Maine	;	BORIN	IG D	ESIG	NATIO	N B11	
Project N					Drilling R			<u>^</u>	robe 6620DT	
Geologis		John Marc			Sampling			Dual		
Date Dri		October 2 Direct Pus			Total Dep	oth of	Borehol	le: 15 F	eet	
Drilling C	lay	Sand Sil		Aspha	alt Ben	tonite	Filte	er Sand	Screen	Riser
			00							
Sample ID	Lithology	I	Description			Depth (ft)	PID Reading (ppm)	N	otes	Well Completion
S1		silt, little gravel			-		0.4		Calibrated Set Point of 1.0	
S2	· · · · · · · · · · · · · · · · · · ·	Orange/Brown little gravel Olive gray SIL	medium SAND, trac	ze silt,	_	-	0			
S2		Olive gray SIL				- 10—	- 0		Wet	
\$3		Detterm of Devi			-	- - 15—	0			
		Bottom of Bori	ng 15-feet (No Refu	sal)	-		-			
1034 B	1034 Broadway South Portland, Maine (207) 767-3663 Page 1									

MA	IE	nvironm	e ntal							
Twin Bri	dge Ma	ket - Route 219	Leeds, Maine		BORIN	G D	ESIG	NATIO	N B12	
Project N		1048			Drilling Rig: Geoprobe 6620DT					
Geologis		John March			Sampling Method: Dual Tube					
Date Dri		October 27,	2010		Total Dept	th of 1	Borehol	le: 14 Fe	eet	
Drilling Drilling	lay	Direct Push Sand Silt	Silty Sand	Aspha	alt Bent	onite	Filt	er Sand	Screen	Riser
	\mathbb{Z}		PP							
Sample ID	Lithology	D	escription			Depth (It)	PID Reading (ppm)	N	otes	Well Completion
S1		gravel	edium SAND, trace		_		0		Calibrated Set Point of 1.0	
S2		gravel	edium SAND, trace	e silt and	I		0			
S2		Olive gray SILT				- 10— -	0			
S3					_	_	0			
S3		Dense gray fine to Gravel (Till) Bottom of Boring	o coarse SAND, sor 14-feet (Refusal)	me Silt d		 20	0			
1034 BroadwaySouth Portland, Maine(207) 767-3663Page									Page <u>1</u>	

MA	IE	nvironn	nental							
Twin Bri	dge Mar	ket - Route 219	Leeds, Maine		BORIN	G D	ESIG	NATIO	N B13	
Project N	lumber:	1048			Drilling Rig: Geoprobe 6620DT					
Geologis		John Mar			Sampling Method: Dual Tube					
Date Dri		October 2			Total Dep	oth of	Borehol	e: 14 Fe	eet	
Drilling Drilling	lay	Direct Pu Sand Si		Aspha	alt Ben	tonite	Filte	er Sand	Screen	Riser
	\mathbb{Z}									
Sample ID	Lithology		Description			Depth (ft)	PID Reading (ppm)	N	otes	Well Completion
S1		gravel	medium SAND, trac				0		Calibrated Set Point of 1.0	
S2		Orange/Brown gravel Olive gray SIL	medium SAND, trac	e silt and	I	-	0			
S2		Olive gray SIL					0			
S3					_	_	0			
S3		Gravel (Till)	e to coarse SAND, so							
1034 B	roadwa	ıy	South Portl	land, M	laine			(202	7) 767-3663	Page <u>1</u>

MA	IE	nvironm	ental							
Twin Bri	dge Mar	ket - Route 219	Leeds, Maine		BORIN	NG D	ESIG	NATIO	N B14	
Project N	lumber:	1048			Drilling Rig: Geoprobe 6620D					
Geologis		John Marc			Sampling			Dual		
Date Dri		October 27			Total De	pth of	Borehol	e: 14 Fe	eet	
Drilling	Method:	Direct Pus Sand Silt		Aspha	alt Bor	ntonite	Filt	er Sand	Screen	Riser
Sample ID	Lithology	Γ	Description			Depth (ft)	PID Reading (ppm)	No	otes	Well Completion
S1		gravel	nedium SAND, tracc		-		0		Calibrated Set Point of 1.0	
S2	· · · · · · · · · · · · · · · · · · ·	Orange/Brown r gravel Olive gray SILT	nedium SAND, trace	e silt and	1	- 3	0			
S2					_	_	0			
S3		Olive gray SILT	& CLAY		_	- 10	0			
S3		🔪 some Silt & Gra	ay fine to coarse SA vel (Till) g 14-feet (Refusal)	ND,		- - 15—	0			
						-				
					-	- 20	-			
1034 B	roadwa	ıy	South Portle	and, M	laine			(20)	7) 767-3663	Page <u>1</u>

MAI Environmental										
Twin Bri	ket - Route 219	Leeds, Maine	BOF	BORING DESIGNATION B15						
Project N	Project Number: 1048					Drilling Rig: Geoprobe 6620D				
	Geologist: John Marchewka				ling Meth		Dual Tube			
Date Drilled: October 27, 2010					Total Depth of Borehole: 14 Feet					
Drilling Method: Direct Push Clay Sand Silty Sand Asphalt Bentonite Filter Sand Screen								Riser		
Sample ID	Lithology	De	escription		Depth (ft)	PID Reading (ppm)	Notes	Well Completion		
S1 S2 S3 S3 S3		gravel Brown fine to coa gravel (poor recor backfill) Brown fine to coa gravel (poor recor backfill) Olive gray SILT of	y fine to coarse SAND, el (Till)				PID Calibrated Using Set Point of 1.0			
1034 B	roadwa	ıy	South Portland,	Maine		-	(207) 767-3663	Page <u>1</u>		

MAI Environmental										
Twin Bri	dge Ma	rket - Route 219	Leeds, Maine	BORING DESIGNATION B16 SG1						
Project N	Project Number: 1048				Drilling Rig: Geoprobe 6620DT					
Geologis		John March				Sampling Method: Dual Tube				
Date Drilled:			October 27, 2010		Total Depth of Borehole: 9 Feet					
Drilling Method: Direct Push Clay Sand Silt Silty Sand						: 5' Sam entonite	ple Int Filt	ervals Composited For er Sand Vapor Point S	PID Screening	
				Aspha						
Sample ID	Lithology	D	escription			Depth (ft)	PID Reading (ppm)	Notes	Soil Vapor Point	
S1 S2 S2		gravel Orange/Brown m gravel	edium SAND, trac edium SAND, trac & CLAY (dense til g 9-feet (Refusal)	e silt and	-		0 0 548	PID Calibrated Using Set Point of 1.0 SV Implant set 4- 4.5' Water Level @ 6'		
1034 Broadway South Portland, Maine (207) 767-3663 Press									Page <u>1</u>	

MA	IE	nvironm	ental						
	-	ket - Route 219	Leeds, Maine		BORING I	DESIG			
Project N		1048			Drilling Rig:			robe 6620DT	
Geologis		John March			Sampling Met		Dual 7		
Date Dri Drilling		October 27, Direct Push			Total Depth of	Borenoi	e: 10 Fe	el	
	lay	Sand Silt	Silty Sand	Aspha	alt Bentonit	e Filte	er Sand	Screen	Riser
	\mathbb{Z}		0,0						
Sample ID	Lithology	De	escription		Depth (ft)	PID Reading (ppm)	No	otes	Well Completion
S1 S2 S2		gravel Orange/Brown m gravel	edium SAND, trace edium SAND, trace & CLAY (dense till 10-feet (Refusal)	silt and				Calibrated Set Point of 1.0	
1034 B	roadw	ay	South Portla	and, M	laine		(207	7) 767-3663	Page <u>1</u>

MA	IE	nvironme	ntal						
Twin Brid	dge Mar	ket - Route 219	Leeds, Maine		BORI	ING D	ESIG	NATION B18 N	AW1
Project N		1048			Drilling			Geoprobe 6620DT	
Geologist		Paul Prescott				ng Metho		Dual Tube	
Date Dril Drilling N		November 6, Direct Push	2010			epth of l			DID Concentra
	lay	Sand Silt	Silty Sand	Aspha		entonite		ervals Composited For er Sand Screen	Riser
			00						
Sample ID	Lithology	Des	cription			Depth (ft)	PID Reading (ppm)	Notes	Well Completion
S1 S2 S2 S2 S3 S3		Asphalt Orange/Brown med silt and gravel Brown/Grey SANI Gray SILT & CLA Gray SILT & CLA Gray SILT & CLA Brown SAND and Bottom of Boring D	Y Y Y Y Y Y Y Silt (Till)	ID, trace			0 0 227 32 77 0	PID Calibrated Using Set Point of 1.0 Petrol Odor No Petrol Odor Slight Petrol Odor	
1034 Bi	roadwa	ıy	South Portl	land, N	I aine			(207) 767-3663	B Page <u>1</u>

MA	IE	nvironme	ental					
Twin Bri	dge Ma	rket - Route 219	Leeds, Maine]	BORING D	ESIG	NATION MW2	
Project N	lumber:	1048		I	Drilling Rig:		Geoprobe 6620DT	
Geologist		Paul Prescot			Sampling Metho		Dual Tube	
Date Dril		November 6	, 2010		Fotal Depth of I			
Drilling N	Method: lay	Direct Push Sand Silt	Silty Sand	Asphalt		ple Inte Filte	ervals Composited For er Sand Screen	PID Screening Riser
	\mathbb{Z}							
Sample ID	Lithology	De	scription		Depth (ft)	PID Reading (ppm)	Notes	Well Completion
S		No Samples Colle B12	cted - Installed adja	acent to		<u>A</u>		
1034 Bi	roadw	ay	South Portla	nd, Ma	tine		(207) 767-3663	Page <u>1</u>

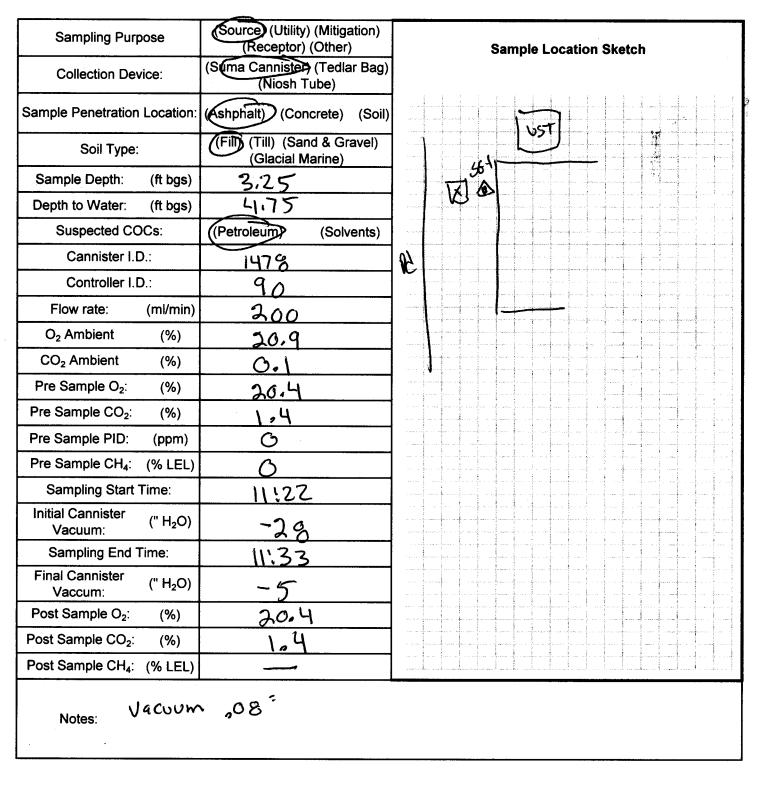
MA	IE	nvironm	ental					
Twin Bri	dge Ma	rket - Route 219	Leeds, Maine	I	BORING D	ESIG	NATION SG2	
Project N	lumber:	1048		Ι	Drilling Rig:		Geoprobe 6620DT	
Geologis		Paul Prescot			Sampling Methor		Dual Tube	
Date Dril		November 6	, 2010		Total Depth of			
Drilling N	Method: lay	Direct PushSandSilt	Silty Sand	Asphalt			ervals Composited For E er Sand Vapor Point S	
Sample ID	Lithology	De	scription		Depth (ft)	PID Reading (ppm)	Notes	Soil Vapor Point
S		No Samples Colle B12	cted - Installed adjad	cent to			SV Implant set 3.0'- 3.5'	
1034 B	roadw	ay	South Portlan	nd, Ma	uine		(207) 767-3663	Page <u>1</u>

MA	IE	nvironmen	tal					
Twin Bri	dge Mai	ket - Route 219	Leeds, Maine	BO	RING D	ESIG	NATION B19 M	IW3
Project N	lumber:	1048		Drill	ling Rig:		Geoprobe 6620DT	
Geologis		Paul Prescott			pling Meth		Dual Tube	
Date Dri		November 6, 201	0		l Depth of			
Drilling Drilling	Method: lay	Direct Push Sand Silt	Silty Sand Asp	NO'. halt	FE: 5' Sam Bentonite	ple Int Filt	ervals Composited For er Sand Screen	PID Screening Riser
			• •					
Sample ID	Lithology	Descri	ption		Depth (ft)	PID Reading (ppm)	Notes	Well Completion
S1 S2 S2 S3		Asphalt Orange/Brown medium Orange/Brown medium Gray SILT & CLAY Gray SILT & CLAY Gray SILT & CLAY Bottom of Boring 11-fr	n SAND, trace grav			0 0 222 48 0.8	PID Calibrated Using Set Point of 1.0 Petrol Odor	
1034 B	roadwa	ıy S	outh Portland,	Main	e		(207) 767-3663	Page <u>1</u>

Twin Bridge Mar Project Number:		BORING D	FSIC				
Project Number:	1048		LOIGI	NATION B19 SC	G3		
		Drilling Rig: Geoprobe 6620DT					
Geologist:	Paul Prescott	Sampling Method: Dual Tube					
Date Drilled:	November 6, 2010	Total Depth of					
Drilling Method: Clay	Direct Push Sand Silt Silty Sand Aspha	It Bentonite	ple Inte Filte	rvals Composited For I r Sand Vapor Point S	VP Tubing		
Sample ID Lithology	Description	Depth (ft)	PID Reading (ppm)	Notes	Soil Vapor Point		
S1 S2 S2 S2 S3	Asphalt Orange/Brown medium SAND, trace gravel Gray SILT & CLAY Gray SILT & CLAY Gray SILT & CLAY Gray SILT & CLAY Bottom of Boring 11-feet (Boulder)		0 0 222 48 0.8	PID Calibrated Using Set Point of 1.0 SV Implant set 3- 3.5'			
1034 Broadw	ay South Portland, M	- 20		(207) 767-3663	Page <u>1</u>		

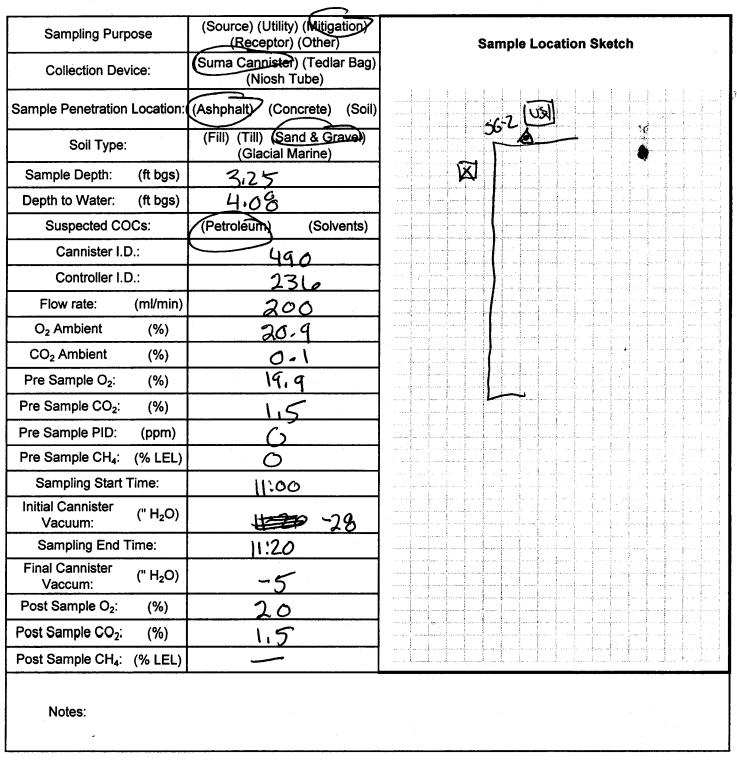
MA	IE	<i>Invironmental</i>				
Twin Br	idge Ma	rket - Route 219 Leeds, Maine	BORING D	ESIG	NATION B20 M	W4
Project N	Number:	1048	Drilling Rig:		Geoprobe 6620DT	
Geologis	st:	Paul Prescott	Sampling Meth	od:	Dual Tube	
Date Dri		November 6, 2010	Total Depth of			
Drilling					ervals Composited For I	
	Clay	Sand Silt Silty Sand Aspha		Filt	er Sand Screen	Riser
Sample ID	Lithology	Description	Depth (ft)	PID Reading (ppm)	Notes	Well Completion
		Asphalt				
S1		Orange/Brown fine to medium SAND		0	PID Calibrated Using Set Point of 1.0	
	· · · · · · · · · · · ·	Orange/Brown fine to medium SAND	3 _			
S2	· · · · · · · · · · · · · · · · · · ·			0		
S2		Gray SILT & CLAY		0		
S2	· · · · · · ·	Brown SAND, Silt, Gravel, pulverized rock (Till)		0		
S 3	· · · · · ·	Brown SAND, Silt, Gravel, pulverized rock (Till)	10	0		
		Bottom of Boring 11-feet (Refusal)				
			— 15—			
			20			
1034 B	roadw	ay South Portland, N	Maine		(207) 767-3663	Page <u>1</u>

MAI E	Invironmental						
Twin Bridge Ma	rket - Route 219 Leeds, Maine	BORING D	ESIG	NATION B20 SO	G4		
Project Number:	1048	Drilling Rig: Geoprobe 6620DT					
Geologist:	Paul Prescott	Sampling Method: Dual Tube					
Date Drilled:	November 6, 2010	Total Depth of					
Drilling Method: Clay	Direct Push Sand Silt Silty Sand Aspha	NOTE: 5' Sam alt Bentonite	i ple Int Filt	ervals Composited For l er Sand Vapor Point S	PID Screening		
Sample ID Lithology	Description	Depth (ft)	PID Reading (ppm)	Notes	Soil Vapor Point		
S1 S1 S2 S2 S2 S3	Asphalt Orange/Brown fine to medium SAND Orange/Brown fine to medium SAND Gray SILT & CLAY Brown SAND, Silt, Gravel, pulverized rock (Till) Brown SAND, Silt, Gravel, pulverized rock (Till) Bottom of Boring 11-feet (Refusal)			PID Calibrated Using Set Point of 1.0 SV Impland Set 3.0'- 3.5'			
1034 Broadw	ay South Portland, N	- 20- Maine	-	(207) 767-3663	Page <u>1</u>		


APPENDIX 3

Soil Gas and Groundwater Sampling Field Data Sheets

PROJECT:Twin Bridge MarketLOCATION:Leeds, MaineDATE:\\ ||q| \ 0


SAMPLE ID: 56-1 SAMPLER: Seth Brown

PROJECT:Twin Bridge MarketLOCATION:Leeds, MaineDATE:1/19/10

SAMPLE ID: 56-7 SAMPLER: Seth Brown

PROJECT: LOCATION: DATE: \\

Twin Bridge Market Leeds, Maine

SAMPLE ID: 56-3 SAMPLER: Seth Brown

Sampling Purpos	е	(Source) (Utility (Receptor)				Sam	ple L	.oca	tion	Sk	etcl	h		
Collection Device	e :	(Suma Cannister (Niosh T												
Sample Penetration Lo	cation	(Ashphalt) (Cor	ncrete) (Soil)				Ī	UST	1					
Soil Type:		(Fill) (Till) (Sai (Glacial N	nd & Gravel) Iarine)	100 m 1 1 0 0 1 1					1			•	 	
Sample Depth: (i	ft bgs)	3.25	•	the state of the s	x	17							 	
Depth to Water: (1	ft bgs)	5.05	5			1				3				
Suspected COCs	S:	Petroleum	(Solvents)			-I								
Cannister I.D.:		511		1 		2								
Controller I.D.:		46	9		55 .								 	
Flow rate: (n	nl/min)	200	1			21					-		 	
O ₂ Ambient	(%)	20,0				~ u							 	
CO ₂ Ambient	(%)	0,1	:	· · · · · · · · · · · · · · · · · · ·	5	6-9					4		 	
Pre Sample O ₂ :	(%)	19.9	·····			۵							 	
Pre Sample CO ₂ :	(%)	1.8								•••			 -	
Pre Sample PID: ((ppm)	0												
Pre Sample CH4: (%	% LEL)	0			· · · · · · · · · · · · · · · · · ·	L			<u>.</u>				 	
Sampling Start Tin	ne:	11:52		· · · · · · · · · · · · · · · · · · ·					· · ·				 	
Initial Cannister (' Vacuum:	' H ₂ O)	-29					1		···· • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·				
Sampling End Tim	ne:	12:04		1										
Final Cannister (' Vaccum:	' H ₂ O)	-5		· · · · · · · · · · · · · · · · · · ·										
Post Sample O ₂ :	(%)	20.4		••••••••••••••••••••••••••••••••••••••					···· }	•••• •••			 	
Post Sample CO ₂ :	(%)	1.9		· · · · · · · · · · · · · · · · · · ·			••• •••••			1			 · · · · · · · · · · · · · · · · · · ·	
Post Sample CH ₄ : (%	6 LEL)				111	11	in finn Line						nderen Deren	

Notes:

PROJECT:Twin Bridge MarketLOCATION:Leeds, MaineDATE:|||||9|||10

SAMPLE ID: 56-4 SAMPLER: Seth Brown

Sampling Purp	ose	(Source) (Utility) (Receptor) (Other)			Sa	mple	Locat	ion	Ske	tch			
Collection Dev	ice:	(Suma Cannister) (Niosh Tu												í
Sample Penetration	Location	(Ashphalt) (Conc	rete) (Soil)				T	刑	-					
Soil Type:		(Fill) (Till) (Sano (Glacial Ma	arine)	100 (000 a 10 (000 a)									10000 and 14	
Sample Depth:	(ft bgs)	3,25			1	Ø			· · · · · · · · · · · · · · · · · · ·					-
Depth to Water:	(ft bgs)	5.05							, 199 (
Suspected CO	Cs:	(Petroleum)	(Solvents)	e recent for a re		ع			111 (1997) 111 (1997)					
Cannister I.D).:	1729		nte e producto de conserva- la conserva- nte e conserva- nte e conserva- e conserva-	50	-3			indiana a					
Controller I.D).:	352												
Flow rate:	(mi/min)	200									·····	-		
O ₂ Ambient	(%)	20.9			<u>56</u>	Å								
CO ₂ Ambient	(%)	0.1		2										
Pre Sample O ₂ :	(%)	19.9		·····										
Pre Sample CO ₂ :	(%)	1.8		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·								
Pre Sample PID:	(ppm)	0										and takes and	 	
Pre Sample CH ₄ :	(% LEL)	0				••••••••••••••••••••••••••••••••••••••				- بالمحمد -			···· · · · · · · · · · · · · · · · · ·	
Sampling Start 7	ime:	1157					· · · · · · · · · · · · · · · · · · ·					1		
Initial Cannister Vacuum:	(" H ₂ O)	-30											· · · · · · · · · · · · · · · · · · ·	
Sampling End T	ime:	1204				· · · · · · · · · · · · · · · · · · ·					- 41 \$1 - 44 1 - 40 \$1 - 44 1 - 40 \$1 - 40 4			· · · · · · · · · · · · · · · · · · ·
Final Cannister Vaccum:	(" H₂O)	-5												
Post Sample O ₂ :	(%)	19.8		· · · · · · · · · · · · · · · · · · ·		 								
Post Sample CO ₂ :	(%)	1.8				·				• • • • • • • • • • • • • • • • • • •				
Post Sample CH ₄ :	(% LEL)		······	····										and the second s

Notes:

.

Water Sampling Data Documentation

PROJECT: LOCATION:	Twin Bridge Leeds, Main			DATE: 11/19/2010 SAMPLER: Seth Brown					
Sampling Point	Water Level (Ft bgs)	Purge Start	Purge Stop	Flow Rate (ml/min)	Turbidity (NTU)				
MVV-1	4.75	930	955	150	16.10				
MW-2	4.08	1000	1045	150	+400 Over Range				
MW-3	5.10	855	925	150	8.00				
MW-4	5.05	835	850	150	7.38				
Sump	NA	Pump Active Prior	to Sampling	NA	45.7				

Notes:

APPENDIX 4

Laboratory Reports

195 Commerce Way Suite E Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906 www.analyticslab.com

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107 Report Number: 68420 Revision: Rev. 0

Re: MAI 396-10

Enclosed are the results of the analyses on your sample(s). Samples were received on 19 November 2010 and analyzed for the tests listed. Samples were received in acceptable condition, with the exceptions noted below or on the chain of custody. These results pertain to samples as received by the laboratory and for the analytical tests requested on the chain of custody. The results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. Please see individual reports for specific methodologies and references.

Sample Analysis: The attached pages detail the Client Sample IDs, Lab Sample IDs, and Analyses requested

Sample Receipt Exceptions: None

Analytics Environmental Laboratory is certified by the states of New Hampshire, Maine, Massachusetts, Connecticut, Rhode Island, Virginia, Maryland, and is accredited by the Department of Defense (DOD) ELAP program. A list of actual certified parameters is available upon request.

If you have any questions on these results, please do not hesitate to contact us.

Authorized signature

Stephen L. Knollmeyer Lab. Director 12/03/2010

Date

This report shall not be reproduced, except in full, without the written consent of Analytics Environmental Laboratory, LLC.

195 Commerce Way Suite E Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906 www.analyticslab.com

REV: Rev. 0

CLIENT: Maine Environmental Laboratory, REPORT NUMBER: 68420 Inc.

PROJECT: MAI 396-10

Lab Number	Sample Date	Station Location	Analysis	Comments
68420-1	11/16/10	B18 8'	Volatile Petroleum Hydrocarbons	
68420-2	11/19/10	MW-1	Volatile Petroleum Hydrocarbons	
68420-3	11/19/10	MW-2	Volatile Petroleum Hydrocarbons	
68420-4	11/19/10	MW-3	Volatile Petroleum Hydrocarbons	
68420-5	11/19/10	MW-4	Volatile Petroleum Hydrocarbons	
68420-6	11/19/10	Sump	Volatile Petroleum Hydrocarbons	
68420-7	11/19/10	Trip Blank (aq)	Volatile Petroleum Hydrocarbons	
68420-8	11/16/10	Trip Blank (s)	Electronic Data Deliverable	
	11/16/10	Trip Blank (s)	Volatile Petroleum Hydrocarbons	

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: B18 8' 195 Cammerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

December 3, 2010

самрі г рата

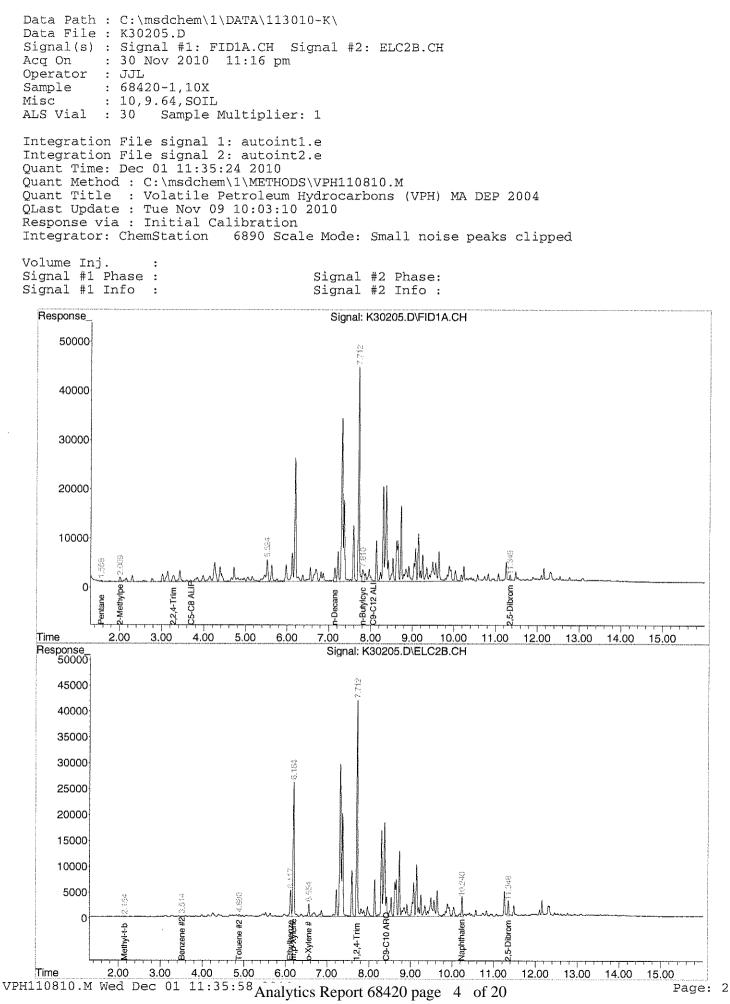
5AN	IFLE DATA
Lab Sample ID:	68420-1
Matrix:	Solid
Percent Solid:	78
Dilution Factor:	813
Collection Date:	11/16/10
Lab Receipt Date:	11/19/10
Analysis Date:	11/30/10

VPH ANALYTICAL RESULTS						
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result		
Unadjusted C5-C8 Aliphatics	N/A	40700	µg/kg	55700		
Unadjusted C9-C12 Aliphatics	N/A	40700	μg/kg	1,33000		
Benzene	C5-C8	1626	µg/kg	U		
Ethylbenzene	C9-C12	1626	μg/kg	7730		
Methyl-tert-butyl ether	C5-C8	1626	μg/kg	U		
Naphthalene	N/A	1626	μg/kg	7150		
Toluene	C5-C8	1626	µg/kg	881 J		
m- & p-Xylenes	C9-C12	3252	µg/kg	30800		
o-Xylene	C9-C12	1626	μg/kg	3800		
C5-C8 Aliphatics Hydrocarbons ^{1,2}	N/A	40700	µg/kg	54800		
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	40700	μg/kg	U		
C9-C10 Aromatic Hydrocarbons	N/A	8130	μg/kg	221000		
Surrogate % Recovery (2,5-Dibron	notoluene) PID			92		
Surrogate % Recovery (2.5-Dibron				89		
Surrogate Acceptance Range				70-130%		

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

²C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.


RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist. Results are expressed on a moisture corrected and dry weight basis.

Authorized signature: Mullull

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: MW-1 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

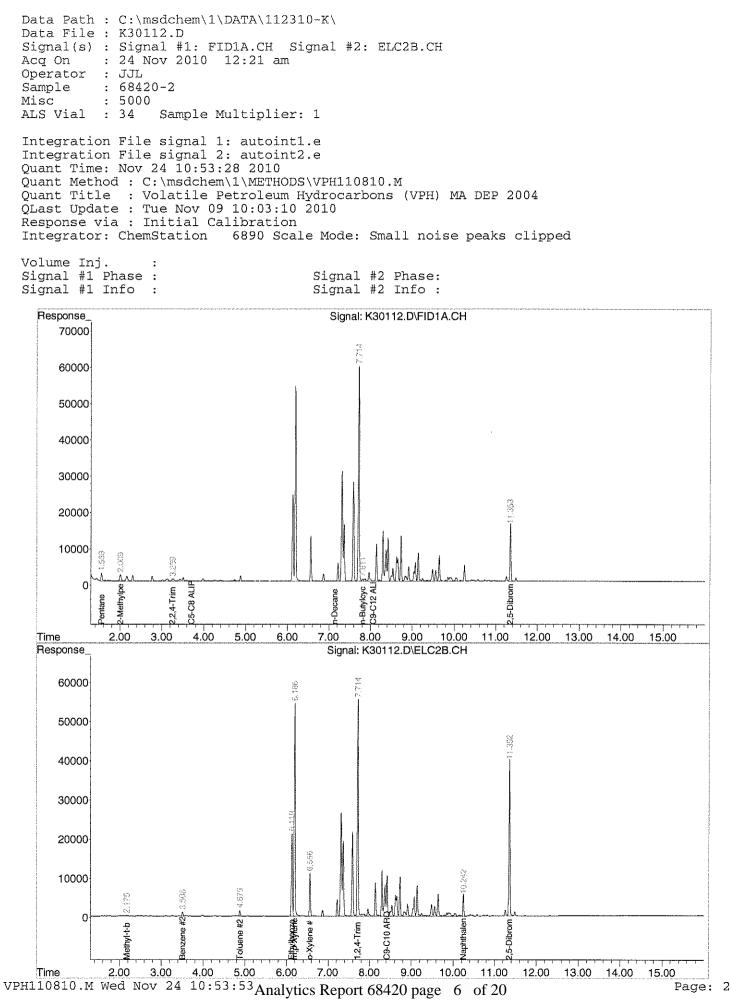
December 3, 2010

SAN	IPLE DATA
Lab Sample ID:	68420-2
Matrix:	Aqueous
Percent Solid:	N/A
Dilution Factor:	1
Collection Date:	11/19/10
Lab Receipt Date:	11/19/10
Analysis Date:	11/24/10

VPH ANALYTICAL RESULTS						
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result		
Unadjusted C5-C8 Aliphatics	N/A	50	μg/L	28 J		
Unadjusted C9-C12 Aliphatics	N/A	50	μg/L	161		
Benzene	C5-C8	2	μg/L	2		
Ethylbenzene	C9-C12	2	μg/L	34		
Methyl-tert-butyl ether	C5-C8	2	μg/L	1.1		
Naphthalene	N/A	2	μg/L	12		
Toluene	C5-C8	2	μg/L	2		
m- & p-Xylenes	C9-C12	4	μg/L	77		
o-Xvlene	C9-C12	2	μg/L	18		
C5-C8 Aliphatics Hydrocarbons ^{1,2}	N/A	50	μg/L	<u> </u>		
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	50	μg/L	<u> </u>		
C9-C10 Aromatic Hydrocarbons	N/A		μg/L	244		
Surrogate % Recovery (2,5-Dibron	notoluene) PID			100		
Surrogate % Recovery (2,5-Dibron	notoluene) FID			101		
Surrogate Acceptance Range				70-130%		

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

²C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range


³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

Authorized signature: Malulul

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: MW-2 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

December 3, 2010

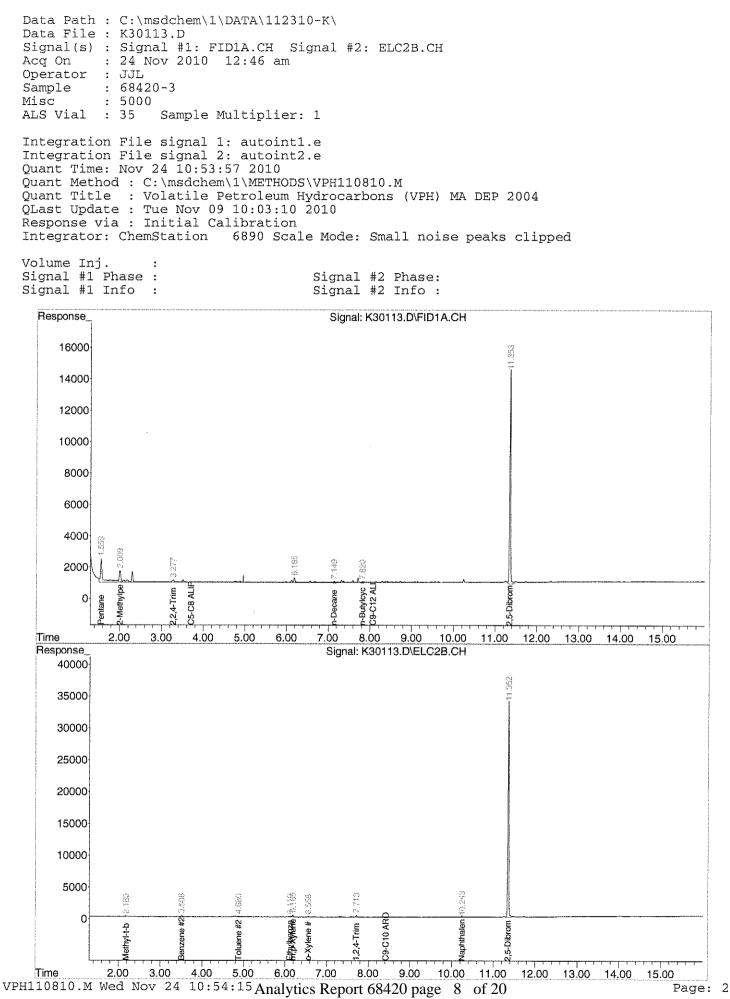
SAMPLE DATA

C72 814.	
Lab Sample ID:	68420-3
Matrix:	Aqueous
Percent Solid:	N/A
Dilution Factor:	1
Collection Date:	11/19/10
Lab Receipt Date:	11/19/10
Analysis Date:	11/24/10

VPH ANALYTICAL RESULTS					
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result	
Unadjusted C5-C8 Aliphatics	N/A	50	μg/L	U	
Unadjusted C9-C12 Aliphatics	N/A	50	μg/L	U	
Benzene	C5-C8	2	μg/L	U	
Ethylbenzene	C9-C12	2	μg/L	<u> </u>	
Methyl-tert-butyl ether	C5-C8	2	μg/L	U	
Naphthalene	N/A	2	μg/L	<u>U</u>	
Toluene	C5-C8	2	<u>μg/L</u>	U	
m- & p-Xylenes	C9-C12	4	μg/L	U	
o-Xylene	C9-C12	2	μg/L	U	
C5-C8 Aliphatics Hydrocarbons ^{1,2}	N/A	50	μg/L	U	
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A		μg/L	U	
C9-C10 Aromatic Hydrocarbons ¹	N/A	10	μg/L	U	
Surrogate % Recovery (2,5-Dibromotoluene) PID				84	
Surrogate % Recovery (2,5-Dibromotoluene) FID				89	
Surrogate Acceptance Range				70-130%	

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range


³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

Authorized signature: Mplill

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: MW-3 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

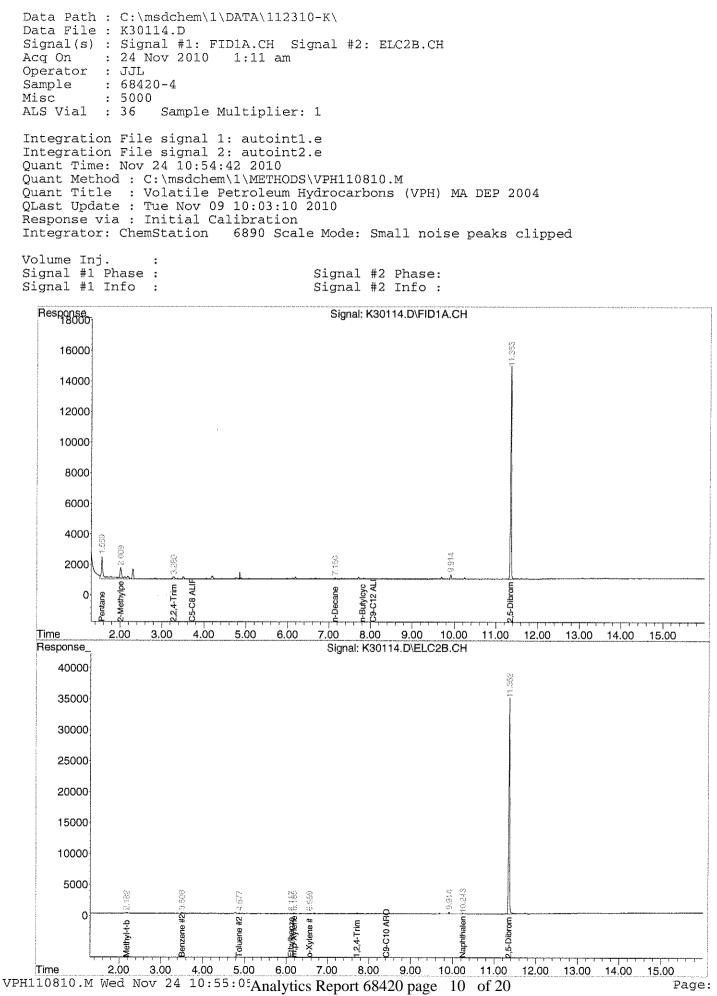
December 3, 2010

SAM	IPLE DATA
Lab Sample ID:	68420-4
Matrix:	Aqueous
Percent Solid:	N/A
Dilution Factor:	1
Collection Date:	11/19/10
Lab Receipt Date:	11/19/10
Analysis Date:	11/24/10

VPH ANALYTICAL RESULTS						
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result		
Unadjusted C5-C8 Aliphatics	N/A	50	μg/L	U		
Unadjusted C9-C12 Aliphatics	N/A	50	μg/L	U		
Benzene	C5-C8	2	μ <u>g</u> /L	U		
Ethylbenzene	C9-C12	2	μg/L	U		
Methyl-tert-butyl ether	C5-C8	2	μg/L	U		
Naphthalene	N/A	2	μg/L	U		
Toluene	C5-C8	2	μg/L	U		
m- & p-Xylenes	C9-C12	4	μg/L	U		
o-Xylene	C9-C12	2	μg/L	U		
C5-C8 Aliphatics Hydrocarbons ^{1,2}	N/A	50	μg/L	U		
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	50	μg/L	U		
C9-C10 Aromatic Hydrocarbons ¹	N/A	10	μg/L	U		
Surrogate % Recovery (2,5-Dibron	notoluene) PID			88		
Surrogate % Recovery (2.5-Dibromotoluene) FID				90		
Surrogate Acceptance Range				70-130%		

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range


³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

Authorized signature: Mulbell

analytics environmental laboratory LLC

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: MW-4 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

December 3, 2010

SAM	IPLE DATA
Lab Sample ID:	68420-5
Matrix:	Aqueous
Percent Solid:	N/A
Dilution Factor:	1
Collection Date:	11/19/10
Lab Receipt Date:	11/19/10
Analysis Date:	11/24/10

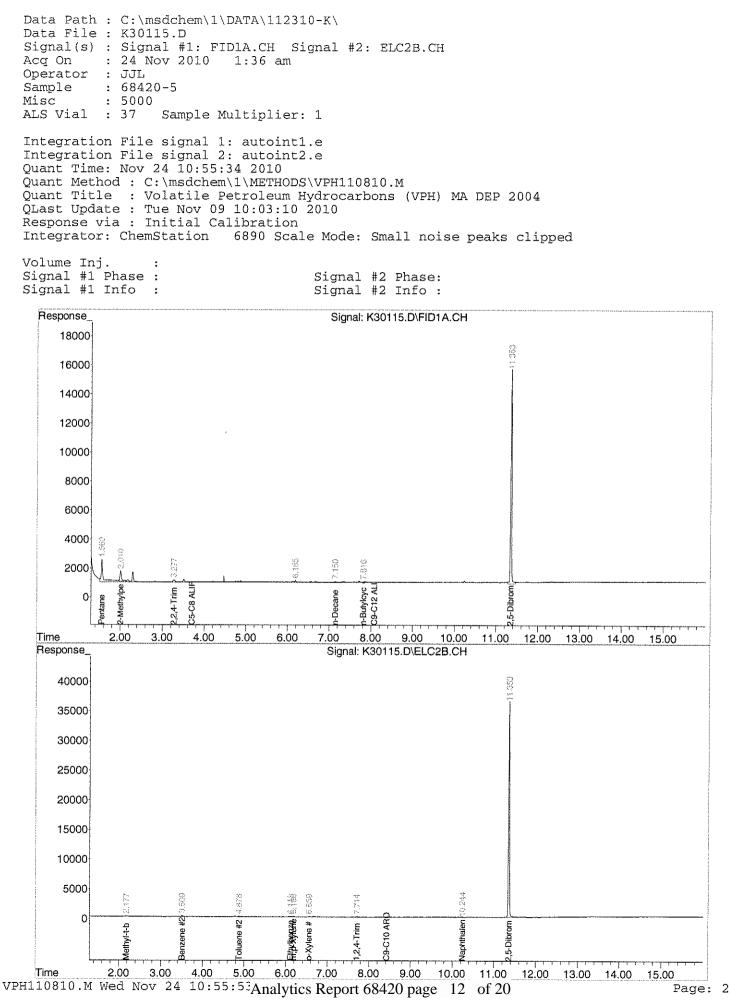
VPH ANALYTICAL RESULTS					
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result	
Unadjusted C5-C8 Aliphatics	N/A	50	μg/L	U	
Unadjusted C9-C12 Aliphatics	N/A	50	μg/L	U	
Benzene	C5-C8	2	μg/L	U	
Ethylbenzene	C9-C12	2	μg/L	U	
Methyl-tert-butyl ether	C5-C8	2	μg/L	U	
Naphthalene	N/A	2	μg/L	U	
Toluene	C5-C8	2	μg/L	U	
m- & p-Xylenes	C9-C12	4	μg/L	U	
o-Xylene	C9-C12	2	μg/L	U	
C5-C8 Aliphatics Hydrocarbons ^{1,2}	N/A	50	μg/L	U	
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	50	μg/L	U	
C9-C10 Aromatic Hydrocarbons	N/A	10	μg/L	U	
Surrogate % Recovery (2,5-Dibron	notoluene) PID			92	
Surrogate % Recovery (2.5-Dibron	notoluene) FID			98	
Surrogate Acceptance Range				70-130%	

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

 2 C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit


U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist.

Authorized signature: Mululul

Analytics Report 68420 page 11 of 20

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: Sump 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

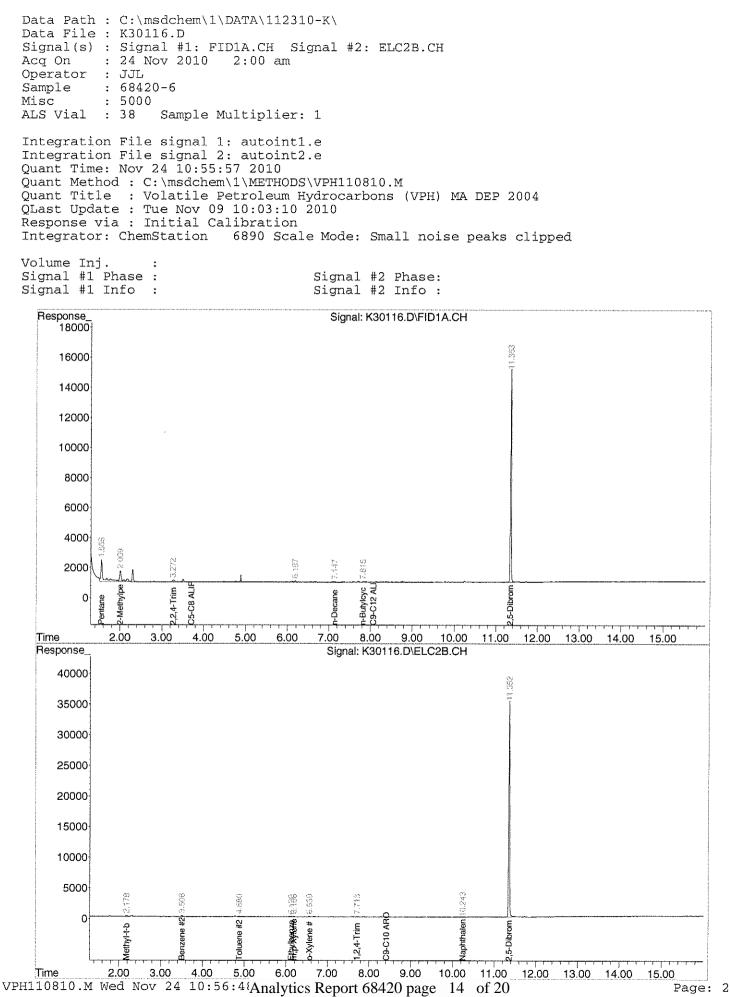
December 3, 2010

SAN	IPLE DATA
Lab Sample ID:	68420-6
Matrix:	Aqueous
Percent Solid:	N/A
Dilution Factor:	1
Collection Date:	11/19/10
Lab Receipt Date:	11/19/10
Analysis Date:	11/24/10

VPH ANALYTICAL RESULTS					
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result	
Unadjusted C5-C8 Aliphatics	N/A	50	μg/L	U	
Unadjusted C9-C12 Aliphatics	N/A	50	μg/L	U	
Benzene	C5-C8	2	μg/L	U	
Ethylbenzene	<u>C9-C12</u>	2	μg/L.	U	
Methyl-tert-butyl ether	C5-C8	2	μg/L	<u>1 J</u>	
Naphthalene	N/A	2	μg/L	U	
Toluene	C5-C8	2	μg/L	U	
m- & p-Xylenes	C9-C12	4	μg/L	U	
o-Xylene	C9-C12	2	μg/L	L	
C5-C8 Aliphatics Hydrocarbons	N/A	50	μg/L	U	
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	50	μg/L	U	
C9-C10 Aromatic Hydrocarbons	N/A	10	μg/L	U	
Surrogate % Recovery (2,5-Dibromotoluene) PID					
Surrogate % Recovery (2.5-Dibron	notoluene) FID			91	
Surrogate Acceptance Range				70-130%	

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

 2 C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range


³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

Authorized signature: Marhull

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: Trip Blank (aq) 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

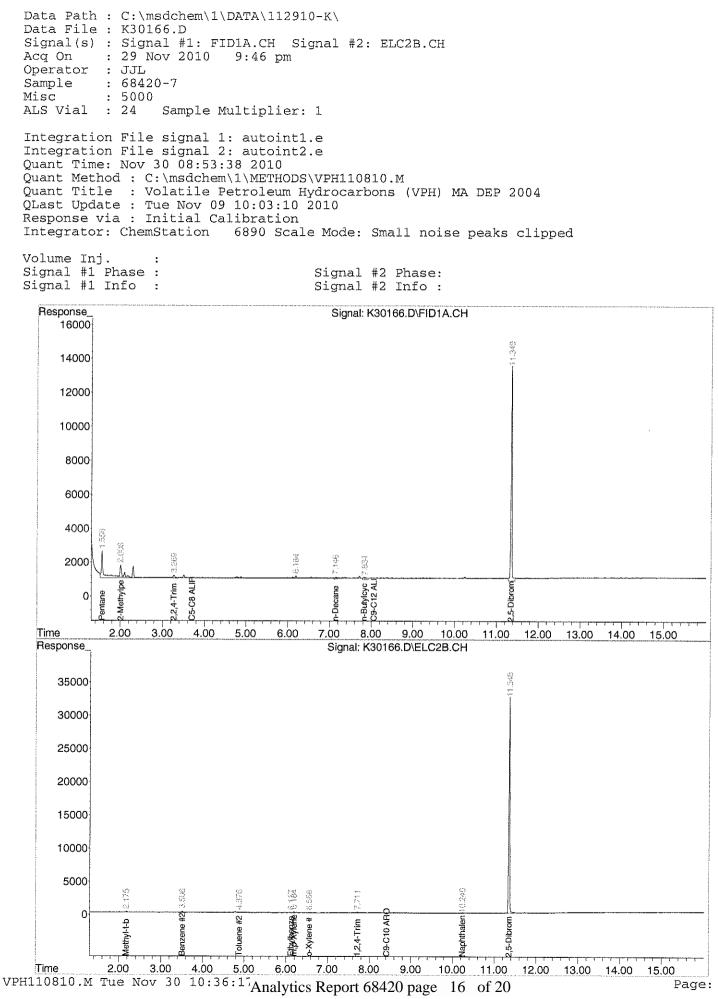
December 3, 2010

SAMPLE DATA		
Lab Sample ID:	68420-7	
Matrix:	Aqueous	
Percent Solid:	N/A	
Dilution Factor:	1	
Collection Date:	11/19/10	
Lab Receipt Date:	11/19/10	
Analysis Date:	11/29/10	

	VPH AN	JALYTIC	AL RESULTS		
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result	
Unadjusted C5-C8 Aliphatics	N/A	50	μg/L	U	
Unadjusted C9-C12 Aliphatics	N/A	50	μg/L	U	
Benzene	C5-C8	2	μg/L	U	
Ethylbenzene	C9-C12	2	μg/L	U	
Methyl-tert-butyl ether	C5-C8	2	μg/L	U	
Naphthalene	N/A	2	μg/L	U	
Toluene	C5-C8	2	μg/L	U	
m- & p-Xylenes	<u>C9-C12</u>	4	μg/L	U	
o-Xylene	<u>C9-C12</u>	2	μg/L	U	
C5-C8 Aliphatics Hydrocarbons	N/A	50	<u>μg/L</u>	U	
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	50	μg/L	U	
C9-C10 Aromatic Hydrocarbons	N/A	10	μg/L	U	
Surrogate % Recovery (2.5-Dibron	notoluene) PID			81	
Surrogate % Recovery (2,5-Dibromotoluene) FID				84	
Surrogate Acceptance Range				70-130%	

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

²C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range


³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

Authorized signature: Mulul

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: Trip Blank (s) 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

December 3, 2010

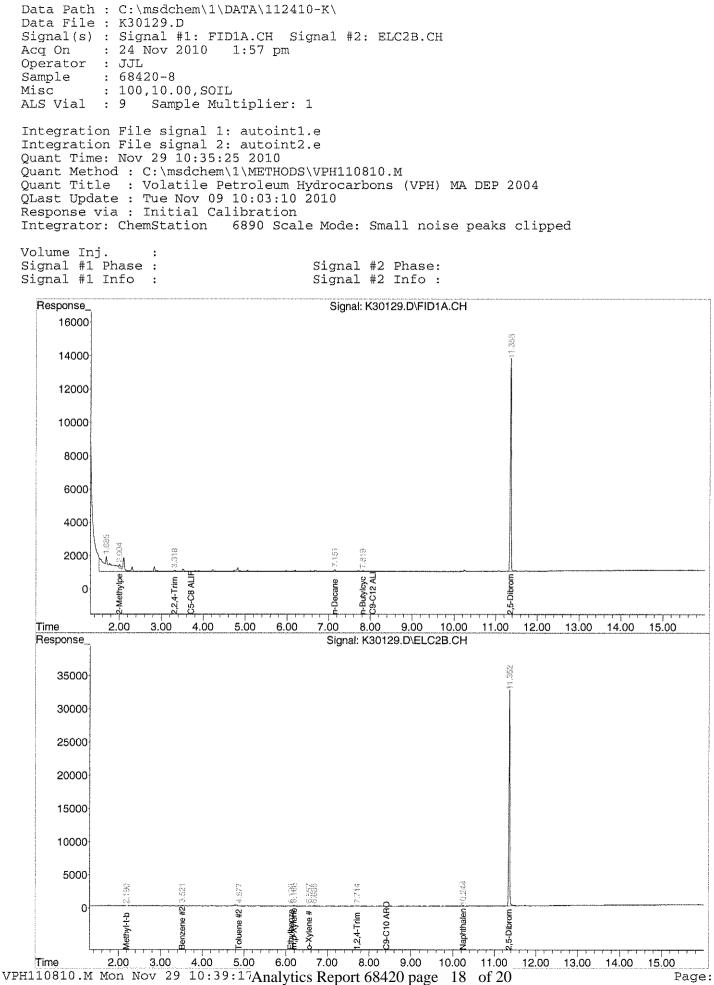
SAMPLE DATA		
68420-8		
Solid		
100		
50		
11/16/10		
11/19/10		
11/24/10		

	VPH AN	VALYTIC	AL RESULTS		
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result	
Unadjusted C5-C8 Aliphatics	N/A	2500	µg/kg	U	
Unadjusted C9-C12 Aliphatics	N/A	2500	μg/kg	U	
Benzene	C5-C8	100	µg/kg	U	
Ethylbenzene	C9-C12	100	μg/kg	U	
Methyl-tert-butyl ether	C5-C8	100	µg/kg	U	
Naphthalene	N/A	100	µg/kg	U	
Toluene	C5-C8	100	µg/kg	U	
m- & p-Xvlenes	C9-C12	200	μg/kg	<u> </u>	
o-Xylene	C9-C12	100	µg/kg	U	
C5-C8 Aliphatics Hydrocarbons ^{1,2}	N/A	2500	μg/kg	U	
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	2500	μg/kg	U	
C9-C10 Aromatic Hydrocarbons	N/A	500	µg/kg	U	
Surrogate % Recovery (2,5-Dibromotoluene) PID				82	
Surrogate % Recovery (2,5-Dibromotoluene) FID				82	
Surrogate Acceptance Range				70-130%	

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

 2 C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.


RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist. Results are expressed on a moisture corrected and dry weight basis.

Authorized signature: Mullull

Page: 2

						AEL
MAINE ENVIRONMENTAL LABORATORY-	NTAL LABORAT		Chain of Custody	ly [ANALYSES	LABORATORY REPORT #
One Main Street Yarmouth, Maine 04096-6716 e-mail: melab@main	نە	46-6	569 fax: (207) 846-9066	, <u>, , , , , , , , , , , , , , , , , , </u>		Delivered hv
PROJECT MANAGER H. Kodis	TELEPHONE	FAX	FAX # / E-MAIL			
COMPANY	PURCHASE ORDER # / BILL	DER # / BILL TO	MANAGATA AND AND AND AND AND AND AND AND AND AN			
ADDRESS						TURNAROUND REQUEST
PROJECT NAME MAI 396 - 10	SAMPLER NAME					Ounte # MET 202 ALCHARGE
SAMPLE	FIELD FILTRATION	MP.		SAMPLING	Hc	
# CONT	YPE CONTR YES NO MATRIX	G D PRESERVED	VED DATE	TIME	<u>ار ا</u>	LABORATORY IDENTIFICATION/ SUBCONTRACTOR
3	Gial X Soil	X (1) = 6.0	11/10/10	0001	×	(8420-1
	I X Gw	X Her/E	14/10/11/10/10	1000		
C-MWC-2	X	 			×	- ~
<u>с</u> м 5842	×			1		5-
ר-שע 0 pa	×	×			×	N.
Jump 6		×	\rightarrow	1200	×	٩
Frip Blank 1	L X the	K V	-			1
of 20	HODN X 1	Hoan	<u>/</u>		X	<i>w</i> ,
	to state the state of the stat		And an and a second	grant taken with the second		
		y achime ad any or were the second	an a gana an			
						ontel Mar
The second se Second second s Second second seco						
Received within hold time		Custody seal present	ient 🗆 yes	je D	COMMENTS COMMENTS	
Received in good condition Temp. Blank °C \mathcal{C} /Frozen ice packs	I yes				ME DEP EDD (Twin Bridges,	nidges, Leeds)
d preserved	a yes 🗆 no				Centre 86	No.
RELINQUISHED BY SAMPLER:	and a second a second a second a	na magna an third ann an 1990 an an dù ann an Ann Ann Ann Ann Ann Ann Ann Ann			REGEIVED BY: No. Ch A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
RELINQUISHED BY:	Harace					
RELINQUISHED BY:			Ì		RECEIVED BY LABORATORY	(1)+1)-1X
coc-04 6				-		Dada of

ANALYTICS SAMPLE RECEIPT CHECKLIST

AEL LAB#: 68420	COOLER NUMBER:	86
CLIENT: MEL	NUMBER OF COOLERS:	(
PROJECT: <u>MAF396-(0</u>	DATE RECEIVED:	11/19/10
A: PRELIMINARY EXAMINATION:	DATE COOLER OPENED:	11/19/10
1. Cooler received by(initials):	Date Received:	11/19/10
2. Circle one: Hand delivered	Shipped	
3. Did cooler come with a shipping slip?	Y	Ø
3a. Enter carrier name and airbill number here:		-
4. Were custody seals on the outside of cooler? How many & where:Seal Date:	Y Seal Name:	Ø
5. Did the custody seals arrive unbroken and intact upon arrival?	Y	NA
6. COC#:		
7. Were Custody papers filled out properly (ink,signed, etc)?	Q	Ν
8. Were custody papers sealed in a plastic bag?	Ø	Ν
9. Did you sign the COC in the appropriate place?	${\cal Q}$	Ν
10. Was the project identifiable from the COC papers?	Q	Ν
11. Was enough ice used to chill the cooler? N	Temp. of cooler:	2.5 °
B. Log-In: Date samples were logged in:	2 By:	-
12. Type of packing in cooler(bubble wrap, popcorn)	Ø	N
13. Were all bottles sealed in separate plastic bags?	φ	Ν
14. Did all bottles arrive unbroken and were labels in good condition?	φ	Ν
15. Were all bottle labels complete(ID.Date.time.etc.)	Ø	Ν
16. Did all bottle labels agree with custody papers?	Ø	Ν
17. Were the correct containers used for the tests indicated:	Ø	Ν
18. Were samples received at the correct pH?	Y	N/A-
19. Was sufficient amount of sample sent for the tests indicated?	Ø	Ν
20. Were bubbles absent in VOA samples?	Ø	N
If NO, List Sample ID's and Lab #s:		

21. Laboratory labeling verified by (initials):

Date: (1/22/10)

Analytics Report 68420 page 20 of 20

ANALYTICAL REPORT

Lab Number:	L1018872
Client:	Maine DEP-Div. of Technical Services
	Division of Technical Services
	312 Canco Road
	Portland, ME 04103
ATTN:	Peter Eremita
Phone:	(207) 592-0592
Project Name:	2 BRIDGES MARKET
Project Number:	1048
Report Date:	12/13/10

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NY (11627), CT (PH-0141), NH (2206), NJ (MA015), RI (LAO00299), ME (MA0030), PA (Registration #68-02089), LA NELAC (03090), FL NELAC (E87814), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name:2 BRIDGES MARKETProject Number:1048

 Lab Number:
 L1018872

 Report Date:
 12/13/10

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1018872-01	SG-1	LEEDS	11/19/10 11:20
L1018872-02	SG-2	LEEDS	11/19/10 10:55
L1018872-03	SG-4	LEEDS	11/19/10 11:50

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
Eb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	YES
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A res	ponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: 2 BRIDGES MARKET Project Number: 1048

Lab Number: L1018872 Report Date: 12/13/10

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

Report Submission

This report replaces the report issued on December 10, 2010. The report has been amended to include the batch quality control for the APH analysis.

MCP Related Narratives

Canisters were released from the laboratory on November 12, 2010.

The canister certification data is provided as an addendum.

Volatile Organics in Air

The WG445963-3 LCS recovery for Vinyl chloride (131%) is outside the 70%-130% acceptance limit. All associated samples were non-detect for Vinyl Chloride.

Project Name: **2 BRIDGES MARKET** Project Number: 1048

Lab Number: L1018872 **Report Date:** 12/13/10

Case Narrative (continued)

Fixed Gas

L1018872-01, -02, and -03: Prior to sample analysis, the canisters were pressurized with UHP Hydrogen in order to facilitate the transfer of sample to the Gas Chromatograph. The addition of Hydrogen resulted in a dilution of the sample. The reporting limits have been elevated accordingly.

Petroleum Hydrocarbons in Air

All MCP required questions were answered with affirmative responses; therefore, there are no relevant data issues to discuss.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Kuhl M. ihin Kathleen O'Brien

Title: Technical Director/Representative

Date: 12/13/10

AIR

L1018872

12/13/10

Lab Number:

Report Date:

Project Name: 2 BRIDGES MARKET

Project Number: 1048

Lab ID:	L1018872-01	Date Collected:	11/19/10 11:20
Client ID:	SG-1	Date Received:	11/24/10
Sample Location:	LEEDS	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15		
Analytical Date:	12/02/10 20:17		
Analyst:	RY		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	evel) - Mansfield Lab)						
Vinyl chloride	ND	0.200		ND	0.511			1
1,1-Dichloroethene	ND	0.200		ND	0.792			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Trichloroethene	ND	0.200		ND	1.07			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	93		60-140
Bromochloromethane	89		60-140
chlorobenzene-d5	95		60-140

L1018872

12/13/10

Lab Number:

Report Date:

Project Name: 2 BRIDGES MARKET

Project Number: 1048

Lab ID:	L1018872-02	Date Collected:	11/19/10 10:55
Client ID:	SG-2	Date Received:	11/24/10
Sample Location:	LEEDS	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15		
Analytical Date:	12/02/10 21:30		
Analyst:	RY		

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	evel) - Mansfield Lab)						
Vinyl chloride	ND	0.200		ND	0.511			1
1,1-Dichloroethene	ND	0.200		ND	0.792			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Trichloroethene	ND	0.200		ND	1.07			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	0.426	0.200		2.89	1.36			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	92		60-140
Bromochloromethane	99		60-140
chlorobenzene-d5	91		60-140

L1018872

12/13/10

Lab Number:

Report Date:

Project Name: 2 BRIDGES MARKET

Project Number: 1048

Lab ID:	L1018872-03	Date Collected:	11/19/10 11:50
Client ID:	SG-4	Date Received:	11/24/10
Sample Location:	LEEDS	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15		
Analytical Date:	12/02/10 22:06		
Analyst:	RY		

		ррьV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	evel) - Mansfield Lab)						
Vinyl chloride	ND	0.200		ND	0.511			1
1,1-Dichloroethene	ND	0.200		ND	0.792			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Trichloroethene	ND	0.200		ND	1.07			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	83		60-140
Bromochloromethane	87		60-140
chlorobenzene-d5	95		60-140

 Serial_No:12131015:56

 Lab Number:
 L1018872

 Report Date:
 12/13/10

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 12/02/10 17:26

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level)	- Mansfield L	ab for sa	mple(s):	01-03 Batch:	WG44	5963-4		
Vinyl chloride	ND	0.200		ND	0.511			1
1,1-Dichloroethene	ND	0.200		ND	0.792			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Trichloroethene	ND	0.200		ND	1.07			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1

Lab Control Sample Analysis

Batch Quality Control

Project Name: 2 BRIDGES MARKET

Project Number: 1048

Lab Number: L1018872 Report Date: 12/13/10

LCSD LCS %Recovery %Recovery %Recovery Limits Parameter Qual Qual RPD Qual **RPD** Limits Volatile Organics in Air (Low Level) - Mansfield Lab Associated sample(s): 01-03 Batch: WG445963-3 Vinyl chloride Q 131 70-130 --1,1-Dichloroethene 112 70-130 -trans-1,2-Dichloroethene 105 70-130 --118 70-130 1,1-Dichloroethane -cis-1,2-Dichloroethene 112 70-130 --1,2-Dichloroethane 101 70-130 --70-130 1,1,1-Trichloroethane 92 --Trichloroethene 94 70-130 --1.2-Dibromoethane 117 70-130 --Tetrachloroethene 112 70-130 --

Lab Duplicate Analysis Batch Quality Control

Project Name: 2 BRIDGES MARKET

Project Number: 1048

Lab Number:

L1018872 12/13/10 Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
olatile Organics in Air (Low Level) - Mansfield	Lab Associated sample(s): 01-03	QC Batch ID: WG4	45963-5 QC	Sample: L10	18872-01	Client ID: SG-1
Vinyl chloride	ND	ND	ppbV	NC		25
1,1-Dichloroethene	ND	ND	ppbV	NC		25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		25
1,1-Dichloroethane	ND	ND	ppbV	NC		25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC		25
1,2-Dichloroethane	ND	ND	ppbV	NC		25
1,1,1-Trichloroethane	ND	ND	ppbV	NC		25
Trichloroethene	ND	ND	ppbV	NC		25
1,2-Dibromoethane	ND	ND	ppbV	NC		25
Tetrachloroethene	ND	ND	ppbV	NC		25

Serial_No:	12131015:56
Lab Number:	L1018872
Report Date:	12/13/10

Project Name: 2 BRIDGES MARKET

Project Number: 1048

Lab ID:	L1018872-01	D	Date Collected:	11/19/10 11:20
Client ID:	SG-1		Date Received:	11/24/10
Sample Location:	LEEDS		Field Prep:	Not Specified
Matrix:	Soil_Vapor		Extraction Method:	
Analytical Method:	51,3C			
Analytical Date:	12/09/10 14:50			
Analyst:	RY			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Fixed Gases by GC - Mansfield Lab						
Oxygen	17.3		%	2.19		2.192
Carbon Dioxide	1.22		%	0.219		2.192
Methane	ND		%	0.219		2.192

Serial_No:	12131015:56
Lab Number:	L1018872

Report Date: 12/13/10

Project Name: 2 BRIDGES MARKET

Project Number: 1048

Lab ID:	L1018872-02	D	Date Collected:	11/19/10 10:55
Client ID:	SG-2		Date Received:	11/24/10
Sample Location:	LEEDS		Field Prep:	Not Specified
Matrix:	Soil_Vapor		Extraction Method:	
Analytical Method:	51,3C			
Analytical Date:	12/09/10 15:28			
Analyst:	RY			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Fixed Gases by GC - Mansfield Lab						
Oxygen	18.1		%	1.64		1.644
Carbon Dioxide	1.25		%	0.164		1.644
Methane	ND		%	0.164		1.644

			Serial_No:	12131015:56
Project Name:	2 BRIDGES MARKET		Lab Number:	L1018872
Project Number:	1048		Report Date:	12/13/10
		SAMPLE RESULTS		
Lab ID: Client ID:	L1018872-03 SG-4	D	Date Collected: Date Received:	11/19/10 11:50 11/24/10
Sample Location: Matrix: Analytical Method:	LEEDS Soil_Vapor		Field Prep: Extraction Method:	Not Specified
Analytical Date:	12/09/10 16:07			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Fixed Gases by GC - Mansfield Lab						
Oxygen	17.9		%	1.67		1.67
Carbon Dioxide	1.61		%	0.167		1.67
Methane	ND		%	0.167		1.67

Analyst:

RY

 Project Name:
 2 BRIDGES MARKET
 Lab Number:
 L1018872

 Project Number:
 1048
 Report Date:
 12/13/10

Method Blank Analysis Batch Quality Control

Analytical Method:51,3CAnalytical Date:12/09/10 14:17Analyst:RY

Parameter	Result	Qualifier	Units	s RL	MDL
Fixed Gases by GC - Mansfield Lab	o for sample(s): 01-03	Batch:	WG447014-2	
Oxygen	ND		%	1.00	
Carbon Dioxide	ND		%	0.100	
Methane	ND		%	0.100	

Lab Control Sample Analysis Batch Quality Control

Project Name: 2 BRIDGES MARKET

Project Number: 1048 Lab Number: L1018872 Report Date: 12/13/10

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Fixed Gases by GC - Mansfield Lab	Associated sample(s):	01-03	Batch: WG447014-1					
Oxygen	92		-		80-120	-		
Carbon Dioxide	105		-		80-120	-		
Methane	106		-		80-120	-		

Lab Duplicate Analysis Batch Quality Control

Project Name: 2 BRIDGES MARKET

Project Number: 1048

Lab Number: Report Date:

L1018872 12/13/10

Parameter	Native Sample	Duplicate Sa	mple Units	RPD	Qual RPD Limits
Fixed Gases by GC - Mansfield Lab Associated sample(s): 01-03 QC Batch	ID: WG447014-3	QC Sample: L10188	72-01 Client	ID: SG-1
Oxygen	17.3	18.2	%	5	5
Carbon Dioxide	1.22	1.22	%	0	5
Methane	ND	ND	%	NC	5
Fixed Gases by GC - Mansfield Lab Associated sample(s): 01-03 QC Batch	ID: WG447014-4	QC Sample: L10188	72-02 Client	ID: SG-2
Oxygen	18.1	18.0	%	1	5
Carbon Dioxide	1.25	1.25	%	0	5
Methane	ND	ND	%	NC	5
Fixed Gases by GC - Mansfield Lab Associated sample(s): 01-03 QC Batch	ID: WG447014-5	QC Sample: L10188	72-03 Client	ID: SG-4
Oxygen	17.9	17.9	%	0	5
Carbon Dioxide	1.61	1.61	%	0	5
Methane	ND	ND	%	NC	5
Fixed Gases by GC - Mansfield Lab Associated sample(s): 01-03 QC Batch	ID: WG447014-6	QC Sample: L10190	19-01 Client	ID: DUP Sample
Oxygen	18.0	18.0	%	0	5
Carbon Dioxide	1.16	1.16	%	0	5
Methane	ND	ND	%	NC	5

			Serial_No:1	2131015:56
Project Name:	2 BRIDGES MARKET		Lab Number:	L1018872
Project Number:	1048		Report Date:	12/13/10
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1018872-01 SG-1 LEEDS Soil_Vapor 96,APH 12/02/10 20:17 RY		Date Collected: Date Received: Field Prep:	11/19/10 11:20 11/24/10 Not Specified

Quality Control Information	
Sample Type:	200 ml/min Composite
Sample Container Type:	Canister - 2.7 Liter
Sampling Flow Controller:	Mechanical
Sampling Zone:	Unknown
Sampling Flow Meter RPD of pre & post-sampling calibration check:	<=20%
Were all QA/QC procedures REQUIRED by the method followed?	Yes
Were all performance/acceptance standards for the required procedures achieved?	Yes
Were significant modifications made to the method as specified in Sect 11.1.2?	No

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air -	Mansfield Lab					
1,3-Butadiene	ND		ug/m3	2.0		1
Methyl tert butyl ether	ND		ug/m3	2.0		1
Benzene	ND		ug/m3	2.0		1
Toluene	220		ug/m3	2.0		1
C5-C8 Aliphatics, Adjusted	18		ug/m3	12		1
Ethylbenzene	ND		ug/m3	2.0		1
p/m-Xylene	4.1		ug/m3	4.0		1
o-Xylene	ND		ug/m3	2.0		1
Naphthalene	ND		ug/m3	2.0		1
C9-C12 Aliphatics, Adjusted	88		ug/m3	14		1
C9-C10 Aromatics Total	ND		ug/m3	10		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		50-200
Bromochloromethane	90		50-200
Chlorobenzene-d5	97		50-200

Serial_No:	12131015:56
Lab Number:	L1018872
Report Date:	12/13/10

Date Collected:

Date Received:

Field Prep:

11/19/10 10:55 11/24/10 Not Specified

Project Name: **2 BRIDGES MARKET**

Project Number: 1048

Lab ID:	L1018872-02
Client ID:	SG-2
Sample Location:	LEEDS
Matrix:	Soil_Vapor
Analytical Method:	96,APH
Analytical Date:	12/02/10 21:30
Analyst:	RY

Quality Control Information		
Sample Type:	200 ml/min Composite	
Sample Container Type:	Canister - 2.7 Liter	
Sampling Flow Controller:	Mechanical	
Sampling Zone:	Unknown	
Sampling Flow Meter RPD of pre & post-sampling calibration check:	<=20%	
Were all QA/QC procedures REQUIRED by the method followed?	Yes	
Were all performance/acceptance standards for the required procedures achieved?	Yes	
Were significant modifications made to the method as specified in Sect 11.1.2?	No	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air - N	lansfield Lab					
1,3-Butadiene	ND		ug/m3	2.0		1
Methyl tert butyl ether	ND		ug/m3	2.0		1
Benzene	ND		ug/m3	2.0		1
Toluene	24		ug/m3	2.0		1
C5-C8 Aliphatics, Adjusted	58		ug/m3	12		1
Ethylbenzene	5.9		ug/m3	2.0		1
p/m-Xylene	18		ug/m3	4.0		1
o-Xylene	8.5		ug/m3	2.0		1
Naphthalene	ND		ug/m3	2.0		1
C9-C12 Aliphatics, Adjusted	52		ug/m3	14		1
C9-C10 Aromatics Total	80		ug/m3	10		1

			Acceptance
Internal Standard	% Recovery	Qualifier	Criteria
1,4-Difluorobenzene	88		50-200
Bromochloromethane	90		50-200
Chlorobenzene-d5	93		50-200

Serial_No:	12131015:56
Lab Number:	L1018872
Report Date:	12/13/10

Project Name: 2 BRIDGES MARKET

Project Number: 1048

SAMPLE RESULTS

Lab ID:	L1018872-03	Date Co
Client ID:	SG-4	Date Re
Sample Location:	LEEDS	Field Pre
Matrix:	Soil_Vapor	
Analytical Method:	96,APH	
Analytical Date:	12/02/10 22:06	
Analyst:	RY	

Date Collected:11/19/10 11:50Date Received:11/24/10Field Prep:Not Specified

Quality Control Information		
Sample Type:	200 ml/min Composite	
Sample Container Type:	Canister - 2.7 Liter	
Sampling Flow Controller:	Mechanical	
Sampling Zone:	Unknown	
Sampling Flow Meter RPD of pre & post-sampling calibration check:	<=20%	
Were all QA/QC procedures REQUIRED by the method followed?	Yes	
Were all performance/acceptance standards for the required procedures achieved?	Yes	
Were significant modifications made to the method as specified in Sect 11.1.2?	No	

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor						
Petroleum Hydrocarbons in Air - Mansfield Lab											
1,3-Butadiene	ND	ug/m3	2.0		1						
Methyl tert butyl ether	ND	ug/m3	2.0		1						
Benzene	ND	ug/m3	2.0		1						
Toluene	ND	ug/m3	2.0		1						
C5-C8 Aliphatics, Adjusted	22	ug/m3	12		1						
Ethylbenzene	ND	ug/m3	2.0		1						
p/m-Xylene	ND	ug/m3	4.0		1						
o-Xylene	ND	ug/m3	2.0		1						
Naphthalene	ND	ug/m3	2.0		1						
C9-C12 Aliphatics, Adjusted	40	ug/m3	14		1						
C9-C10 Aromatics Total	19	ug/m3	10		1						

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	80		50-200
Bromochloromethane	85		50-200
Chlorobenzene-d5	97		50-200

Project Name: 2 BRIDGES MARKET

Project Number:

1048

 Lab Number:
 L1018872

 Report Date:
 12/13/10

Method Blank Analysis Batch Quality Control

Analytical Method:96,APHAnalytical Date:12/02/10 17:26Analyst:RY

Parameter	Result	Qualifier	Units	RL	MDL
Petroleum Hydrocarbons in Air - Ma	nsfield Lab	o for sample(s):	01-03	Batch: WG445	964-4
1,3-Butadiene	ND		ug/m3	2.0	
Methyl tert butyl ether	ND		ug/m3	2.0	
Benzene	ND		ug/m3	2.0	
Toluene	ND		ug/m3	2.0	
C5-C8 Aliphatics, Adjusted	ND		ug/m3	12	
Ethylbenzene	ND		ug/m3	2.0	
p/m-Xylene	ND		ug/m3	4.0	
o-Xylene	ND		ug/m3	2.0	
Naphthalene	ND		ug/m3	2.0	
C9-C12 Aliphatics, Adjusted	ND		ug/m3	14	
C9-C10 Aromatics Total	ND		ug/m3	10	

Lab Control Sample Analysis

Batch Quality Control

Project Name: 2 BRIDGES MARKET

Project Number: 1048

Lab Number: L1018872 Report Date: 12/13/10

LCSD LCS %Recovery %Recovery %Recovery Limits Parameter Qual Qual RPD Qual **RPD** Limits Petroleum Hydrocarbons in Air - Mansfield Lab Associated sample(s): 01-03 Batch: WG445964-3 1,3-Butadiene 75 70-130 --70-130 Methyl tert butyl ether 77 --Benzene 92 70-130 --70-130 Toluene 87 --C5-C8 Aliphatics, Adjusted 71 70-130 --Ethylbenzene 105 70-130 -p/m-Xylene 70-130 103 -o-Xylene 105 70-130 _ -Naphthalene 98 50-150 --C9-C12 Aliphatics, Adjusted 96 70-130 --C9-C10 Aromatics Total 81 70-130 --

Lab Duplicate Analysis Batch Quality Control

Project Name: 2 BRIDGES MARKET

Project Number: 1048

Lab Number: Report Date:

L1018872 12/13/10

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
etroleum Hydrocarbons in Air - Mansfield Lab	Associated sample(s): 01-03	QC Batch ID: WG445964-5	QC Sa	mple: L1018872	2-01 Cli	ent ID: SG-1
1,3-Butadiene	ND	ND	ug/m3	NC		30
Methyl tert butyl ether	ND	ND	ug/m3	NC		30
Benzene	ND	ND	ug/m3	NC		30
Toluene	220	220	ug/m3	0		30
C5-C8 Aliphatics, Adjusted	18	20	ug/m3	11		30
Ethylbenzene	ND	ND	ug/m3	NC		30
p/m-Xylene	4.1	4.0	ug/m3	2		30
o-Xylene	ND	ND	ug/m3	NC		30
Naphthalene	ND	ND	ug/m3	NC		30
C9-C12 Aliphatics, Adjusted	88	88	ug/m3	0		30
C9-C10 Aromatics Total	ND	ND	ug/m3	NC		30

Report Date: 12/13/10

Project Number: 1048

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Cleaning Batch ID	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Out mL/min	Flow In mL/min	% RSD
L1018872-01	SG-1	0090	#90 SV		-	-	195	195	0
L1018872-01	SG-1	147B	2.7L Can	L1017602	-29.5	-3.6	-	-	-
L1018872-02	SG-2	0236	#90 SV		-	-	197	204	3
L1018872-02	SG-2	490	2.7L Can	L1017602	-29.5	-0.3	-	-	-
L1018872-03	SG-4	0352	#20 AMB		-	-	200	212	6
L1018872-03	SG-4	1729	2.7L Can	L1017602	-29.5	-0.6	-	-	-

Air Volatiles Can Certification

Project Number:	CANISTER QC BAT	Report Date:	12/13/10
	Air Canister Certification Results		

Lab ID:	L1017602-01	Date Collected:	11/05/10 00:00
Client ID:	CAN 147B SHELF 8	Date Received:	11/05/10
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15		
Analytical Date:	11/10/10 17:11		
Analyst:	RY		

	ррьV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level)	- Mansfield Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.200		ND	0.344			1
Propane	ND	0.200		ND	0.606			1
Dichlorodifluoromethane	ND	0.200		ND	0.988			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.776			1
Chloroethane	ND	0.200		ND	0.527			1
Ethanol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.841			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.14			1
Acetone	ND	1.00		ND	2.37			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.200		ND	0.434			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
I,1-Dichloroethene	ND	0.200		ND	0.792			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1017602

 Report Date:
 12/13/10

Lab ID:L1017602-01Client ID:CAN 147B SSample Location:CAN 147B S		LF 8				Date Collected: Date Received: Field Prep: ug/m3			11/05/10 00:00 11/05/10 Not Specified Dilution	
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifie	Dilution Factor	
Volatile Organics in A	Air (Low Level) - M				Results		MDE	Quanter		
Methylene chloride	. ,	ND	1.00		ND	3.47			1	
3-Chloropropene		ND	0.200		ND	0.626			1	
Carbon disulfide		ND	0.200		ND	0.622			1	
Freon-113		ND	0.200		ND	1.53			1	
trans-1,2-Dichloroethene	•	ND	0.200		ND	0.792			1	
1,1-Dichloroethane		ND	0.200		ND	0.792			1	
Methyl tert butyl ether		ND	0.200		ND	0.720			1	
Vinyl acetate		ND	0.200		ND	0.720			1	
2-Butanone		ND	0.200		ND	0.589			1	
cis-1,2-Dichloroethene		ND	0.200		ND	0.792			1	
Ethyl Acetate		ND	0.200		ND	1.80			1	
Chloroform		ND	0.200		ND	0.976			1	
Tetrahydrofuran		ND	0.200		ND	0.589			1	
2,2-Dichloropropane		ND	0.200		ND	0.923			1	
1,2-Dichloroethane		ND	0.200		ND	0.809			1	
n-Hexane										
Diisopropyl ether		ND	0.200		ND	0.704			1	
tert-Butyl Ethyl Ether		ND	0.200		ND	0.835			1	
1,1,1-Trichloroethane		ND	0.200		ND	0.835			1	
		ND	0.200		ND	1.09			1	
1,1-Dichloropropene Benzene		ND	0.200		ND	0.907			1	
Carbon tetrachloride		ND	0.200		ND	0.638			1	
Cyclohexane		ND	0.200		ND	1.26			1	
-		ND	0.200		ND	0.688			1	
tert-Amyl Methyl Ether		ND	0.200		ND	0.835			1	
Dibromomethane		ND	0.200		ND	1.42			1	
1,2-Dichloropropane		ND	0.200		ND	0.924			1	
Bromodichloromethane		ND	0.200		ND	1.34			1	
1,4-Dioxane		ND	0.200		ND	0.720			1	

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1017602

 Report Date:
 12/13/10

Lab ID: Client ID: Sample Location:	L1017602-01 CAN 147B SHE	LF 8				Date Collected: Date Received: Field Prep: ug/m3			11/05/10 00:00 11/05/10 Not Specified Dilution
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifie	F 4
Volatile Organics in A	vir (Low Level) - N			MDL			mee		
Trichloroethene	. ,	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane		ND	0.200		ND	0.934			1
Heptane		ND	0.200		ND	0.819			1
2,4,4-trimethyl-1-pentene)	ND	0.500		ND	2.29			1
cis-1,3-Dichloropropene		ND	0.200		ND	0.907			1
4-Methyl-2-pentanone		ND	0.200		ND	0.819			1
2,4,4-trimethyl-2-pentene)	ND	0.500		ND	2.29			1
trans-1,3-Dichloropropen		ND	0.200		ND	0.907			1
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1
Toluene		ND	0.200		ND	0.753			1
1,3-Dichloropropane		ND	0.200		ND	0.923			1
2-Hexanone		ND	0.200		ND	0.819			1
Dibromochloromethane		ND	0.200		ND	1.70			1
1,2-Dibromoethane		ND	0.200		ND	1.54			1
Butyl acetate		ND	0.500		ND	2.37			1
Octane		ND	0.200		ND	0.934			1
Tetrachloroethene		ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethan	e	ND	0.200		ND	1.37			1
Chlorobenzene		ND	0.200		ND	0.920			1
Ethylbenzene		ND	0.200		ND	0.868			1
p/m-Xylene		ND	0.400		ND	1.74			1
Bromoform		ND	0.200		ND	2.06			1
Styrene		ND	0.200		ND	0.851			1
1,1,2,2-Tetrachloroethan	e	ND	0.200		ND	1.37			1
o-Xylene		ND	0.200		ND	0.868			1
1,2,3-Trichloropropane		ND	0.200		ND	1.20			1
Nonane		ND	0.200		ND	1.05			1
Isopropylbenzene		ND	0.200		ND	0.982			1
1 17			0.200			0.302			

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1017602

 Report Date:
 12/13/10

Lab ID: Client ID: Sample Location:	L1017602-01 CAN 147B SHE	LF 8	3				Collecte Receive Prep:			
			ppbV			ug/m3			Dilution	
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Factor	
Volatile Organics in	Air (Low Level) - M	lansfield Lab	I							
Bromobenzene		ND	0.200		ND	1.28			1	
2-Chlorotoluene		ND	0.200		ND	1.03			1	
n-Propylbenzene		ND	0.200		ND	0.982			1	
4-Chlorotoluene		ND	0.200		ND	1.03			1	
4-Ethyltoluene		ND	0.200		ND	0.982			1	
1,3,5-Trimethybenzene		ND	0.200		ND	0.982			1	
tert-Butylbenzene		ND	0.200		ND	1.10			1	
1,2,4-Trimethylbenzene		ND	0.200		ND	0.982			1	
Decane		ND	0.200		ND	1.16			1	
Benzyl chloride		ND	0.200		ND	1.03			1	
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1	
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1	
sec-Butylbenzene		ND	0.200		ND	1.10			1	
p-Isopropyltoluene		ND	0.200		ND	1.10			1	
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1	
n-Butylbenzene		ND	0.200		ND	1.10			1	
1,2-Dibromo-3-chloropr	opane	ND	0.200		ND	1.93			1	
Undecane		ND	0.200		ND	1.28			1	
Dodecane		ND	0.200		ND	1.39			1	
1,2,4-Trichlorobenzene		ND	0.200		ND	1.48			1	
Naphthalene		ND	0.200		ND	1.05			1	
1,2,3-Trichlorobenzene		ND	0.200		ND	1.48			1	
Hexachlorobutadiene		ND	0.200		ND	2.13			1	

							Serial	_No:1213	31015:56
Project Name:	BATCH CANISTE	R CERTIF	ICATION			Lab I	Number	<i>:</i> L	_1017602
Project Number:	CANISTER QC BA	AT				Repo	ort Date	: 1	2/13/10
		Air C	anister C	ertificatio	n Results				
Lab ID:	L1017602-01					Date	Collected	d:	11/05/10 00:00
Client ID:	CAN 147B SHEL	.F 8				Date I	Receive	d:	11/05/10
Sample Location:						Field	Prep:		Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in	Air (Low Level) - Ma								

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	103		60-140
Bromochloromethane	99		60-140
chlorobenzene-d5	95		60-140

Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1017602
Project Number:	CANISTER QC BAT	Report Date:	12/13/10

Lab ID:	L1017602-01	Date Collected:	11/05/10 00:00
Client ID:	CAN 147B SHELF 8	Date Received:	11/05/10
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	11/10/10 17:11		
Analyst:	RY		

		ppbV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
/olatile Organics in Air by SIM - Mansfield Lab									
Dichlorodifluoromethane	ND	0.050		ND	0.247			1	
Chloromethane	ND	0.500		ND	1.03			1	
Freon-114	ND	0.050		ND	0.349			1	
Vinyl chloride	ND	0.020		ND	0.051			1	
1,3-Butadiene	ND	0.020		ND	0.044			1	
Bromomethane	ND	0.020		ND	0.078			1	
Chloroethane	ND	0.020		ND	0.053			1	
Acetone	ND	2.00		ND	4.75			1	
Trichlorofluoromethane	ND	0.050		ND	0.281			1	
Acrylonitrile	ND	0.500		ND	1.08			1	
1,1-Dichloroethene	ND	0.020		ND	0.079			1	
Methylene chloride	ND	1.00		ND	3.47			1	
Freon-113	ND	0.050		ND	0.383			1	
Halothane	ND	0.050		ND	0.403			1	
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1	
1,1-Dichloroethane	ND	0.020		ND	0.081			1	
Methyl tert butyl ether	ND	0.020		ND	0.072			1	
2-Butanone	ND	0.500		ND	1.47			1	
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1	
Chloroform	ND	0.020		ND	0.098			1	
1,2-Dichloroethane	ND	0.020		ND	0.081			1	
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1	
Benzene	ND	0.100		ND	0.319			1	
Carbon tetrachloride	ND	0.020		ND	0.126			1	
1,2-Dichloropropane	ND	0.020		ND	0.092			1	

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1017602

 Report Date:
 12/13/10

Lab ID: L1017602- Client ID: CAN 147B Sample Location:		LF 8				Date I Field	Collecte Receive Prep:		11/05/10 00:00 11/05/10 Not Specified
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifier	Dilution Factor
Volatile Organics in A	vir by SIM - Mansfi		RL	WDL	Nesuits	NL.	WDL	Quaimer	
Bromodichloromethane		ND	0.020		ND	0.134			1
Trichloroethene		ND	0.020		ND	0.104			1
1,4-Dioxane		ND	0.100		ND	0.360			1
cis-1,3-Dichloropropene		ND	0.020		ND	0.001			1
4-Methyl-2-pentanone									
trans-1,3-Dichloropropen	<u>م</u>	ND	0.500		ND	2.05			1
1,1,2-Trichloroethane		ND	0.020		ND	0.091			1
Toluene		ND	0.020		ND	0.109			1
		ND	0.020		ND	0.075			1
Dibromochloromethane		ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethan	e	ND	0.020		ND	0.137			1
Chlorobenzene		ND	0.020		ND	0.092			1
Ethylbenzene		ND	0.020		ND	0.087			1
p/m-Xylene		ND	0.040		ND	0.174			1
Bromoform		ND	0.020		ND	0.206			1
Styrene		ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethan	e	ND	0.020		ND	0.137			1
o-Xylene		ND	0.020		ND	0.087			1
Isopropylbenzene		ND	0.500		ND	2.46			1
1,3,5-Trimethybenzene		ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene		ND	0.020		ND	0.098			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
sec-Butylbenzene		ND	0.500		ND	2.74			1
p-Isopropyltoluene		ND	0.500		ND	2.74			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

 Lab Number:
 L1017602

 Report Date:
 12/13/10

Lab ID: Client ID: Sample Location:	L1017602-01 Date Collected CAN 147B SHELF 8 Date Received pocation: Field Prep:								
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	r Factor
Volatile Organics in	Air by SIM - Mansfi	eld Lab							
1,2,4-Trichlorobenzene		ND	0.050		ND	0.371			1
Naphthalene		ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene		ND	0.050		ND	0.371			1
Hexachlorobutadiene		ND	0.050		ND	0.533			1

							Serial	_No:121	31015:56
Project Name:	BATCH CANISTE	R CERTIF	ICATION			Lab I	Number	r:	L1017602
Project Number:	CANISTER QC B	ER QC BAT			Report Date:			12/13/10	
		Air C	anister C	ertificatio	n Results				
Lab ID:	L1017602-01					Date	Collecte	d:	11/05/10 00:00
Client ID:	CAN 147B SHEI	_F 8				Date I	Receive	d:	11/05/10
Sample Location:						Field	Prep:		Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r Factor
Volatile Organics in	Air by SIM - Mansfi	eld Lab	_						

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	85		60-140
bromochloromethane	88		60-140
chlorobenzene-d5	86		60-140

AIR Petro Can Certification

		Serial_No:12	131015:56
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1017602
Project Number:	CANISTER QC BAT	Report Date:	12/13/10
	AIR CAN CERTIFICATION RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1017602-01 CAN 147B SHELF 8 Not Specified Air 96,APH 11/10/10 17:11 RY	Date Collected: Date Received: Field Prep:	11/05/10 00:00 11/05/10 Not Specified

Parameter	Result	Qualifier U	Inits	RL	MDL	Dilution Factor				
Petroleum Hydrocarbons in Air - Mansfield Lab										
1,3-Butadiene	ND	uç	g/m3	2.0		1				
Methyl tert butyl ether	ND	uį	g/m3	2.0		1				
Benzene	ND	u	g/m3	2.0		1				
Toluene	ND	uį	g/m3	2.0		1				
C5-C8 Aliphatics, Adjusted	ND	u	g/m3	12		1				
Ethylbenzene	ND	u	g/m3	2.0		1				
p/m-Xylene	ND	u	g/m3	4.0		1				
o-Xylene	ND	u	g/m3	2.0		1				
Naphthalene	ND	u	g/m3	2.0		1				
C9-C12 Aliphatics, Adjusted	ND	uį	g/m3	14		1				
C9-C10 Aromatics Total	ND	uį	g/m3	10		1				

Project Name: 2 BRIDGES MARKET Project Number: 1048

Lab Number: L1018872 Report Date: 12/13/10

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler

N/A Present/Intact

Container Information

oomaniei ini	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1018872-01A	Canister - 2.7 Liter	N/A	N/A		Y	Present/Intact	APH-10(30),FIXGAS(30),TO15- LL(30)
L1018872-02A	Canister - 2.7 Liter	N/A	N/A		Y	Present/Intact	APH-10(30),FIXGAS(30),TO15- LL(30)
L1018872-03A	Canister - 2.7 Liter	N/A	N/A		Y	Present/Intact	APH-10(30),FIXGAS(30),TO15- LL(30)

Project Name: 2 BRIDGES MARKET

Project Number: 1048

Lab Number: L1018872

Report Date: 12/13/10

GLOSSARY

Acronyms

- EPA · Environmental Protection Agency.
- LCS · Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD · Laboratory Control Sample Duplicate: Refer to LCS.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD · Matrix Spike Sample Duplicate: Refer to MS.
- NA · Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI · Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E -Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **H** The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- **Q** The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.

Report Format: Data Usability Report

Serial_No:12131015:56

Project Name: 2 BRIDGES MARKET

Project Number: 1048

Lab Number: L1018872 Report Date: 12/13/10

Data Qualifiers

- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: 2 BRIDGES MARKET Project Number: 1048
 Lab Number:
 L1018872

 Report Date:
 12/13/10

REFERENCES

- 48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.
- 51 Determination of Carbon Dioxide, Methane, Nitrogen and Oxygen from Stationary Sources. Method 3C. Appendix A, Part 60, 40 CFR (Code of Federal Regulations). June 20, 1996.
- 96 Method for the Determination of Air-Phase Petroleum Hydrocarbons (APH), MassDEP, December 2009, Revision 1 with QC Requirements & Performance Standards for the Analysis of APH by GC/MS under the Massachusetts Contingency Plan, WSC-CAM-IXA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised July 19, 2010 - Mansfield Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0141.

Wastewater/Non-Potable Water (Inorganic Parameters: pH, Turbidity, Conductivity, Alkalinity, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Vanadium, Zinc, Total Residue (Solids), Total Suspended Solids (non-filterable), Total Cyanide. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables, Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, PAHs, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.)

Solid Waste/Soil (Inorganic Parameters: pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Organic Carbon, Total Cyanide, Corrosivity, TCLP 1311. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Volatile Organics, Acid Extractables, Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Florida Department of Health Certificate/Lab ID: E87814. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SM2320B, EPA 120.1, SM2510B, EPA 245.1, EPA 150.1, EPA 160.2, SM2540D, EPA 335.2, SM2540G, EPA 180.1. <u>Organic Parameters</u>: EPA 625, 608.)

Solid & Chemical Materials (Inorganic Parameters: 6020, 7470, 7471, 9045, 9014. Organic Parameters: EPA 8260, 8270, 8082, 8081.)

Air & Emissions (EPA TO-15.)

Louisiana Department of Environmental Quality Certificate/Lab ID: 03090. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 120.1, 150.1, 160.2, 180.1, 200.8, 245.1, 310.1, 335.2, 608, 625, 1631, 3010, 3015, 3020, 6020, 9010, 9014, 9040, SM2320B, 2510B, 2540D, 2540G, 4500CN-E, 4500H-B, <u>Organic Parameters</u>: EPA 3510, 3580, 3630, 3640, 3660, 3665, 5030, 8015 (mod), 3570, 8081, 8082, 8260, 8270,)

Solid & Chemical Materials (Inorganic Parameters: 6020, 7196, 7470, 7471, 7474, 9010, 9014, 9040, 9045, 9060. <u>Organic Parameters</u>: EPA 8015 (mod), EPA 3570, 1311, 3050, 3051, 3060, 3580, 3630, 3640, 3660, 3665, 5035, 8081, 8082, 8260, 8270.)

Biological Tissue (Inorganic Parameters: EPA 6020. Organic Parameters: EPA 3570, 3510, 3610, 3630, 3640, 8270.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA030.

Non-Potable Water (Inorganic Parameters: SM4500H+B. Organic Parameters: EPA 624.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 2206. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: EPA 200.8, 245.1, 1631E, 120.1, 150.1, 180.1, 310.1, 335.2, 160.2, SM2540D, 2540G, 4500CN-E, 4500H+B, 2320B, 2510B. <u>Organic Parameters</u>: EPA 625, 608.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA015. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: SW-846 1312, 3010, 3020A, 3015, 6020, SM2320B, EPA 200.8, SM2540C, 2540D, 2540G, EPA 120.1, SM2510B, EPA 180.1, 245.1, 1631E, SW-846 9040B, 6020, 9010B, 9014 <u>Organic Parameters</u>: EPA 608, 625, SW-846 3510C, 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082 8260B, 8270C)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6020, 9010B, 9014, 1311, 1312, 3050B, 3051, 3060A, 7196A, 7470A, 7471A, 9045C, 9060. <u>Organic Parameters</u>: SW-846 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082, 8260B, 8270C, 3570, 8015B.)

Atmospheric Organic Parameters (EPA TO-15)

Biological Tissue (Inorganic Parameters: SW-846 6020 Organic Parameters: SW-846 8270C, 3510C, 3570, 3610B, 3630C, 3640A)

New York Department of Health Certificate/Lab ID: 11627. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 310.1, SM2320B, EPA 365.2, 160.1, EPA 160.2, SM2540D, EPA 200.8, 6020, 1631E, 245.1, 335.2, 9014, 150.1, 9040B, 120.1, SM2510B, EPA 376.2, 180.1, 9010B. <u>Organic Parameters</u>: EPA 624, 8260B, 8270C, 608, 8081A, 625, 8082, 3510C, 3511, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 9040B, 9045C, SW-846 Ch7 Sec 7.3, EPA 6020, 7196A, 7471A, 7474, 9014, 9040B, 9045C, 9010B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8081A, DRO 8015B, 8082, 1311, 3050B, 3580, 3050B, 3035, 3570, 3051, 5035, 5030B.)

Air & Emissions (EPA TO-15.)

Rhode Island Department of Health Certificate/Lab ID: LAO00299. NELAP Accredited via LA-DEQ.

Refer to MA-DEP Certificate for Non-Potable Water.

Refer to LA-DEQ Certificate for Non-Potable Water.

Texas Commission of Environmental Quality Certificate/Lab ID: T104704419-08-TX. NELAP Accredited.

Solid & Chemical Materials (<u>Inorganic Parameters</u>: EPA 6020, 7470, 7471, 1311, 7196, 9014, 9040, 9045, 9060. <u>Organic Parameters</u>: EPA 8015, 8270, 8260, 8081, 8082.)

Air (Organic Parameters: EPA TO-15)

U.S. Army Corps of Engineers

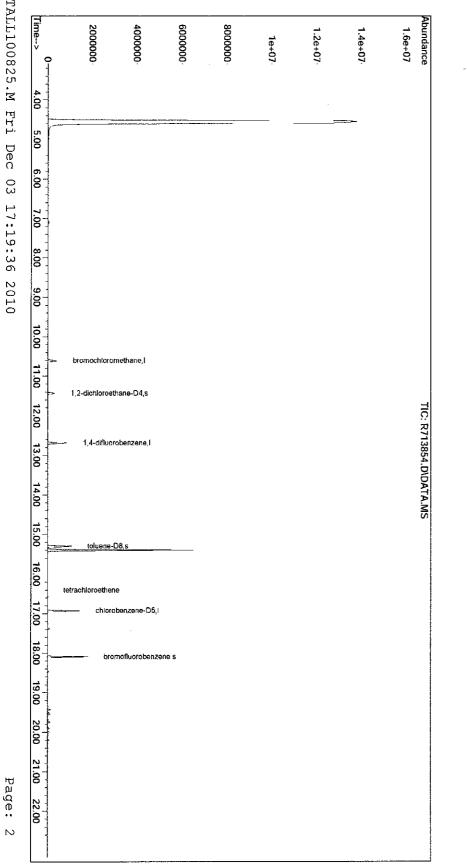
Department of Defense Certificate/Lab ID: L2217.01.

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312,3051, 6020, 747A, 7474, 9045C,9060, SM 2540G, ASTM D422-63. <u>Organic Parameters</u>: EPA 3580, 3570, 3540C, 5035, 8260B, 8270C, 8270 Alk-PAH, 8082, 8081A, 8015 (SHC), 8015 (DRO).

Air & Emissions (EPA TO-15.)

Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: 8270C: Biphenyl.


	Γ.	Serial_No:12131015:56
*SAMPLE N Form No: 101-02 (19-Jun-09)	ALPHA Lab ID (Lab Use Only) (Lab Use Only) 2 + 2 2 + 2	A A A A A A A A A A Client Information Client Information Client: Roher Erem HA Address: 312 Cenco RA Phone: 307-822-6300 Fax: Pate M. Erem Ac Email: Chient Project Specific Requireme
*SAMPLE MATRIX CODES	Sample ID SG-1 SG-2 SG-2 SG-2 SG-2	AIR ANALYS AIR ANALYS AIR ANALYS AIR ANALYS AIR ANALYS Project In Project In Projec
SV = A col Var		AIR ANALYSIS CUSTODY Project Inform 188 Project Name Project Name Project Name Project Manager: ALPHA Quote # ALPHA Quote # ALPHA Quote # ALPHA Quote # ALPHA Quote # ALPHA Quote # ALPHA Quote #
and the second	Date Start Time E	ation:
	I Columns Below Must Date Start Time End Time Initial Fi 11-19-0 110 1120 -28 -1 11-19-0 110 1120 -28 -1 11-19-0 110 1120 -28 -1 11-19-0 110 1150 -30 -1	nation Bridges Market Leeds Leeds Leeds Prescett Prescett Brough (only confirmed if pre-approved) See A Harched
Date/Tinge		PAGE OF Market S And A A A A A A A A A A A A A A A A A A
10 8130 10 8130	Sample Sam	Pate Rec d Report Int ADEx Criteri D'Addition Report to: (I) Report to: (I)
Received By:		
Container Type	11 HT18 172 HT18 1729 1729	in Lab: formation - Data Deliverables formats: Formats: standard pdf report) al Deliverables: I deliverables: Trifferent han Project Manager) Dr GwG, M, MCCWC) Dr GwG, Mance
	10-Flow 14 4 2 20-1 Controller 20-75-75-75-75-75-75-75-75-75-75-75-75-75-	Indicated
Date/Time:	TO.15 SIM	ALPHA Job #: Billing Informati Kame as Client int Kame as Client int Regulatory Requ State/Fed Prog MEDEY Prog MEDEY Prog
Pleas	TO-13A TO-4/TO-10	ALPHA Job #:
Please print clearly, legibly and completely. Samples can not be logged in and turnaround time block will not start until any ambi- guites are resolved. Al samples submitted are subject to Aphas Terms and Conditions See reverse side		ALPHA Job #: 1000 - 2 Billing Information Same as Client info PO #: Same as Client info PO #: Regulatory Requirements/Report Limits Bate/Fed Program Criteria MEDEV Program Criteria MEDEV Program Criteria MEDEV Program Criteria

Page 44 of 56

TO-15

Ì

Misc

Sample

AIRLAB7:RY L1018872-01,3,250,250 wg445963,ical5297 7 Sample Multiplier:

Sample Multiplier:

Р

ALS Vial

Operator

Acq On

2 Dec 2010

8:17 pm

Quant Time: Dec 03 17:19:12 2010 Quant Method : O:\Forensics\Data\ Quant Title : TO-14A/TO-15 SIM/H

O:\Forensics\Data\Airlab7\2010\101202T\TALL100825.M TO-14A/TO-15 SIM/Full Scan Analysis

Response via : QLast Update

••

Thu Aug 26 11:10:47 2010 Initial Calibration

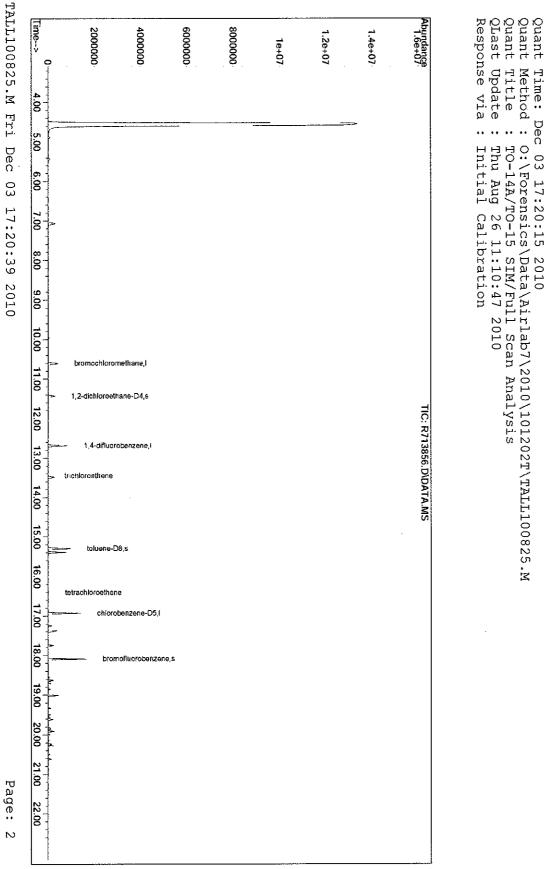
Data Path Data File

0:\Forensics\Data\Airlab7\2010\101202T\ R713854.D

gns

List

••


9_Chlorinateds+EDB

ı

....

(QT Reviewed)

Misc

L1018872-02,3,250,250 wg445963,ica15297 8 sample Multiplier:

سې

2 Dec 2010 AIRLAB7:RY

Sample Operator Acq On

ALS Vial

Data

Data

Path File

••

O:\Forensics\Data\Airlab7\2010\101202T\ R713856.D

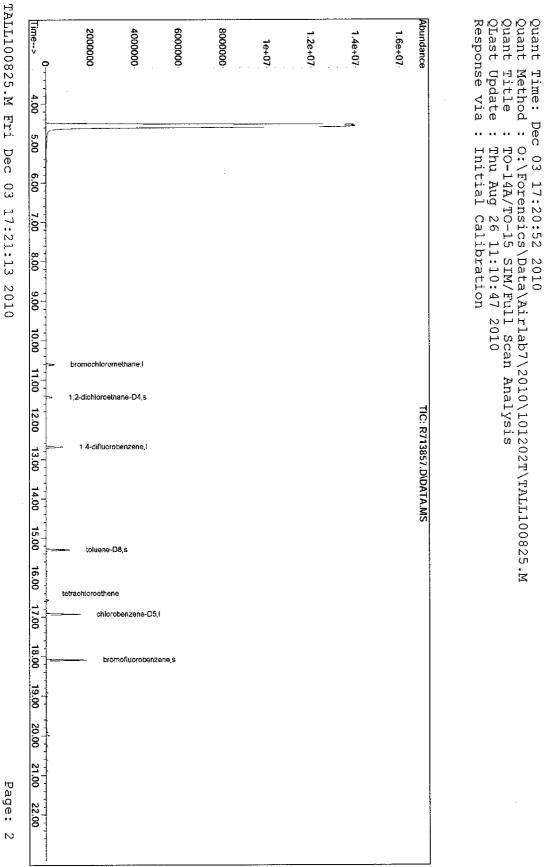
9:30 pm

Sub

List

••

9_Chlorinateds+EDB


1

.

(QT

Reviewed)

TALL100825.M Fri Dec 03 17:21:13 2010

Serial_No:12131015:56

Misc

L1018872-03,3,250,250 wg445963,ica15297 9 Sample Multiplier

Sample Multiplier:

щ

O:\Forensics\Data\Airlab7\2010\101202T\TALL100825.M TO-14A/TO-15_SIM/Full_Scan_Analysis

ALS Vial

Operator

Acq On

2 Dec 2010 AIRLAB7:RY

Sample

Data Path Data File

••

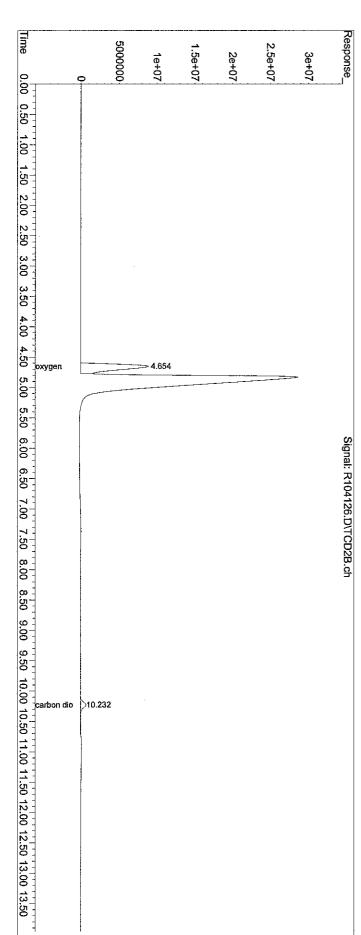
O:\Forensics\Data\Airlab7\2010\101202T\ R713857.D

10:06 pm

Sub

List

••


9_Chlorinateds+EDB

I

. • •

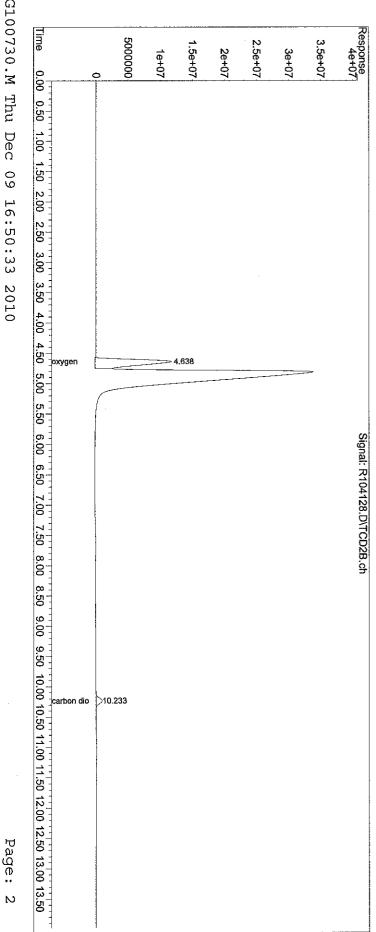
(QT Reviewed)

Fixed Gases

Serial_No:12131015:56

Signal

Info


••

Signal ALS Vial Misc Sample Operator Acq On Signal (s) Sub List Volume Integrator: ChemStation Response via : QLast Update Quant Title Quant Method : 0:\Forensics\Data\airlab10\101209fg\FG100730.M Quant Time: Dec 09 15:15:17 2010 Data File Data Integration File: events.e Path Inj. Phase •• ω WG447014, ICAL5222 airlab10:ry 11018872-01d, TCD2B.ch R104126.D O:\Forensics\Data\airlab10\101209fg\ .. •• .. 9 Dec 2010 •• Initial Calibration Sat Oct 30 10:36:20 2010 Fixed Gas Analysis via Method 3C CO2, O2, CH4 Sample Multiplier: 4,0.4562,1 ī 2:50 eport шđ سر (QT Reviewed)

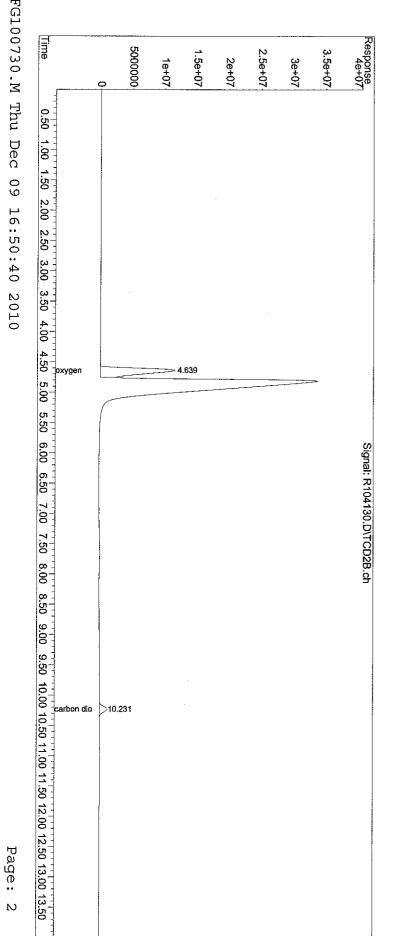
Page:

 \sim

FG100730.M Thu Dec 60 16:50:33 2010

Misc Sub Volume QLast Update ALS Vial Sample Operator Acq On Signal (s) Data File Data Path Integrator: ChemStation Response via : Quant Title Quant Quant Time: Dec 09 15:47:32 2010 Integration File: events.e List Method : Ľnj. .. цЪ airlab10:ry 0:\Forensics\Data\airlab10\101209fg\ •• WG447014, ICAL5222 11018872-02d, TCD2B.ch R104128.D ... 0 •• O:\Forensics\Data\airlab10\101209fg\FG100730.M Dec 2010 CO2, O2, CH4 Initial Calibration Sat Oct 30 10:36:20 2010 Fixed Gas Analysis via Method 3C Sample Multiplier: 1 4,0.6083,1 ı 3:28eport md (QT Reviewed)

Serial_No:12131015:56


Signal

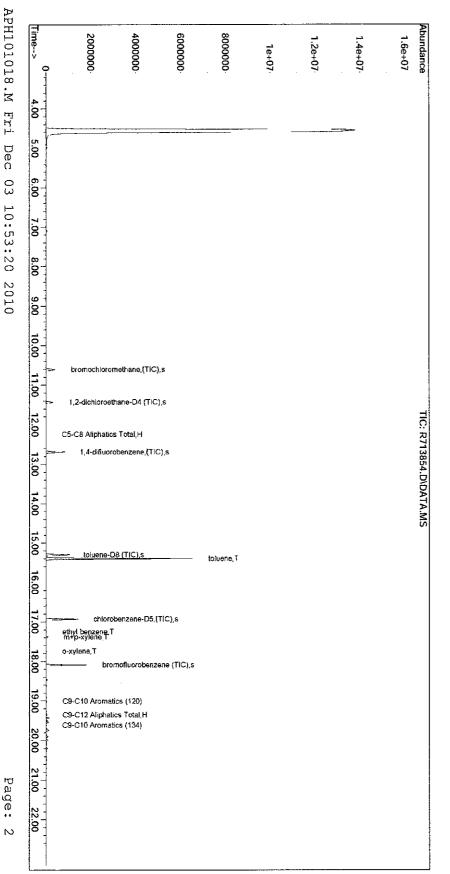
Signal

Phase Info

••

. .

Serial_No:12131015:56


Sub List	: CO2,O2,CH4	(QT Reviewed)
Data Path : Data File : Signal(s) :	O:\Forensics\Data\airlab10\101209fg\ R104130.D TCD2B.ch	\beg/
Acq On : Operator :	9 Dec 2010 4:07 pm airlab10:ry	
Sample : Misc :	l1018872-03d,4,0.5988,1 WG447014,ICAL5222	
ALS Vial :	5 Sample Multiplier: 1	
Integration 1 Quant Time: 1 Quant Method Quant Title QLast Update Response via Integrator: (Integration File: events.e Quant Time: Dec 09 16:22:02 2010 Quant Method : O:\Forensics\Data\airlab10\101209fg\FG100730.M Quant Title : Fixed Gas Analysis via Method 3C QLast Update : Sat Oct 30 10:36:20 2010 Response via : Initial Calibration Integrator: ChemStation	101209fg\FG100730.M od 3C
Volume Inj. Signal Phase Signal Info		

.

N

APH

Misc

Sample Operator

ALS Vial

Acq On

2 Dec 2010

8:17

шđ

Sub

List

••

APH_STD_M -

....Report

(QT)

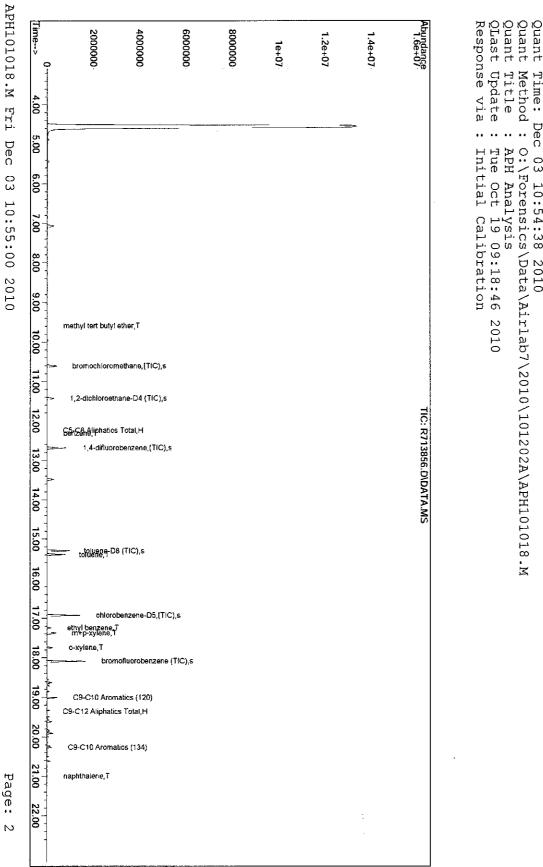
Reviewed)

Data

Path

Data File

•• ••


0:\Forensics\Data\Airlab7\2010\101202A\ R713854.D

AIRLAB7:RY L1018872-01,3,250,250 WG445964,ICAL5416 -1 Sample Multiplier: ш

Quant Quant QLast Update Quant Response via Method : Title Time: Dec •• .. O:\Forensics\Data\Airlab7\2010\101202A\APH101018.M APH Analysis Initial Calibration Tue Oct 03 10:53:03 2010 19 09:18:46 2010

Page 54 of 56

Misc

Sample Operator Acq On

ALS Vial

ω

Data Path Data File

••

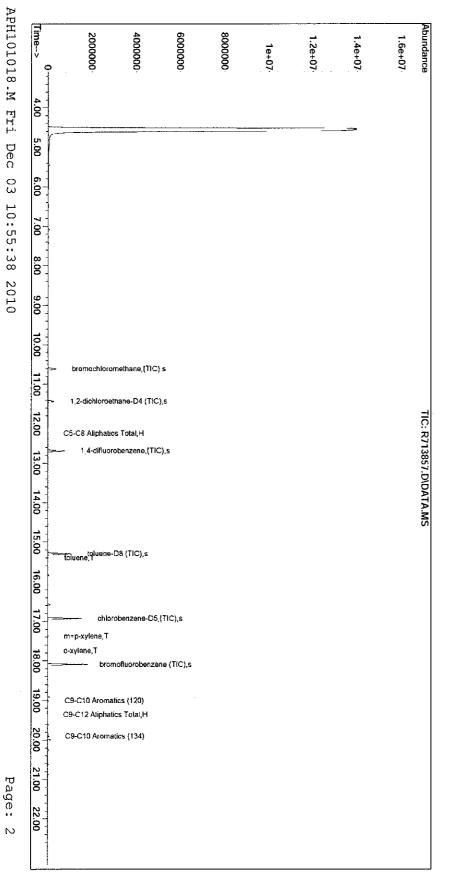
Sub

List

••

APH_STD_M -

....Report


(QT)

Reviewed)

Time: Dec 03 10:54:38 2010 L1018872-02,3,250,250 WG445964,ICAL5416 0:\Forensics\Data\Airlab7\2010\101202A\ R713856.D AIRLAB7:RY 2 Dec 2010 Sample Multiplier: 9:30 pm Ч

Page 55 of 56

Misc Sample

ALS Vial

Acq On

Operator

Sub

List

••

APH_STD_M -

....Report

(QT

Reviewed)

Data

Quant Quant

Title

APH Analysis

•• ••

Response via : QLast Update

Initial Calibration Tue Oct 19 09:18:46

2010

Data File Path Method : Time: Dec 03 10:55:19 2010 • • .. L1018872-03,3,250,250 WG445964,ICAL5416 0:\Forensics\Data\Airlab7\2010\101202A\ R713857.D Q AIRLAB7:RY 2 Dec 2010 O:\Forensics\Data\Airlab7\2010\101202A\APH101018.M Sample Multiplier: 10:06 pm щ

Page 56 of 56

ANALYTICAL REPORT

Lab Number:	L1019019
Client:	Maine DEP-Div. of Technical Services
	Division of Technical Services
	312 Canco Road
	Portland, ME 04103
ATTN:	Peter Eremita
Phone:	(207) 592-0592
Project Name:	2 BRIDGES MARKET
Project Number:	1048
Report Date:	12/13/10

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NY (11627), CT (PH-0141), NH (2206), NJ (MA015), RI (LAO00299), ME (MA0030), PA (Registration #68-02089), LA NELAC (03090), FL NELAC (E87814), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name:2 BRIDGES MARKETProject Number:1048

 Lab Number:
 L1019019

 Report Date:
 12/13/10

Alpha	Client ID	Sample	Collection
Sample ID		Location	Date/Time
L1019019-01	SG-3	LEEDS	11/24/10 08:45

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	irmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
Eb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	YES
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A res	oonse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: 2 BRIDGES MARKET Project Number: 1048

Lab Number: L1019019 Report Date: 12/13/10

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

Report Submission

This report replaces the report issued on December 10, 2010. The report has been amended to include the batch quality control for the APH analysis.

MCP Related Narratives

Canisters were released from the laboratory on November 12, 2010.

The canister certification data is provided as an addendum.

Volatile Organics in Air

The WG445963-3 LCS recovery for Vinyl chloride (131%) is outside the 70%-130% acceptance limit. All associated samples were non-detect for Vinyl Chloride.

Project Name: **2 BRIDGES MARKET** Project Number: 1048

Lab Number: L1019019 **Report Date:** 12/13/10

Case Narrative (continued)

Fixed Gas

L1019019-01: Prior to sample analysis, the canister was pressurized with UHP Hydrogen in order to facilitate the transfer of sample to the Gas Chromatograph. The addition of Hydrogen resulted in a dilution of the sample. The reporting limits have been elevated accordingly.

Petroleum Hydrocarbons in Air

All MCP required questions were answered with affirmative responses; therefore, there are no relevant data issues to discuss.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Kuhl M. ihin Kathleen O'Brien

Title: Technical Director/Representative

Date: 12/13/10

AIR

Serial_No:12131016:04

L1019019

12/13/10

Lab Number:

Report Date:

2 BRIDGES MARKET

Project Number: 1048

Project Name:

SAMPLE RESULTS

Lab ID:	L1019019-01	Date Collected:	11/24/10 08:45
Client ID:	SG-3	Date Received:	11/30/10
Sample Location:	LEEDS	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15		
Analytical Date:	12/02/10 19:41		
Analyst:	RY		

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	evel) - Mansfield Lat)						
Vinyl chloride	ND	0.200		ND	0.511			1
1,1-Dichloroethene	ND	0.200		ND	0.792			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Trichloroethene	ND	0.200		ND	1.07			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	86		60-140
Bromochloromethane	99		60-140
chlorobenzene-d5	87		60-140

 Serial_No:12131016:04

 Lab Number:
 L1019019

 Report Date:
 12/13/10

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 12/02/10 17:26

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level)	- Mansfield L	ab for sa	mple(s): 01	Batch:	WG44596	63-4		
Vinyl chloride	ND	0.200		ND	0.511			1
1,1-Dichloroethene	ND	0.200		ND	0.792			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Trichloroethene	ND	0.200		ND	1.07			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1

Lab Control Sample Analysis

Batch Quality Control

Project Name: 2 BRIDGES MARKET

Project Number: 1048

 Lab Number:
 L1019019

 Report Date:
 12/13/10

LCSD LCS %Recovery %Recovery %Recovery Limits Parameter Qual Qual RPD Qual **RPD** Limits Volatile Organics in Air (Low Level) - Mansfield Lab Associated sample(s): 01 Batch: WG445963-3 Vinyl chloride Q 131 70-130 --1,1-Dichloroethene 112 70-130 -trans-1,2-Dichloroethene 105 70-130 --1,1-Dichloroethane 118 70-130 -cis-1,2-Dichloroethene 112 70-130 --1,2-Dichloroethane 101 70-130 --70-130 1,1,1-Trichloroethane 92 --Trichloroethene 94 70-130 --1.2-Dibromoethane 117 70-130 --Tetrachloroethene 112 70-130 --

Lab Duplicate Analysis Batch Quality Control

Project Name: 2 BRIDGES MARKET

Project Number: 1048

 Lab Number:
 L1019019

 Report Date:
 12/13/10

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
olatile Organics in Air (Low Level) - Mansfield Lab Sample	Associated sample(s): 01	QC Batch ID: WG44596	3-5 QC Sar	mple: L10188	372-01 Client ID: DUP
Vinyl chloride	ND	ND	ppbV	NC	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25
1,1-Dichloroethane	ND	ND	ppbV	NC	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
Trichloroethene	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
Tetrachloroethene	ND	ND	ppbV	NC	25

Serial_No:	12131016:04
Lab Number:	L1019019

Report Date: 12/13/10

Project Name: 2 BRIDGES MARKET

Project Number: 1048

SAMPLE RESULTS

Lab ID:	L1019019-01	D	Date Collected:	11/24/10 08:45
Client ID:	SG-3		Date Received:	11/30/10
Sample Location:	LEEDS		Field Prep:	Not Specified
Matrix:	Soil_Vapor		Extraction Method:	
Analytical Method:	51,3C			
Analytical Date:	12/09/10 16:45			
Analyst:	RY			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Fixed Gases by GC - Mansfield Lab						
Oxygen	18.0		%	1.81		1.809
Carbon Dioxide	1.16		%	0.181		1.809
Methane	ND		%	0.181		1.809

Project Name:	2 BRIDGES MARKET	Lab Number:	L1019019
Project Number:	1048	Report Date:	12/13/10

Method Blank Analysis Batch Quality Control

Analytical Method:	51,3C
Analytical Date:	12/09/10 14:17
Analyst:	RY

Result	Qualifier	Units	RL	MDL
o for sample	e(s): 01 Ba	tch: WG447	014-2	
ND		%	1.00	
ND		%	0.100	
ND		%	0.100	
	no for sample ND ND	o for sample(s): 01 Ba ND ND	ND % ND %	ND % 1.00 ND % 0.100

Lab Control Sample Analysis Batch Quality Control

Project Name: 2 BRIDGES MARKET

Project Number: 1048 Lab Number: L1019019 Report Date: 12/13/10

Parar	neter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Fixed	Gases by GC - Mansfield Lab	Associated sample(s):	01 Batch:	WG447014-1					
O	kygen	92		-		80-120	-		
Ca	arbon Dioxide	105		-		80-120	-		
M	ethane	106		-		80-120	-		

Lab Duplicate Analysis Batch Quality Control

Project Name: 2 BRIDGES MARKET

Project Number: 1048

Lab Number:

 Lab Number:
 L1019019

 Report Date:
 12/13/10

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
Fixed Gases by GC - Mansfield Lab Associated sample(s): 01 QC Batch ID:	WG447014-3 QC Sample	: L1018872-01	Client ID:	DUP Sample
Oxygen	17.3	18.2	%	5	5
Carbon Dioxide	1.22	1.22	%	0	5
Methane	ND	ND	%	NC	5
Fixed Gases by GC - Mansfield Lab Associated sample(s): 01 QC Batch ID:	WG447014-4 QC Sample	: L1018872-02	Client ID:	DUP Sample
Oxygen	18.1	18.0	%	1	5
Carbon Dioxide	1.25	1.25	%	0	5
Methane	ND	ND	%	NC	5
Fixed Gases by GC - Mansfield Lab Associated sample(s): 01 QC Batch ID:	WG447014-5 QC Sample	: L1018872-03	Client ID:	DUP Sample
Oxygen	17.9	17.9	%	0	5
Carbon Dioxide	1.61	1.61	%	0	5
Methane	ND	ND	%	NC	5
Fixed Gases by GC - Mansfield Lab Associated sample(s): 01 QC Batch ID:	WG447014-6 QC Sample	: L1019019-01	Client ID:	SG-3
Oxygen	18.0	18.0	%	0	5
Carbon Dioxide	1.16	1.16	%	0	5
Methane	ND	ND	%	NC	5

Serial_No:12131016:04				
Lab Number:	L1019019			
Report Date:	12/13/10			

Project Name: 2 BRIDGES MARKET

Project Number: 1048

SAMPLE RESULTS

Lab ID:	L1019019-01
Client ID:	SG-3
Sample Location:	LEEDS
Matrix:	Soil_Vapor
Analytical Method:	96,APH
Analytical Date:	12/02/10 19:41
Analyst:	RY

Date Collected:	11/2
Date Received:	11/3
Field Prep:	Not S

1/24/10 08:45 1/30/10 Not Specified

Quality Control Information	
Sample Type:	200 ml/min Composite
Sample Container Type:	Canister - 2.7 Liter
Sampling Flow Controller:	Mechanical
Sampling Zone:	Unknown
Sampling Flow Meter RPD of pre & post-sampling calibration check:	<=20%
Were all QA/QC procedures REQUIRED by the method followed?	Yes
Were all performance/acceptance standards for the required procedures achieved?	Yes
Were significant modifications made to the method as specified in Sect 11.1.2?	No

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air -	Mansfield Lab					
1,3-Butadiene	ND		ug/m3	2.0		1
Methyl tert butyl ether	ND		ug/m3	2.0		1
Benzene	ND		ug/m3	2.0		1
Toluene	ND		ug/m3	2.0		1
C5-C8 Aliphatics, Adjusted	13		ug/m3	12		1
Ethylbenzene	ND		ug/m3	2.0		1
p/m-Xylene	ND		ug/m3	4.0		1
o-Xylene	ND		ug/m3	2.0		1
Naphthalene	ND		ug/m3	2.0		1
C9-C12 Aliphatics, Adjusted	39		ug/m3	14		1
C9-C10 Aromatics Total	ND		ug/m3	10		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	82		50-200
Bromochloromethane	87		50-200
Chlorobenzene-d5	89		50-200

L1019019

12/13/10

Lab Number:

Report Date:

Project Name: 2 BRIDGES MARKET

Project Number:

1048

Method Blank Analysis Batch Quality Control

Analytical Method:96,APHAnalytical Date:12/02/10 17:26Analyst:RY

Parameter	Result	Qualifier	Units		RL	MDL
Petroleum Hydrocarbons in Air - Ma	ansfield Lab	o for sample(s):	01	Batch:	WG445964-4	
1,3-Butadiene	ND		ug/m	3	2.0	
Methyl tert butyl ether	ND		ug/m	3	2.0	
Benzene	ND		ug/m	3	2.0	
Toluene	ND		ug/m	3	2.0	
C5-C8 Aliphatics, Adjusted	ND		ug/m	3	12	
Ethylbenzene	ND		ug/m	3	2.0	
p/m-Xylene	ND		ug/m	3	4.0	
o-Xylene	ND		ug/m	3	2.0	
Naphthalene	ND		ug/m	3	2.0	
C9-C12 Aliphatics, Adjusted	ND		ug/m	3	14	
C9-C10 Aromatics Total	ND		ug/m	3	10	

Lab Control Sample Analysis Batch Quality Control

Project Name: 2 BRIDGES MARKET

Project Number: 1048

Lab Number: L1019019 Report Date: 12/13/10

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Petroleum Hydrocarbons in Air - Mansfield La	b Associated s	ample(s):	01 Batch: WG4	145964-3				
1,3-Butadiene	75		-		70-130	-		
Methyl tert butyl ether	77		-		70-130	-		
Benzene	92		-		70-130	-		
Toluene	87		-		70-130	-		
C5-C8 Aliphatics, Adjusted	71		-		70-130	-		
Ethylbenzene	105		-		70-130	-		
p/m-Xylene	103		-		70-130	-		
o-Xylene	105		-		70-130	-		
Naphthalene	98		-		50-150	-		
C9-C12 Aliphatics, Adjusted	96		-		70-130	-		
C9-C10 Aromatics Total	81		-		70-130	-		

Lab Duplicate Analysis Batch Quality Control

Project Name: 2 BRIDGES MARKET

Project Number: 1048

Lab Number:

L1019019 12/13/10 Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual RP	D Limits
etroleum Hydrocarbons in Air - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG445964-5	QC Sample:	L1018872-01	Client ID: D	UP Sample
1,3-Butadiene	ND	ND	ug/m3	NC		30
Methyl tert butyl ether	ND	ND	ug/m3	NC		30
Benzene	ND	ND	ug/m3	NC		30
Toluene	220	220	ug/m3	0		30
C5-C8 Aliphatics, Adjusted	18	20	ug/m3	11		30
Ethylbenzene	ND	ND	ug/m3	NC		30
p/m-Xylene	4.1	4.0	ug/m3	2		30
o-Xylene	ND	ND	ug/m3	NC		30
Naphthalene	ND	ND	ug/m3	NC		30
C9-C12 Aliphatics, Adjusted	88	88	ug/m3	0		30
C9-C10 Aromatics Total	ND	ND	ug/m3	NC		30

Report Date: 12/13/10

Project Number: 1048

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Cleaning Batch ID	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)		Flow In mL/min	% RSD
L1019019-01	SG-3	0469	#90 SV		-	-	200	205	2
L1019019-01	SG-3	511	2.7L Can	L1017602	-29.3	-3.8	-	-	-

Air Volatiles Can Certification

Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1017602
Project Number:	CANISTER QC BAT	Report Date:	12/13/10
		•.	

Lab ID:	L1017602-01	Date Collected:	11/05/10 00:00
Client ID:	CAN 147B SHELF 8	Date Received:	11/05/10
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15		
Analytical Date:	11/10/10 17:11		
Analyst:	RY		

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	vel) - Mansfield Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.200		ND	0.344			1
Propane	ND	0.200		ND	0.606			1
Dichlorodifluoromethane	ND	0.200		ND	0.988			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.776			1
Chloroethane	ND	0.200		ND	0.527			1
Ethanol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.841			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.14			1
Acetone	ND	1.00		ND	2.37			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.200		ND	0.434			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.792			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1017602

 Report Date:
 12/13/10

Lab ID: Client ID: Sample Location:	L1017602-01 CAN 147B SHE	LF 8				Date I Field I	Collecte Receive Prep:		11/05/10 00:00 11/05/10 Not Specified
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifier	Dilution Factor
Volatile Organics in A	Air (Low Level) - M			MDL	Results		MDL	Quanter	
Methylene chloride		ND	1.00		ND	3.47			1
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		ND	0.200		ND	0.622			1
Freon-113		ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene		ND							1
1,1-Dichloroethane	·		0.200		ND	0.792			
Methyl tert butyl ether		ND	0.200		ND	0.809			1
Vinyl acetate		ND	0.200		ND	0.720			1
2-Butanone		ND	0.200		ND	0.704			1
cis-1,2-Dichloroethene		ND	0.200		ND	0.589			1
		ND	0.200		ND	0.792			1
Ethyl Acetate Chloroform		ND	0.500		ND	1.80			1
		ND	0.200		ND	0.976			1
Tetrahydrofuran		ND	0.200		ND	0.589			1
2,2-Dichloropropane		ND	0.200		ND	0.923			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		ND	0.200		ND	0.704			1
Diisopropyl ether		ND	0.200		ND	0.835			1
tert-Butyl Ethyl Ether		ND	0.200		ND	0.835			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
1,1-Dichloropropene		ND	0.200		ND	0.907			1
Benzene		ND	0.200		ND	0.638			1
Carbon tetrachloride		ND	0.200		ND	1.26			1
Cyclohexane		ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether		ND	0.200		ND	0.835			1
Dibromomethane		ND	0.200		ND	1.42			1
1,2-Dichloropropane		ND	0.200		ND	0.924			1
Bromodichloromethane		ND	0.200		ND	1.34			1
1,4-Dioxane		ND	0.200		ND	0.720			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1017602

 Report Date:
 12/13/10

Parameter Results RL MDL Results RL MDL Qualifier Fact Volatile Organics in Air (Low Level) - Mansfield Lab ND 0.200 ND 0.934 1 2.2.4-Trimethylpentane ND 0.200 ND 0.819 1 2.4.4-trimethyl-t-pentene ND 0.500 ND 0.819 1 4.4.4-trimethyl-t-pentene ND 0.500 ND 0.819 1 4.4.4-trimethyl-2-pentanone ND 0.200 ND 0.819 1 1.1.2-Trichloropropene ND 0.200 ND 0.807 1 1.1.2-Trichloropropene ND 0.200 ND 0.819 1 1.1.2-Trichloropropene ND 0.200 ND 0.823 1 1.2-Dirbromothane ND 0.200	Lab ID: Client ID: Sample Location:	L1017602-01 CAN 147B SHE	LF 8	Date Collected: Date Received: Field Prep: ug/m3			11/05/10 00:0 11/05/10 Not Specified			
Volatile Organics in Air (Low Level) - Mansfield Lab Inc. Trichloroethene ND 0.200 - ND 0.934 - 1 12.2.4-Trimethylentane ND 0.200 - ND 0.819 - 1 12.4.4-trimethyl-pentene ND 0.500 - ND 0.819 - 1 2.4.4-trimethyl-pentene ND 0.200 - ND 0.807 - 1 1.1.2-Trichloroethane ND 0.200 - ND 0.907 - 1 1.1.2-Trichloroethane ND 0.200 - ND 0.907 - 1 1.1.2-Trichloroethane ND 0.200 -	Paramotor		Posults			Results	-	MDI	Qualifier	Dilution Factor
Tickloroethene ND 0.200 - ND 1.07 1 2.2.4-Trimethylpentane ND 0.200 - ND 0.819 1 Heptane ND 0.500 - ND 0.819 1 2.4.4-trimethyl-1-pentene ND 0.200 ND 0.907 1 4.4bthyl-2-pentanone ND 0.200 ND 0.819 1 2.4.4-trimethyl-2-pentanone ND 0.200 ND 0.819 1 1.1.2-Trichloroethane ND 0.200 ND 0.907 1 1.1.2-Trichloroethane ND 0.200 ND 0.907 1 1.2-Dichloropropane ND 0.200 ND 0.923 1 1.3-Dichloropropane ND 0.200 ND 0.923 1 1.4-Exanone<		ir (Low Level) - N				neouno		MDL	quanter	
2.2.4-Trimethylpentane ND 0.200 ND 0.819 1 Heptane ND 0.500 ND 0.819 1 2.4.4-trimethyl-1-pentene ND 0.200 ND 0.907 1 4.4.trimethyl-2-pentanone ND 0.200 ND 0.819 1 2.4.4-trimethyl-2-pentanone ND 0.200 ND 0.819 1 2.4.4-trimethyl-2-pentanone ND 0.200 ND 0.907 1 1.1.2-Trichloropropene ND 0.200 ND 0.907 1 1.1.2-Trichloroptopene ND 0.200 ND 0.907 1 1.1.2-Trichloroptopane ND 0.200 ND 0.907 1 1.1.2-Trichloroptopane ND 0.200 ND 0.907 1 1.1.2-Toichoropthane ND 0.200 ND 0.819		. , ,				ND	1 07			1
Heptane ND 0.200 - ND 0.819 1 2.4.4-trimethyl-1-pentene ND 0.500 - ND 0.229 1 cis-1.3-Dichloropropene ND 0.200 - ND 0.819 1 2.4.4-trimethyl-2-pentene ND 0.500 - ND 0.819 1 2.4.4-trimethyl-2-pentene ND 0.500 - ND 0.907 1 1.4.4-trimethyl-2-pentene ND 0.200 - ND 0.907 1 1.4.4-trimethyl-2-pentene ND 0.200 - ND 0.907 1 1.4.4-trimethyl-2-pentene ND 0.200 - ND 0.907 1 1.4.2-Trichloroethane ND 0.200 - ND 0.907 1 1.3-Dichloroptropane ND 0.200 - ND 0.923 1	2,2,4-Trimethylpentane									
2.4.4-trimethyl-1-pentene ND 0.500 ND 0.229 1 1 dis-1,3-Dichloropropene ND 0.200 ND 0.819 1 2.4.4-trimethyl-2-pentanone ND 0.500 ND 0.819 1 2.4.4-trimethyl-2-pentene ND 0.500 ND 0.229 1 1.1.2-Trichoroptopene ND 0.200 ND 0.907 1 1.1.2-Trichoroptopene ND 0.200 ND 0.907 1 1.1.2-Trichoropthane ND 0.200 ND 0.907 1 1.3-Dichloropropane ND 0.200 ND 0.923 1 1.3-Dichloropropane ND 0.200 ND 0.819 1 1.3-Dichloropropane ND 0.200 ND 0.819 1 1.3-Dichloropropane ND 0.200 ND 0.819 <td></td>										
ND 0.200 ND 0.907 1 4.4 Hethyl-2-pentanone ND 0.200 ND 0.819 1 2.4.4 trimethyl-2-pentene ND 0.200 ND 0.207 1 1.1.2-Trichloroptropene ND 0.200 ND 0.907 1 1.3-Dichloroptropane ND 0.200 ND 0.923 1 2-Hexanone ND 0.200 ND 0.819 1 1.2-Dibromoethane ND 0.200 ND 1.70 1 1.2-Dibromoethane N										
4-Methyl-2-pentanone ND 0.200 ND 0.819 1 2,4,4-trimethyl-2-pentene ND 0.500 ND 0.207 1 1,1,2-Trichloropropene ND 0.200 ND 0.907 1 1,1,2-Trichloroptopene ND 0.200 ND 0.907 1 1,1,2-Trichloroptopene ND 0.200 ND 0.753 1 1,3-Dichloroptopane ND 0.200 ND 0.923 1 2-Hexanone ND 0.200 ND 0.819 1 1/2-Dibromoethane ND 0.200 ND 1.54 1 1/2-Dibromoethane ND 0.200 ND 1.54 1 1/1,1.2-Tetrachloroethane ND 0.200 ND 1.37 1 1/1,1.2	cis-1,3-Dichloropropene									
2.4.4-trimethyl-2-pentene ND 0.500 ND 2.29 1 trans-1,3-Dichloropropene ND 0.200 ND 0.907 1 1,1.2-Trichloroethane ND 0.200 ND 1.09 1 Toluene ND 0.200 ND 0.753 1 1,3-Dichloropropane ND 0.200 ND 0.923 1 1,3-Dichloropropane ND 0.200 ND 0.819 1 2-Hexanone ND 0.200 ND 1.70 1 1.2-Dibromoethane ND 0.200 ND 1.54 1 1.2-Dibromoethane ND 0.200 ND 0.934 1 1.2-Dibromoethane ND 0.200 ND 0.934 1 1.1.1.2-Tetrachloroethane ND 0.200 ND 0.920 1										
ND 0.200 ND 0.907 1 1,1,2-Trichloroethane ND 0.200 ND 1.09 1 Toluene ND 0.200 ND 0.753 1 1,3-Dichloropropane ND 0.200 ND 0.923 1 2-Hexanone ND 0.200 ND 0.819 1 Dibromochloromethane ND 0.200 ND 1.54 1 1,2-Dibromoethane ND 0.200 ND 1.54 1 1,2-Dibromoethane ND 0.200 ND 0.934 1 1,1,2-Tetrachloroethane ND 0.200 ND 1.36 1 1,1,1,2-Tetrachloroethane ND 0.200 ND 0.868 1 p/m-Xylene ND 0.200										
1,1,2-Trichloroethane ND 0.200 ND 1.09 1 Toluene ND 0.200 ND 0.753 1 1,3-Dichloropropane ND 0.200 ND 0.923 1 2-Hexanone ND 0.200 ND 0.819 1 Dibromochloromethane ND 0.200 ND 1.70 1 1.2-Dibromoethane ND 0.200 ND 1.54 1 1.2-Dibromoethane ND 0.200 ND 1.54 1 1.2-Dibromoethane ND 0.200 ND 0.934 1 1.1,1.2-Dibromoethane ND 0.200 ND 1.36 1 1.1,1.2-Tetrachloroethane ND 0.200 ND 0.868 1 p/m-Xylene ND 0.200 ND 0.868 1 Bromoform<	trans-1,3-Dichloropropene	e								
1,3-Dichloropropane ND 0.200 ND 0.923 1 2-Hexanone ND 0.200 ND 0.819 1 Dibromochloromethane ND 0.200 ND 1.70 1 1,2-Dibromoethane ND 0.200 ND 1.54 1 1,2-Dibromoethane ND 0.200 ND 1.54 1 1,2-Dibromoethane ND 0.200 ND 2.37 1 0ctane ND 0.200 ND 0.934 1 1,1,1,2-Tetrachloroethane ND 0.200 ND 1.36 1 1,1,1,2-Tetrachloroethane ND 0.200 ND 0.920 1 1,1,1,2-Tetrachloroethane ND 0.200 ND 0.868 1 P/m-Xylene ND 0.200 ND 0.868 1 1,1	1,1,2-Trichloroethane		ND	0.200		ND	1.09			1
2-Hexanone ND 0.200 ND 0.819 1 Dibromochloromethane ND 0.200 ND 1.70 1 1,2-Dibromoethane ND 0.200 ND 1.54 1 Butyl acetate ND 0.500 ND 0.934 1 Octane ND 0.200 ND 0.934 1 I,1,1,2-Tetrachloroethane ND 0.200 ND 1.36 1 Chlorobenzene ND 0.200 ND 0.920 1 Ethylbenzene ND 0.200 ND 0.868 1 p/m-Xylene ND 0.200 ND 0.851 1 Bromoform ND 0.200 ND 0.851 1 1,1,2,2-Tetrachloroethane ND 0.200 <td>Toluene</td> <td></td> <td>ND</td> <td></td> <td></td> <td>ND</td> <td></td> <td></td> <td></td> <td>1</td>	Toluene		ND			ND				1
Dibromochloromethane ND 0.200 ND 1.70 1 1,2-Dibromoethane ND 0.200 ND 1.54 1 Butyl acetate ND 0.500 ND 2.37 1 Octane ND 0.200 ND 0.934 1 Tetrachloroethene ND 0.200 ND 1.36 1 1,1,1,2-Tetrachloroethane ND 0.200 ND 1.37 1 Chlorobenzene ND 0.200 ND 0.920 1 Ethylbenzene ND 0.200 ND 0.868 1 p/m-Xylene ND 0.200 ND 0.861 1 Styrene ND 0.200 ND 0.861 1 1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 1 0,23,23	1,3-Dichloropropane		ND	0.200		ND	0.923			1
1,2-Dibromoethane ND 0.200 ND 1.54 1 Butyl acetate ND 0.500 ND 2.37 1 Octane ND 0.200 ND 0.934 1 Tetrachloroethane ND 0.200 ND 1.36 1 1,1,1,2-Tetrachloroethane ND 0.200 ND 1.36 1 Chlorobenzene ND 0.200 ND 0.920 1 Ethylbenzene ND 0.200 ND 0.868 1 p/m-Xylene ND 0.400 ND 1.74 1 Bromoform ND 0.200 ND 0.851 1 1,1,2,2-Tetrachloroethane ND 0.200 ND 0.851 1 1,2,3-Trichloroptopane ND 0.200 ND 0.868 1 1,2,3-Trichloropropane <td>2-Hexanone</td> <td></td> <td>ND</td> <td>0.200</td> <td></td> <td>ND</td> <td>0.819</td> <td></td> <td></td> <td>1</td>	2-Hexanone		ND	0.200		ND	0.819			1
ND 0.500 ND 2.37 1 Octane ND 0.200 ND 0.934 1 Octane ND 0.200 ND 0.934 1 Tetrachloroethene ND 0.200 ND 1.36 1 1,1,1,2-Tetrachloroethane ND 0.200 ND 1.37 1 Chlorobenzene ND 0.200 ND 0.920 1 Ethylbenzene ND 0.200 ND 0.868 1 Bromoform ND 0.200 ND 0.868 1 Styrene ND 0.200 ND 0.851 1 1,1,2,2-Tetrachloroethane ND 0.200 ND 0.868 1 1,2,3-Trichloropropane ND 0.200 ND 0.868 1 1,2,3-Trichloropropane ND 0.200	Dibromochloromethane		ND	0.200		ND	1.70			1
Octane ND 0.200 ND 0.934 1 Tetrachloroethene ND 0.200 ND 1.36 1 1,1,1,2-Tetrachloroethane ND 0.200 ND 1.37 1 Chlorobenzene ND 0.200 ND 0.920 1 Ethylbenzene ND 0.200 ND 0.868 1 p/m-Xylene ND 0.400 ND 1.74 1 Bromoform ND 0.200 ND 2.06 1 1,1,2,2-Tetrachloroethane ND 0.200 ND 0.851 1 1,2,2-Tetrachloroethane ND 0.200 ND 0.868 1 1,2,3-Trichloropropane ND 0.200 ND 1.20 1 Nonane ND 0.	1,2-Dibromoethane		ND	0.200		ND	1.54			1
Tetrachloroethene ND 0.200 ND 1.36 1 1,1,1,2-Tetrachloroethane ND 0.200 ND 1.37 1 Chlorobenzene ND 0.200 ND 0.920 1 Ethylbenzene ND 0.200 ND 0.868 1 p/m-Xylene ND 0.400 ND 1.74 1 Bromoform ND 0.200 ND 2.06 1 1,1,2,2-Tetrachloroethane ND 0.200 ND 0.851 1 1,2,2-Tetrachloroethane ND 0.200 ND 1.37 1 0-Xylene ND 0.200 ND 1.37 1 1,2,3-Trichloroptopane ND 0.200 ND 1.65 1 Nonane ND 0.200	Butyl acetate		ND	0.500		ND	2.37			1
1,1,1,2-Tetrachloroethane ND 0.200 ND 1.37 1 Chlorobenzene ND 0.200 ND 0.920 1 Ethylbenzene ND 0.200 ND 0.868 1 p/m-Xylene ND 0.400 ND 0.868 1 Bromoform ND 0.200 ND 2.06 1 Styrene ND 0.200 ND 0.851 1 1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 1 0-Xylene ND 0.200 ND 0.868 1 1,2,3-Trichloroethane ND 0.200 ND 1.86 1 1,2,3-Trichloropropane ND 0.200 ND 1.20 1 Nonane ND 0.200 ND 1.05 1	Octane		ND	0.200		ND	0.934			1
Chlorobenzene ND 0.200 ND 0.920 1 Ethylbenzene ND 0.200 ND 0.868 1 p/m-Xylene ND 0.400 ND 1.74 1 Bromoform ND 0.200 ND 2.06 1 Styrene ND 0.200 ND 0.851 1 1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 1 0-Xylene ND 0.200 ND 0.868 1 1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 1 0-Xylene ND 0.200 ND 0.868 1 1,2,3-Trichloropropane ND 0.200 ND 1.05 1	Tetrachloroethene		ND	0.200		ND	1.36			1
Ind One of the one one one of the one one one of the one one one	1,1,1,2-Tetrachloroethane	9	ND	0.200		ND	1.37			1
p/m-Xylene ND 0.400 ND 1.74 1 Bromoform ND 0.200 ND 2.06 1 Styrene ND 0.200 ND 0.851 1 1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 1 o-Xylene ND 0.200 ND 0.868 1 1,2,3-Trichloropropane ND 0.200 ND 1.20 1 Nonane ND 0.200 ND 1.05 1	Chlorobenzene		ND	0.200		ND	0.920			1
Bromoform ND 0.200 ND 2.06 1 Styrene ND 0.200 ND 0.851 1 1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 1 o-Xylene ND 0.200 ND 0.868 1 1,2,3-Trichloropropane ND 0.200 ND 1.20 1 Nonane ND 0.200 ND 1.05 1	Ethylbenzene		ND	0.200		ND	0.868			1
Styrene ND 0.200 ND 0.851 1 1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 1 o-Xylene ND 0.200 ND 0.868 1 1,2,3-Trichloropropane ND 0.200 ND 1.20 1 Nonane ND 0.200 ND 1.05 1	p/m-Xylene		ND	0.400		ND	1.74			1
1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 1 o-Xylene ND 0.200 ND 0.868 1 1,2,3-Trichloropropane ND 0.200 ND 1.20 1 Nonane ND 0.200 ND 1.05 1	Bromoform		ND	0.200		ND	2.06			1
o-Xylene ND 0.200 ND 0.868 1 1,2,3-Trichloropropane ND 0.200 ND 1.20 1 Nonane ND 0.200 ND 1.05 1	Styrene		ND	0.200		ND	0.851			1
ND 0.200 ND 1.20 1 Nonane ND 0.200 ND 1.05 1	1,1,2,2-Tetrachloroethane	9	ND	0.200		ND	1.37			1
Nonane ND 0.200 ND 1.05 1	o-Xylene		ND	0.200		ND	0.868			1
	1,2,3-Trichloropropane		ND	0.200		ND	1.20			1
Isopropylbenzene ND 0.200 ND 0.982 1	Nonane		ND	0.200		ND	1.05			1
	Isopropylbenzene		ND	0.200		ND	0.982			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1017602

 Report Date:
 12/13/10

Lab ID: Client ID: Sample Location:	L1017602-01 CAN 147B SHEI	_F 8					Collecte Receive Prep:		11/05/10 00:00 11/05/10 Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Factor
Volatile Organics in A	ir (Low Level) - M	ansfield Lab)						
Bromobenzene		ND	0.200		ND	1.28			1
2-Chlorotoluene		ND	0.200		ND	1.03			1
n-Propylbenzene		ND	0.200		ND	0.982			1
4-Chlorotoluene		ND	0.200		ND	1.03			1
4-Ethyltoluene		ND	0.200		ND	0.982			1
1,3,5-Trimethybenzene		ND	0.200		ND	0.982			1
tert-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene		ND	0.200		ND	0.982			1
Decane		ND	0.200		ND	1.16			1
Benzyl chloride		ND	0.200		ND	1.03			1
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloroprop	pane	ND	0.200		ND	1.93			1
Undecane		ND	0.200		ND	1.28			1
Dodecane		ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene		ND	0.200		ND	1.48			1
Naphthalene		ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene		ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1

				Serial_No:12131016:04				31016:04	
Project Name:	BATCH CANISTE	ER CERTIFI	ICATION			Lab I	Number	: 1	L1017602
Project Number:	CANISTER QC B	AT				Repo	ort Date	:	12/13/10
		Air C	anister C	ertificatio	n Results				
Lab ID:	L1017602-01					Date	Collecte	d:	11/05/10 00:00
Client ID:	CAN 147B SHEI	LF 8				Date I	Receive	d:	11/05/10
Sample Location:						Field	Prep:		Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Factor
Volatile Organics in	Air (Low Level) - M	ansfield Lat	2						

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	103		60-140
Bromochloromethane	99		60-140
chlorobenzene-d5	95		60-140

Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1017602
Project Number:	CANISTER QC BAT	Report Date:	12/13/10

Lab ID:	L1017602-01	Date Collected:	11/05/10 00:00
Client ID:	CAN 147B SHELF 8	Date Received:	11/05/10
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	11/10/10 17:11		
Analyst:	RY		

		ррьV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.050		ND	0.247			1
Chloromethane	ND	0.500		ND	1.03			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	2.00		ND	4.75			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.08			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	1.00		ND	3.47			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.403			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1017602

 Report Date:
 12/13/10

Lab ID:L1017602-01Client ID:CAN 147B SHSample Location:		LF 8				Date I Field I	Collecte Receive Prep:		11/05/10 00:00 11/05/10 Not Specified
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifier	Dilution Factor
Volatile Organics in A	vir bv SIM - Mansfi		RL	WDL	Nesuits	KL.	MDL	Quaimer	
Bromodichloromethane		ND	0.020		ND	0.134			1
Trichloroethene		ND	0.020		ND	0.134			1
1,4-Dioxane		ND	0.100		ND	0.360			1
cis-1,3-Dichloropropene		ND	0.020		ND	0.001			1
4-Methyl-2-pentanone		ND			ND				
trans-1,3-Dichloropropen			0.500			2.05			1
1,1,2-Trichloroethane		ND	0.020		ND	0.091			1
Toluene		ND	0.020		ND	0.109			1
		ND	0.020		ND	0.075			1
Dibromochloromethane		ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	9	ND	0.020		ND	0.137			1
Chlorobenzene		ND	0.020		ND	0.092			1
Ethylbenzene		ND	0.020		ND	0.087			1
p/m-Xylene		ND	0.040		ND	0.174			1
Bromoform		ND	0.020		ND	0.206			1
Styrene		ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	e	ND	0.020		ND	0.137			1
o-Xylene		ND	0.020		ND	0.087			1
Isopropylbenzene		ND	0.500		ND	2.46			1
1,3,5-Trimethybenzene		ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene		ND	0.020		ND	0.098			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
sec-Butylbenzene		ND	0.500		ND	2.74			1
p-Isopropyltoluene		ND	0.500		ND	2.74			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

 Lab Number:
 L1017602

 Report Date:
 12/13/10

Lab ID: Client ID: Sample Location:	L1017602-01 CAN 147B SHE	ELF 8				Date F Field F	Collecte Receive Prep:		11/05/10 00:00 11/05/10 Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r Factor
Volatile Organics ir	n Air by SIM - Mansf	field Lab							
1,2,4-Trichlorobenzen	e	ND	0.050		ND	0.371			1
Naphthalene		ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzen	9	ND	0.050		ND	0.371			1
Hexachlorobutadiene		ND	0.050		ND	0.533			1

							Serial	_No:121	31016:04
Project Name:	BATCH CANISTE	R CERTIF	ICATION			Lab N	lumber	: 1	_1017602
Project Number:	CANISTER QC BA	٩T				Repo	rt Date	:	12/13/10
		Air C	Canister C	ertificatio	on Results				
Lab ID:	L1017602-01					Date (Collecte	d:	11/05/10 00:00
Client ID:	CAN 147B SHEL	.F 8				Date F	Receive	d:	11/05/10
Sample Location:						Field I	Prep:		Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	85		60-140
bromochloromethane	88		60-140
chlorobenzene-d5	86		60-140

AIR Petro Can Certification

		Serial_No:12	131016:04
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1017602
Project Number:	CANISTER QC BAT	Report Date:	12/13/10
	AIR CAN CERTIFICATION RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1017602-01 CAN 147B SHELF 8 Not Specified Air 96,APH 11/10/10 17:11 RY	Date Collected: Date Received: Field Prep:	11/05/10 00:00 11/05/10 Not Specified

Parameter	Result	Qualifier Units	s RL	MDL	Dilution Factor				
Petroleum Hydrocarbons in Air - Mansfield Lab									
1,3-Butadiene	ND	ug/m:	3 2.0		1				
Methyl tert butyl ether	ND	ug/m3	3 2.0		1				
Benzene	ND	ug/m	3 2.0		1				
Toluene	ND	ug/m3	3 2.0		1				
C5-C8 Aliphatics, Adjusted	ND	ug/m3	3 12		1				
Ethylbenzene	ND	ug/m3	3 2.0		1				
p/m-Xylene	ND	ug/m3	3 4.0		1				
o-Xylene	ND	ug/m3	3 2.0		1				
Naphthalene	ND	ug/m3	3 2.0		1				
C9-C12 Aliphatics, Adjusted	ND	ug/m3	3 14		1				
C9-C10 Aromatics Total	ND	ug/m3	3 10		1				

Project Name: Project Numbe						Lab Number: L1019019 Report Date: 12/13/10
	Sam	ple Rece	ipt an	d Container In	formation	
Were project sp	ecific reporting limits specified	d?	Y	ES		
Reagent H2O F	Preserved Vials Frozen on:	NA				
Cooler Informa	tion Custody Seal					
Cooler						
N/A	Present/Intact					
Container Infor	mation			Temp		
Container ID	Container Type	Cooler	рΗ	deg C Pres	Seal	Analysis(*)

N/A

Υ

Present/Intact

N/A

L1019019-01A

Canister - 2.7 Liter

Serial_No:12131016:04

APH-10(30),FIXGAS(30),TO15-LL(30)

Project Name: 2 BRIDGES MARKET

Project Number: 1048

Lab Number: L1019019

Report Date: 12/13/10

GLOSSARY

Acronyms

- EPA · Environmental Protection Agency.
- LCS · Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD · Laboratory Control Sample Duplicate: Refer to LCS.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD · Matrix Spike Sample Duplicate: Refer to MS.
- NA · Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI · Not Ignitable.
- RL · Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E -Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **H** The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- **Q** The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.

Report Format: Data Usability Report

Project Name: 2 BRIDGES MARKET

Project Number: 1048

Lab Number: L1019019 Report Date: 12/13/10

Data Qualifiers

- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: 2 BRIDGES MARKET Project Number: 1048
 Lab Number:
 L1019019

 Report Date:
 12/13/10

REFERENCES

- 48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.
- 51 Determination of Carbon Dioxide, Methane, Nitrogen and Oxygen from Stationary Sources. Method 3C. Appendix A, Part 60, 40 CFR (Code of Federal Regulations). June 20, 1996.
- 96 Method for the Determination of Air-Phase Petroleum Hydrocarbons (APH), MassDEP, December 2009, Revision 1 with QC Requirements & Performance Standards for the Analysis of APH by GC/MS under the Massachusetts Contingency Plan, WSC-CAM-IXA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised July 19, 2010 – Mansfield Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0141.

Wastewater/Non-Potable Water (Inorganic Parameters: pH, Turbidity, Conductivity, Alkalinity, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Vanadium, Zinc, Total Residue (Solids), Total Suspended Solids (non-filterable), Total Cyanide. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables, Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, PAHs, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.)

Solid Waste/Soil (Inorganic Parameters: pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Organic Carbon, Total Cyanide, Corrosivity, TCLP 1311. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Volatile Organics, Acid Extractables, Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Florida Department of Health Certificate/Lab ID: E87814. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SM2320B, EPA 120.1, SM2510B, EPA 245.1, EPA 150.1, EPA 160.2, SM2540D, EPA 335.2, SM2540G, EPA 180.1. <u>Organic Parameters</u>: EPA 625, 608.)

Solid & Chemical Materials (Inorganic Parameters: 6020, 7470, 7471, 9045, 9014. Organic Parameters: EPA 8260, 8270, 8082, 8081.)

Air & Emissions (EPA TO-15.)

Louisiana Department of Environmental Quality Certificate/Lab ID: 03090. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 120.1, 150.1, 160.2, 180.1, 200.8, 245.1, 310.1, 335.2, 608, 625, 1631, 3010, 3015, 3020, 6020, 9010, 9014, 9040, SM2320B, 2510B, 2540D, 2540G, 4500CN-E, 4500H-B, <u>Organic Parameters</u>: EPA 3510, 3580, 3630, 3640, 3660, 3665, 5030, 8015 (mod), 3570, 8081, 8082, 8260, 8270,)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: 6020, 7196, 7470, 7471, 7474, 9010, 9014, 9040, 9045, 9060. <u>Organic Parameters</u>: EPA 8015 (mod), EPA 3570, 1311, 3050, 3051, 3060, 3580, 3630, 3640, 3660, 3665, 5035, 8081, 8082, 8260, 8270.)

Biological Tissue (Inorganic Parameters: EPA 6020. Organic Parameters: EPA 3570, 3510, 3610, 3630, 3640, 8270.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA030.

Non-Potable Water (Inorganic Parameters: SM4500H+B. Organic Parameters: EPA 624.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 2206. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: EPA 200.8, 245.1, 1631E, 120.1, 150.1, 180.1, 310.1, 335.2, 160.2, SM2540D, 2540G, 4500CN-E, 4500H+B, 2320B, 2510B. <u>Organic Parameters</u>: EPA 625, 608.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA015. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: SW-846 1312, 3010, 3020A, 3015, 6020, SM2320B, EPA 200.8, SM2540C, 2540D, 2540G, EPA 120.1, SM2510B, EPA 180.1, 245.1, 1631E, SW-846 9040B, 6020, 9010B, 9014 <u>Organic Parameters</u>: EPA 608, 625, SW-846 3510C, 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082 8260B, 8270C)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 6020, 9010B, 9014, 1311, 1312, 3050B, 3051, 3060A, 7196A, 7470A, 7471A, 9045C, 9060. <u>Organic Parameters</u>: SW-846 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082, 8260B, 8270C, 3570, 8015B.)

Atmospheric Organic Parameters (EPA TO-15)

Biological Tissue (Inorganic Parameters: SW-846 6020 Organic Parameters: SW-846 8270C, 3510C, 3570, 3610B, 3630C, 3640A)

New York Department of Health Certificate/Lab ID: 11627. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 310.1, SM2320B, EPA 365.2, 160.1, EPA 160.2, SM2540D, EPA 200.8, 6020, 1631E, 245.1, 335.2, 9014, 150.1, 9040B, 120.1, SM2510B, EPA 376.2, 180.1, 9010B. <u>Organic Parameters</u>: EPA 624, 8260B, 8270C, 608, 8081A, 625, 8082, 3510C, 3511, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 9040B, 9045C, SW-846 Ch7 Sec 7.3, EPA 6020, 7196A, 7471A, 7474, 9014, 9040B, 9045C, 9010B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8081A, DRO 8015B, 8082, 1311, 3050B, 3580, 3050B, 3035, 3570, 3051, 5035, 5030B.)

Air & Emissions (EPA TO-15.)

Rhode Island Department of Health Certificate/Lab ID: LAO00299. NELAP Accredited via LA-DEQ.

Refer to MA-DEP Certificate for Non-Potable Water.

Refer to LA-DEQ Certificate for Non-Potable Water.

Texas Commission of Environmental Quality Certificate/Lab ID: T104704419-08-TX. NELAP Accredited.

Solid & Chemical Materials (<u>Inorganic Parameters</u>: EPA 6020, 7470, 7471, 1311, 7196, 9014, 9040, 9045, 9060. <u>Organic Parameters</u>: EPA 8015, 8270, 8260, 8081, 8082.)

Air (Organic Parameters: EPA TO-15)

U.S. Army Corps of Engineers

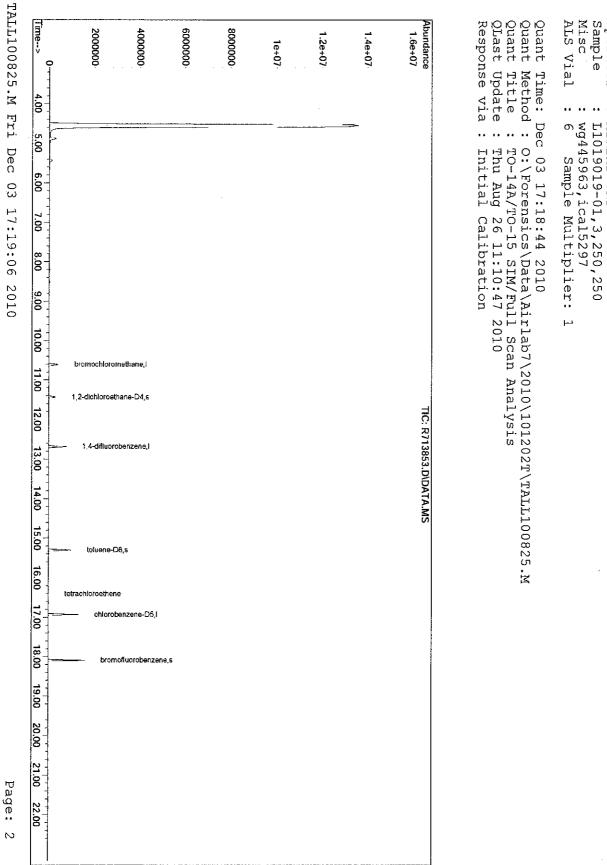
Department of Defense Certificate/Lab ID: L2217.01.

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312,3051, 6020, 747A, 7474, 9045C,9060, SM 2540G, ASTM D422-63. <u>Organic Parameters</u>: EPA 3580, 3570, 3540C, 5035, 8260B, 8270C, 8270 Alk-PAH, 8082, 8081A, 8015 (SHC), 8015 (DRO).

Air & Emissions (EPA TO-15.)

Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: 8270C: Biphenyl.


90/5/22/00/10/5/20/00/22/00/22/00/22/00/22/00/22/00/22/00/22/00/22/00/22/00/22/00/22/00/22/00/22/00/22/00/22/0	A LINE WORKER AND		Serial_No:12131016:04
*SAMPLE M		ALPHALab ID (Lab Use Only) Lab Use Only)	ALPHA CHAIN OF CU 320 Forbes Blvd, Mansfield, MA 02048 TEL: 508-822-9300 FAX: 508-822-3288 Client Information Client: KAC Eremita Client: KAC Eremita Address: 3 12 Cance to Rontant, ME Phone: 307- 8, 22-63 Fax: Role, M.Caremita Offic Fax: Role, M.Caremita Offic Email:
*SAMPLE MATRIX CODES		Sample ID	
AA = Ambient Air (Indoor/Ouidoor) SV = Soil Vapor/Landnil Gas/SVE Oner = Picale Specify Melinquished Sy:		Columns E Date Start Time	YSIS ct Informa t Name: f t Location: t Manager: t #: t #: t Manager: A Quote #: A Quote #: A Quote #: Due:
		Construction Construction Initial End Time Vacuum B: 45 -21	PAGE
Tine 10:00 a.e.		Final Sample Sampler Vacuum Matrix ⁺ Initials	Report Cran
Container Type Received By:		Out bler's Can ID als Size Can 3 12745/1	riLab: rmation - Data De checker: based on Regulatory Criteria based on Regulatory Criteria comments comment
$\frac{11/3c}{t^{2}}$	Image: Sector	469 X FIXED	
01:11		TO.13A TO.4/TO	
Please print clearly, legibly and completely. Samples can not be legged in and furmaround time clock will not start until any ambi- guites are resolved. All samples submitted are subject to Alpha's Terms and Conditions See reverse side		Sample Comments (i.e. PID)	s#, LD)9019 mation 10)9019 ent info PO# ent info PO# Program Criteria Program Criteria Program Criteria

.

ż

TO-15

Misc

Sample

ALS Vial

• •

دم

Operator Acq On

2 Dec 2010 AIRLAB7:RY

Data Path Data File

..

O:\Forensics\Data\Airlab7\2010\101202T\ R713853.D

7:41 pm

Sub

List

••

9_Chlorinateds+EDB

ī

. . . .

(QT Reviewed)

Fixed Gases

Signal Volume Misc Signal ALS Vial Sample Operator Acq Un Signal(s) Data File Integrator: ChemStation Response via QLast Update Quant Title Quant Method : Quant Time: Integration File: events.e Data lime Response 5000000 3.5e+07 2.5e+07 1.5e+07 3e+07 Path 1e+07 2e+07 0.00 0.50 Info Inj. Phase •• Dec 09 17:20:48 2010 თ WG447014, ICAL5222 11019019-01d,4,0.5529,1 airlab10:ry TCD2B.ch O:\Forensics\Data\airlab10\101209fg\ .. R104132.D 1.00 9 Dec 2010 O:\Forensics\Data\airlab10\101209fg\FG100730.M Initial Calibration Sat Oct 30 10:36:20 2010 Fixed Gas Analysis via Method 3C 1.50 2.00 Sample Multiplier: 1 2.50 3.00 3.50 4:45 шđ 4.00 4.50 ⇒ 4 646 oxygen 5.00 5.50 6.00 6.50 Signal: R104132.D\TCD2B.ch 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 arbon dio 10.233 Page: Ν

FG100730.M Thu Dec 00 17:22:59 2010

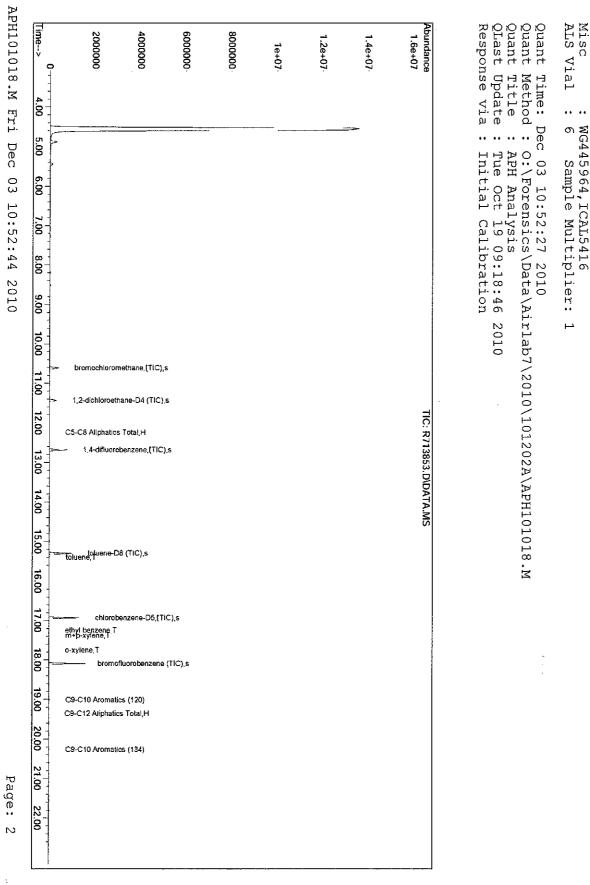
Page 42 of 44

Serial_No:12131016:04

Sub List

* *

CO2, O2, CH4


ī

eport

(QT Reviewed)

APH

Data Path Data File

••

O:\Forensics\Data\Airlab7\2010\101202A\ R713853.D

...

Sub

List

• •

APH_STD_M

ł

. • • • Report

(QT

Reviewed)

Operator

AIRLAB7:RY

2 Dec 2010

7:41 pm

Acq On

Sample

•• •• ••

L1019019-01,3,250,250 WG445964,ICAL5416

10/26/2010

F057054

11/4/2010

4:22:00PM

MOLLY ZOGBY DEPT OF ENVIRONMENTAL PROTECTION DEP SHS 17 AUGUSTA ME 04333 Fax#:

Project Name: TWIN BRIDGE MARKET

No. of Samples in Folder

F057054001,	F057054002,	F057054003
F057054004,	F057054005,	F057054006
F057054007,	F057054008,	F057054009

9

CERTIFICATION

The HETL hereby certifies that all test results for this sample were analyzed by the method listed, including preservation, preparation, and holding times, unless otherwise indicated.

Kenneth G. Pote, PhD., Director

Richard French, Quality Assurance Officer

Logged:

Folder/ Invoice #

Summary

DEPP

Released:

Office Use Only:

Case #:

If we can be of further assistance to you, Please Call us at 287-1716

Approved by:

Jas & Culett -

James E. Curlett Organics Supervisor/Chemist III

$MAINE \, HEALTH \, AND \, ENVIRONMENTAL \, TESTING \, LABORATORY \ - Visit \, our \, Web \, Site \, at: \, http://www.state.me.us/dhs/etl \, State \, St$

221 State Street	, Station #12 Depa	rtment of Hum	an Services Augusta	, Maine (04333 Tel. No.	207-287-1716 Fax. No	. 207-287-6832
Continued from Previous I	Page		HETL Sample N	Number:	F057054001	l	
HETL Sample Number: F()57054001				Description:	B1 8-9 FT	
Matrix: SOLID					Sample Point:		
Sampler: MOLLY ZOGBY					Sample Date:	10/26/2010	Time: 10:10:00
Method: VPH		Analyst	Vera Maheu		Analysis Date	etime: 10/28/2010	
					, i		
Analyte	Result		Units		RL	MCL	Qualifiers
Methyl tert-Butyl Ether	< 0.05		mg/Kg		0.05		
Benzene	<.05		mg/Kg		0.05		
Toluene	0.25		mg/Kg		0.05		
Ethylbenzene	2.9		mg/Kg		0.05		
m,p-Xylene	13		mg/Kg		0.1		
o-Xylene	3.3		mg/Kg		0.05		
Naphthalene	4.3		mg/Kg		0.1		
C5-C8 Aliphatic Hydrocarbons	95		mg/Kg		2.5		
C9-C12 Aliphatic Hydrocarbons	15		mg/Kg		2.5		
C9-C10 Aromatic Hydrocarbons	140		mg/Kg		1.0		
Unadjusted C5-C8 Aliphatics	95		mg/Kg		2.5		
Unadjusted C9-C12 Aliphatics	180		mg/Kg		2.5		
Surrogate Analytes (added as part of testing to verify perform	Result nance)		Amount	% Rec	Low % Rec	High % Rec	Qualifiers
Dibromofluoromethane	51		50.0	102.0	70	130	
Toluene-d8	53		50.0	106.0	70	130	
4-Bromofluorobenzene	50		50.0	100.0	70	130	

Continued from Previous Page

HETL Sample Number: F057054001

Units & Measurement

"mg/L" = Milligrams per liter;	"ug/L" = Micrograms per Liter;	"mg/Kg" = Milligrams per Kilogram;
"ug/Kg" = Micrograms per Kilogram;	"PPM" = Parts per Million;	"NTU" = Nephelometric Turbidity Units;

The MCL, Maximum Contaminant Level is listed for comparing your results with recommended levels. In the "Qualifier" column, an " * " is placed to indicate any results that exceed this MCL.

If there are no " * " in the "Qualifier" column, your water is considered satisfactory for those tests.

All solid results are reported on a "Dry Weight" basis.

NC = Not confirmed NQ = Not Quantitated NA = Not Analyzed J = Approximately U = Undetected R = Rejected

RL-Reporting Limit is the lowest concentration which can be reliably reported on a routine basis.

"<" = Less than ">" = Greater than

MCL - Maximum Contaminant Level is the highest level allowed by EPA for public water supplies. Also used here as the maximum advisory limit set by the Maine Centers for Disease Control and Prevention.

Note: Results below the advisory limit, including < and J are considered satisfactory for that parameter.

Disclaimer

Your report consists of the number of pages listed on the cover page. Any attachments after the last numbered page are for informational purposes only and not part of the formal report.

The results in this report are for the submitted sample(s) only.

This report shall not be reproduced, except in full, without written permission from the Maine Health and Environmental Testing Laboratory.

MOLLY ZOGBY DEPT OF ENVIRONMENTAL PROTECTION DEP SHS 17 AUGUSTA ME 04333 Fax#:

Project Name: TWIN BRIDGE MARKET

No. of Samples in Folder

F057054001,	F057054002,	F057054003
F057054004,	F057054005,	F057054006
F057054007,	F057054008,	F057054009

9

CERTIFICATION

The HETL hereby certifies that all test results for this sample were analyzed by the method listed, including preservation, preparation, and holding times, unless otherwise indicated.

Kenneth G. Pote, PhD., Director

Richard French, Quality Assurance Officer

If we can be of further assistance to you, Please Call us at 287-1716

Approved by:

Jas & Culett -

James E. Curlett Organics Supervisor/Chemist III

Logged: 10/26/2010 4:22:00PM Folder/ Invoice # F057054 Office Use Only: Summary DEPP

Released: 11/4/2010 Case #:

Brenda M. Harvey, Commissioner

$MAINE \, HEALTH \, AND \, ENVIRONMENTAL \, TESTING \, LABORATORY \, \ - Visit \, our \, Web \, Site \, at: http://www.state.me.us/dhs/etl \, Site \, At: http://wwww.state.me.us/dhs/etl \, Site \, At: http://www$

221 State Street,	Station #12 Depart	ment of Human Servic	ces August	a, Maine 04	4333 Tel. No.	207-287-1716 Fax. I	No. 207-287-6832
Continued from Previous P	age	HE	TL Sample	Number:	F05705400	2	
HETL Sample Number: F0	57054002				Description:	B1 8-9 FT	
Matrix: SOLID					Sample Point:		
Sampler: MOLLY ZOGBY					Sample Date:	10/26/2010	Time: 10:10:00
Method: EPH		Analyst Vera M	laheu		Analysis Dat	etime: 10/29/2010	
Preparation Method:	3550B		Prepa	red by:	Vera Ma	heu	
Date Prepared	Time Prepared	Amount Extracted	Extr	action pH	Final A	mount of Extract	
10/29/2010	06:05	9.80g		N/A		1.0mL	
Analyte	Result		Units		RL	MCL	Qualifiers
Naphthalene	1.6]	mg/Kg		0.2		
2-Methylnaphthalene	5.0	1	mg/Kg		0.2		
Phenanthrene	<0.2	1	mg/Kg		0.2		
Acenaphthene	<0.2	1	mg/Kg		0.2		
Unadjusted C11-C22 Aromatics	44	1	mg/Kg		20		
C11-C22 Aromatic Hydrocarbons	37	1	mg/Kg		20		
C9-C18 Aliphatic Hydrocarbons	35	1	mg/Kg		20		
C19-C36 Aliphatic Hydrocarbons	<20]	mg/Kg		20		
Acenaphthylene	<0.2	1	mg/Kg		0.2		
Fluorene	<0.2]	mg/Kg		0.2		
Anthracene	<0.2	J	mg/Kg		0.2		
Fluoranthene	<0.2	1	mg/Kg		0.2		
Pyrene	<0.2	1	mg/Kg		0.2		
Benzo(a)anthracene	<0.2	1	mg/Kg		0.2		
Chrysene	<0.2	1	mg/Kg		0.2		
Benzo(b)fluoranthene	<0.2	1	mg/Kg		0.2		
Benzo(k)fluoranthene	<0.2	1	mg/Kg		0.2		
Benzo(a)pyrene	<0.2	J	mg/Kg		0.2		
Indeno(1,2,3-cd)pyrene/Dibenz o(a,h)anthracene	<0.4	j	mg/Kg		0.4		
Benzo(g,h,i)perylene	<0.2	1	mg/Kg		0.2		
Surrogate Analytes (added as part of testing to verify perform	Result nance)	A	Amount	% Rec	Low % Rec	High % Rec	Qualifiers
1-Chlorooctadecane	15.5		20.0	77.5	40	140	
o-Terphenyl	16.6		20.0	83.0	40	140	
2-Bromonaphthalene	21.8		20.0	109.0	40	140	
2-Fluorobiphenyl	22.8		20.0	114.0	40	140	

Continued from Previous Page

HETL Sample Number:

Continued from Previous Page

HETL Sample Number: F057054002

Units & Measurement

"mg/L" = Milligrams per liter;	"ug/L" = Micrograms per Liter;	"mg/Kg" = Milligrams per Kilogram;
"ug/Kg" = Micrograms per Kilogram;	"PPM" = Parts per Million;	"NTU" = Nephelometric Turbidity Units;

The MCL, Maximum Contaminant Level is listed for comparing your results with recommended levels. In the "Qualifier" column, an " * " is placed to indicate any results that exceed this MCL.

If there are no " * " in the "Qualifier" column, your water is considered satisfactory for those tests.

All solid results are reported on a "Dry Weight" basis.

NC = Not confirmed NQ = Not Quantitated NA = Not Analyzed J = Approximately U = Undetected R = Rejected

RL-Reporting Limit is the lowest concentration which can be reliably reported on a routine basis.

"<" = Less than ">" = Greater than

MCL - Maximum Contaminant Level is the highest level allowed by EPA for public water supplies. Also used here as the maximum advisory limit set by the Maine Centers for Disease Control and Prevention.

Note: Results below the advisory limit, including < and J are considered satisfactory for that parameter.

Disclaimer

Your report consists of the number of pages listed on the cover page. Any attachments after the last numbered page are for informational purposes only and not part of the formal report.

The results in this report are for the submitted sample(s) only.

This report shall not be reproduced, except in full, without written permission from the Maine Health and Environmental Testing Laboratory.

10/26/2010

F057054

11/4/2010

4:22:00PM

MOLLY ZOGBY DEPT OF ENVIRONMENTAL PROTECTION DEP SHS 17 AUGUSTA ME 04333 Fax#:

Project Name: TWIN BRIDGE MARKET

No. of Samples in Folder

F057054001,	F057054002,	F057054003
F057054004,	F057054005,	F057054006
F057054007,	F057054008,	F057054009

9

CERTIFICATION

The HETL hereby certifies that all test results for this sample were analyzed by the method listed, including preservation, preparation, and holding times, unless otherwise indicated.

Kenneth G. Pote, PhD., Director

Richard French, Quality Assurance Officer

Logged:

Folder/ Invoice #

Summary

DEPP

Released:

Office Use Only:

Case #:

If we can be of further assistance to you, Please Call us at 287-1716

Approved by:

Jas & Cubett -

James E. Curlett Organics Supervisor/Chemist III

$MAINE \, HEALTH \, AND \, ENVIRONMENTAL \, TESTING \, LABORATORY \, \ -Visit \, our \, Web \, Site \, at: \, http://www.state.me.us/dhs/etl \, State \, S$

			an Services Augusta, Maine		-	
Continued from Previou	ıs Page		HETL Sample Number:	F05705400	3	
HETL Sample Number:	F057054003			Description:	B2 11-12 FT	
Matrix: SOLID				Sample Point:		
Sampler: MOLLY ZOGB	Y			Sample Date:	10/26/2010	Time: 10:20:00
Method: VPH		Analyst	Vera Maheu	Analysis Dat	etime: 10/28/2010	
Analyte	Result		Units	RL	MCL	Qualifiers
Methyl tert-Butyl Ether	< 0.05		mg/Kg	0.05		
Benzene	<.05		mg/Kg	0.05		
Toluene	< 0.05		mg/Kg	0.05		
Ethylbenzene	0.13		mg/Kg	0.05		
m,p-Xylene	0.14		mg/Kg	0.1		
o-Xylene	<.05		mg/Kg	0.05		
Naphthalene	3.2		mg/Kg	0.1		
C5-C8 Aliphatic Hydrocarbor	ıs 25		mg/Kg	2.5		
C9-C12 Aliphatic Hydrocarbo	ons 8.3		mg/Kg	2.5		
C9-C10 Aromatic Hydrocarbons	12		mg/Kg	1.0		
Unadjusted C5-C8 Aliphatics	25		mg/Kg	2.5		

Surrogate Analytes (added as part of testing to verify perform	Result nance)	Amount	% Rec	Low % Rec	High % Rec	Qualifiers
Dibromofluoromethane	49	50.0	98.0	70	130	
Toluene-d8	54	50.0	108.0	70	130	
4-Bromofluorobenzene	52	50.0	104.0	70	130	

mg/Kg

2.5

Unadjusted C9-C12 Aliphatics

20

HETL Sample Number: F057054003

Units & Measurement

"mg/L" = Milligrams per liter;	"ug/L" = Micrograms per Liter;	"mg/Kg" = Milligrams per Kilogram;
"ug/Kg" = Micrograms per Kilogram;	"PPM" = Parts per Million;	"NTU" = Nephelometric Turbidity Units;

The MCL, Maximum Contaminant Level is listed for comparing your results with recommended levels. In the "Qualifier" column, an " * " is placed to indicate any results that exceed this MCL.

If there are no " * " in the "Qualifier" column, your water is considered satisfactory for those tests.

All solid results are reported on a "Dry Weight" basis.

NC = Not confirmed NQ = Not Quantitated NA = Not Analyzed J = Approximately U = Undetected R = Rejected

RL-Reporting Limit is the lowest concentration which can be reliably reported on a routine basis.

"<" = Less than ">" = Greater than

MCL - Maximum Contaminant Level is the highest level allowed by EPA for public water supplies. Also used here as the maximum advisory limit set by the Maine Centers for Disease Control and Prevention.

Note: Results below the advisory limit, including < and J are considered satisfactory for that parameter.

Disclaimer

Your report consists of the number of pages listed on the cover page. Any attachments after the last numbered page are for informational purposes only and not part of the formal report.

The results in this report are for the submitted sample(s) only.

MOLLY ZOGBY DEPT OF ENVIRONMENTAL PROTECTION DEP SHS 17 AUGUSTA ME 04333 Fax#:

Project Name: TWIN BRIDGE MARKET

No. of Samples in Folder

F057054001,	F057054002,	F057054003
F057054004,	F057054005,	F057054006
F057054007,	F057054008,	F057054009

9

CERTIFICATION

The HETL hereby certifies that all test results for this sample were analyzed by the method listed, including preservation, preparation, and holding times, unless otherwise indicated.

Kenneth G. Pote, PhD., Director

Richard French, Quality Assurance Officer

If we can be of further assistance to you, Please Call us at 287-1716

Approved by:

Jas & Culett -

James E. Curlett Organics Supervisor/Chemist III

Logged: 10/26/2010 4:22:00PM Folder/ Invoice # F057054 Office Use Only: Summary DEPP

Released: 11/4/2010 Case #:

Brenda M. Harvey, Commissioner

$MAINE \, HEALTH \, AND \, ENVIRONMENTAL \, TESTING \, LABORATORY \, \ - Visit \, our \, Web \, Site \, at: http://www.state.me.us/dhs/etl \, Site \, At: http://wwww.state.me.us/dhs/etl \, Site \, At: http://www$

Matrix No LLY ZOGBY Simple Jac Simple Jac <th>221 State Street, Continued from Previous P</th> <th></th> <th>tment of Human Service HET</th> <th>es Augusta FL Sample I</th> <th></th> <th>333 Tel. No. F057054004</th> <th></th> <th>No. 207-287-6832</th>	221 State Street, Continued from Previous P		tment of Human Service HET	es Augusta FL Sample I		333 Tel. No. F057054004		No. 207-287-6832
Preparation Method: 3550B Prepared by: Vera Maleur Date Prepared Time Prepared 10/29/2010 08:03 10.02g N/A Final Amount of Extract 10/29/2010 08:03 10.02g N/A Maleur Gata Naphtalene <0.2		57054004				Sample Point:		Time: 10:20:00
Date PreparedTime PreparedAmount ExtractedExtraction pdfFinal Amount of Extract10/29/201006.0510.02gN/ALomi.AnalyteResultUnitsRLMCLQualifiersNaphthalene<0.2	Method: EPH		Analyst Vera Ma	aheu		Analysis Date	etime: 10/29/2010	
10/29/2010 66.05 10.02g N/A Lond. Analyte Result Units RI MCL Qualifiers Naphthalene <0.2	Preparation Method:	3550B		Prepare	ed by:	Vera Ma	neu	
10/29/201006:0510.02gN/A1.0mLAnalyteResultUnitsRLMCLQualifiersNaphthalene<0.2	Date Prepared	Time Prepared	Amount Extracted	Extra	ction pH	Final Ar	nount of Extract	
Naphthalene <0.2	*	<u>^</u>	10.02g		_		1.0mL	
2 mg/Kg 0.2 Phenanthrene <0.2	Analyte	Result	τ	Jnits		RL	MCL	Qualifiers
Phenanthrene <0.2	Naphthalene	<0.2	n	ng/Kg		0.2		
Accenaphthene <0.2 mg/Kg 0.2 Unadjusted C11-C22 Aromatics <20	2-Methylnaphthalene	<0.2	n	ng/Kg		0.2		
Unadjusted C11-C22 Aromatics < 20 mg/Kg 20 C11-C22 Aromatic < 20 mg/Kg 20 Hydrocarbons < 20 mg/Kg 20 C19-C36 Aliphatic < 20 mg/Kg 20 Hydrocarbons < 20 mg/Kg 20 Acenaphthylene < 0.2 mg/Kg 0.2 Fluorene < 0.2 mg/Kg 0.2 Fluorene < 0.2 mg/Kg 0.2 Fluorene < 0.2 mg/Kg 0.2 Fluoranthene < 0.2 mg/Kg 0.2 Pyrene < 0.2 mg/Kg 0.2 Enzo(a)anthracene < 0.2 mg/Kg 0.2 Benzo(a)nthracene < 0.2 mg/Kg 0.2 Surrogate Analytes Result Amount $\% Rec$ $\% Mec$ Mount Su	Phenanthrene	<0.2	n	ng/Kg		0.2		
1-C22 Aromatic Hydrocarbons <20	Acenaphthene	<0.2	n	ng/Kg		0.2		
Hydrocarbons <20	Unadjusted C11-C22 Aromatics	<20	n	ng/Kg		20		
C19-C36 Alphatic <20	C11-C22 Aromatic Hydrocarbons	<20	n	ng/Kg		20		
Hydrocarbons 0.2 Fluorene 0.2 0.2 Fluorene 0.2 0.2 <t< td=""><td>C9-C18 Aliphatic Hydrocarbons</td><td><20</td><td>n</td><td>ng/Kg</td><td></td><td>20</td><td></td><td></td></t<>	C9-C18 Aliphatic Hydrocarbons	<20	n	ng/Kg		20		
Floorene <0.2	C19-C36 Aliphatic Hydrocarbons	<20	n	ng/Kg		20		
Anthracene <0.2	Acenaphthylene	<0.2	n	ng/Kg		0.2		
Fluoranthene <0.2	Fluorene	<0.2	n	ng/Kg		0.2		
Pyrne <0.2 mg/Kg 0.2 Benzo(a)anthracene <0.2	Anthracene	<0.2	n	ng/Kg		0.2		
Benzo(a)anthracene <0.2	Fluoranthene	<0.2	n	ng/Kg		0.2		
Chrysene <0.2 mg/Kg 0.2 Benzo(b)fluoranthene <0.2	Pyrene	<0.2	n	ng/Kg		0.2		
Benzo(b)fluoranthene <0.2 mg/Kg 0.2 Benzo(k)fluoranthene <0.2	Benzo(a)anthracene	<0.2	n	ng/Kg		0.2		
Benzo(k)fluoranthene <0.2	Chrysene	<0.2	n	ng/Kg		0.2		
Benzo(a)pyrene <0.2 mg/Kg 0.2 Indeno(1,2,3-cd)pyrene/Dibenz <0.4 mg/Kg 0.4 o(a,h)anthracene <0.2 mg/Kg 0.2 Surrogate Analytes Result (added as part of testing to verify performance) 1-Chlorooctadecane 13.6 20.0 68.0 40 140 - 15.1 20.0 75.5 40 140 - 20.0 87.5 40 140 	Benzo(b)fluoranthene	<0.2	n	ng/Kg		0.2		
Indeno(1,2,3-cd)pyrene/Dibenz <0.4 mg/Kg 0.4 o(a,h)anthracene <0.2 mg/Kg 0.2 Use Serveral Surrogate Analytes Result (added as part of testing to verify performance) Amount % Rec Low % Rec % Rec Use % Rec 1-Chlorooctadecane 13.6 20.0 68.0 40 140 0-Terphenyl 15.1 20.0 75.5 40 140 2-Bromonaphthalene 17.5 20.0 87.5 40 140	Benzo(k)fluoranthene	<0.2	n	ng/Kg		0.2		
benzo(g,h,i)perylene <0.2 mg/Kg 0.2 Surrogate Analytes Result Amount % Rec Low High Qualifiers % Rec % Rec 1.2 Comparison of testing to verify performance) 20.0 68.0 40 140 1-Chlorooctadecane 13.6 20.0 68.0 40 140 o-Terphenyl 15.1 20.0 75.5 40 140	Benzo(a)pyrene	<0.2	n	ng/Kg		0.2		
Surrogate AnalytesResultAmount% RecLowHigh % RecQualifiers(added as part of testing to verify performance)13.620.068.0401401-Chlorooctadecane13.620.075.540140o-Terphenyl15.120.087.540140	Indeno(1,2,3-cd)pyrene/Dibenz o(a,h)anthracene	<0.4	n	ng/Kg		0.4		
(added as part of testing to verify performance) % Rec % Rec 1-Chlorooctadecane 13.6 20.0 68.0 40 140 o-Terphenyl 15.1 20.0 75.5 40 140 2-Bromonaphthalene 17.5 20.0 87.5 40 140	Benzo(g,h,i)perylene	<0.2	n	ng/Kg		0.2		
o-Terphenyl15.120.075.5401402-Bromonaphthalene17.520.087.540140	Surrogate Analytes (added as part of testing to verify perform		А	mount	% Rec			Qualifiers
2-Bromonaphthalene 17.5 20.0 87.5 40 140								
	1 0							
	2-Bromonaphthalene 2-Fluorobiphenyl	17.5 17.8		20.0 20.0	87.5 89.0	40 40	140 140	

Page 2 of 4 11/4/2010 11:04:21AM

F057054004 HETL Sample Number:

> Page 3 of 4 11/4/2010 11:04:21AM

HETL Sample Number: F057054004

Units & Measurement

"mg/L" = Milligrams per liter;	"ug/L" = Micrograms per Liter;	"mg/Kg" = Milligrams per Kilogram;
"ug/Kg" = Micrograms per Kilogram;	"PPM" = Parts per Million;	"NTU" = Nephelometric Turbidity Units;

The MCL, Maximum Contaminant Level is listed for comparing your results with recommended levels. In the "Qualifier" column, an " * " is placed to indicate any results that exceed this MCL.

If there are no " * " in the "Qualifier" column, your water is considered satisfactory for those tests.

All solid results are reported on a "Dry Weight" basis.

NC = Not confirmed NQ = Not Quantitated NA = Not Analyzed J = Approximately U = Undetected R = Rejected

RL-Reporting Limit is the lowest concentration which can be reliably reported on a routine basis.

"<" = Less than ">" = Greater than

MCL - Maximum Contaminant Level is the highest level allowed by EPA for public water supplies. Also used here as the maximum advisory limit set by the Maine Centers for Disease Control and Prevention.

Note: Results below the advisory limit, including < and J are considered satisfactory for that parameter.

Disclaimer

Your report consists of the number of pages listed on the cover page. Any attachments after the last numbered page are for informational purposes only and not part of the formal report.

The results in this report are for the submitted sample(s) only.

10/26/2010

F057054

11/4/2010

4:22:00PM

MOLLY ZOGBY DEPT OF ENVIRONMENTAL PROTECTION DEP SHS 17 AUGUSTA ME 04333 Fax#:

Project Name: TWIN BRIDGE MARKET

No. of Samples in Folder

F057054001,	F057054002,	F057054003
F057054004,	F057054005,	F057054006
F057054007,	F057054008,	F057054009

9

CERTIFICATION

The HETL hereby certifies that all test results for this sample were analyzed by the method listed, including preservation, preparation, and holding times, unless otherwise indicated.

Kenneth G. Pote, PhD., Director

Richard French, Quality Assurance Officer

Logged:

Folder/ Invoice #

Summary

DEPP

Released:

Office Use Only:

Case #:

If we can be of further assistance to you, Please Call us at 287-1716

Approved by:

Jas & Culett -

James E. Curlett Organics Supervisor/Chemist III

$MAINE\ HEALTH\ AND\ ENVIRONMENTAL\ TESTING\ LABORATORY\ \ -\ Visit\ our\ Web\ Site\ at:\ http://www.state.me.us/dhs/etl$

221 State Street, Station #12 Department of Human Services Augusta, Maine 04333 Tel. No. 207-287-1716 Fax. No. 207-287-6832

Continued from Previous Pa	age		HETL Sample N	Jumber:	F05705400	5	
HETL Sample Number: F03 Matrix: SOLID	57054005				Description: Sample Point:		
Sampler: MOLLY ZOGBY					Sample Date:	10/26/2010	Time: 12:30:00
Method: VPH		Analyst Ver	ra Maheu		Analysis Dat	etime: 10/28/2010	
Analyte	Result		Units		RL	MCL	Qualifiers
Methyl tert-Butyl Ether	< 0.05		mg/Kg		0.05		
Benzene	<.05		mg/Kg		0.05		
Toluene	<.05		mg/Kg		0.05		
Ethylbenzene	0.89		mg/Kg		0.05		
m,p-Xylene	1.9		mg/Kg		0.1		
o-Xylene	<.05		mg/Kg		0.05		
Naphthalene	1.0		mg/Kg		0.1		
C5-C8 Aliphatic Hydrocarbons	43		mg/Kg		2.5		
C9-C12 Aliphatic Hydrocarbons	22		mg/Kg		2.5		
C9-C10 Aromatic Hydrocarbons	44		mg/Kg		1.0		
Unadjusted C5-C8 Aliphatics	43		mg/Kg		2.5		
Unadjusted C9-C12 Aliphatics	70		mg/Kg		2.5		
Surrogate Analytes (added as part of testing to verify perform	Result ance)		Amount	% Rec	Low % Rec	High % Rec	Qualifiers
Dibromofluoromethane	50		50.0	100.0	70	130	
Toluene-d8	53		50.0	106.0	70	130	
4-Bromofluorobenzene	51		50.0	102.0	70	130	

HETL Sample Number: F057054005

Units & Measurement

"mg/L" = Milligrams per liter;	"ug/L" = Micrograms per Liter;	"mg/Kg" = Milligrams per Kilogram;
"ug/Kg" = Micrograms per Kilogram;	"PPM" = Parts per Million;	"NTU" = Nephelometric Turbidity Units;

The MCL, Maximum Contaminant Level is listed for comparing your results with recommended levels. In the "Qualifier" column, an " * " is placed to indicate any results that exceed this MCL.

If there are no " * " in the "Qualifier" column, your water is considered satisfactory for those tests.

All solid results are reported on a "Dry Weight" basis.

 $NC = Not \ confirmed \qquad NQ = Not \ Quantitated \qquad NA = Not \ Analyzed \qquad J = Approximately \qquad U = Undetected \qquad R = Rejected$

RL-Reporting Limit is the lowest concentration which can be reliably reported on a routine basis.

"<" = Less than ">" = Greater than

MCL - Maximum Contaminant Level is the highest level allowed by EPA for public water supplies. Also used here as the maximum advisory limit set by the Maine Centers for Disease Control and Prevention.

Note: Results below the advisory limit, including < and J are considered satisfactory for that parameter.

Disclaimer

Your report consists of the number of pages listed on the cover page. Any attachments after the last numbered page are for informational purposes only and not part of the formal report.

The results in this report are for the submitted sample(s) only.

MOLLY ZOGBY DEPT OF ENVIRONMENTAL PROTECTION DEP SHS 17 AUGUSTA ME 04333 Fax#:

Project Name: TWIN BRIDGE MARKET

No. of Samples in Folder

F057054001,	F057054002,	F057054003
F057054004,	F057054005,	F057054006
F057054007,	F057054008,	F057054009

9

CERTIFICATION

The HETL hereby certifies that all test results for this sample were analyzed by the method listed, including preservation, preparation, and holding times, unless otherwise indicated.

Kenneth G. Pote, PhD., Director

Richard French, Quality Assurance Officer

If we can be of further assistance to you, Please Call us at 287-1716

Approved by:

Jas & Culett -

James E. Curlett Organics Supervisor/Chemist III

Logged: 10/26/2010 4:22:00PM Folder/ Invoice # F057054 Office Use Only: Summary DEPP

Released: 11/4/2010 Case #:

Brenda M. Harvey, Commissioner

$MAINE \, HEALTH \, AND \, ENVIRONMENTAL \, TESTING \, LABORATORY \ - Visit \, our \, Web \, Site \, at: \, http://www.state.me.us/dhs/etl \, State \, St$

221 State Street,	Station #12 Depart	ment of Human Servic	ces Augusta	a, Maine 04	4333 Tel. No.	207-287-1716 Fax.	No. 207-287-6832
Continued from Previous P	age	HE	TL Sample	Number:	F057054006	3	
HETL Sample Number: F0	57054006				Description:	B6 9-12 FT	
Matrix: SOLID					Sample Point:		
Sampler: MOLLY ZOGBY					Sample Date:	10/26/2010	Time: 12:30:00
Method: EPH		Analyst Vera M	laheu		Analysis Date	etime: 10/29/2010	
Preparation Method:	3550B		Prepar	ed by:	Vera Ma	neu	
Date Prepared	Time Prepared	Amount Extracted	Extra	action pH	Final Ar	nount of Extract	
10/29/2010	06:05	9.85g		N/A		1.0mL	
Analyte	Result		Units		RL	MCL	Qualifiers
Naphthalene	<0.2	1	mg/Kg		0.2		
2-Methylnaphthalene	<0.2	1	mg/Kg		0.2		
Phenanthrene	<0.2	1	mg/Kg		0.2		
Acenaphthene	<0.2	1	mg/Kg		0.2		
Unadjusted C11-C22 Aromatics	<20	1	mg/Kg		20		
C11-C22 Aromatic Hydrocarbons	<20	1	mg/Kg		20		
C9-C18 Aliphatic Hydrocarbons	<20	1	mg/Kg		20		
C19-C36 Aliphatic Hydrocarbons	<20	1	mg/Kg		20		
Acenaphthylene	<0.2	1	mg/Kg		0.2		
Fluorene	<0.2	1	mg/Kg		0.2		
Anthracene	<0.2	1	mg/Kg		0.2		
Fluoranthene	<0.2	1	mg/Kg		0.2		
Pyrene	<0.2	1	mg/Kg		0.2		
Benzo(a)anthracene	<0.2	1	mg/Kg		0.2		
Chrysene	<0.2	1	mg/Kg		0.2		
Benzo(b)fluoranthene	<0.2	1	mg/Kg		0.2		
Benzo(k)fluoranthene	<0.2	1	mg/Kg		0.2		
Benzo(a)pyrene	<0.2	1	mg/Kg		0.2		
Indeno(1,2,3-cd)pyrene/Dibenz o(a,h)anthracene	<0.4	ſ	mg/Kg		0.4		
Benzo(g,h,i)perylene	<0.2	J	mg/Kg		0.2		
Surrogate Analytes (added as part of testing to verify perform	Result	Ą	Amount	% Rec	Low % Rec	High % Rec	Qualifiers
1-Chlorooctadecane	14.2		20.0	71.0	40	140	
o-Terphenyl	15.7		20.0	78.5	40	140	
2-Bromonaphthalene 2-Fluorobiphenyl	18.9 19.0		20.0	94.5	40	140 140	
2-muoropipiienyi	19.0		20.0	95.0	40	140	

F057054006 HETL Sample Number:

HETL Sample Number: F057054006

Units & Measurement

"mg/L" = Milligrams per liter;	"ug/L" = Micrograms per Liter;	"mg/Kg" = Milligrams per Kilogram;
"ug/Kg" = Micrograms per Kilogram;	"PPM" = Parts per Million;	"NTU" = Nephelometric Turbidity Units;

The MCL, Maximum Contaminant Level is listed for comparing your results with recommended levels. In the "Qualifier" column, an " * " is placed to indicate any results that exceed this MCL.

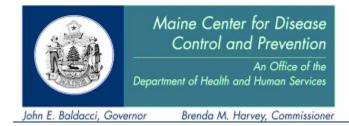
If there are no " * " in the "Qualifier" column, your water is considered satisfactory for those tests.

All solid results are reported on a "Dry Weight" basis.

NC = Not confirmed NQ = Not Quantitated NA = Not Analyzed J = Approximately U = Undetected R = Rejected

RL-Reporting Limit is the lowest concentration which can be reliably reported on a routine basis.

"<" = Less than ">" = Greater than


MCL - Maximum Contaminant Level is the highest level allowed by EPA for public water supplies. Also used here as the maximum advisory limit set by the Maine Centers for Disease Control and Prevention.

Note: Results below the advisory limit, including < and J are considered satisfactory for that parameter.

Disclaimer

Your report consists of the number of pages listed on the cover page. Any attachments after the last numbered page are for informational purposes only and not part of the formal report.

The results in this report are for the submitted sample(s) only.

10/26/2010

F057054

11/4/2010

4:22:00PM

Logged:

Folder/ Invoice #

Summary

DEPP

Released:

Office Use Only:

Case #:

MOLLY ZOGBY DEPT OF ENVIRONMENTAL PROTECTION DEP SHS 17 AUGUSTA ME 04333 Fax#:

Project Name: TWIN BRIDGE MARKET

No. of Samples in Folder

F057054001,	F057054002,	F057054003
F057054004,	F057054005,	F057054006
F057054007,	F057054008,	F057054009

9

CERTIFICATION

The HETL hereby certifies that all test results for this sample were analyzed by the method listed, including preservation, preparation, and holding times, unless otherwise indicated.

Kenneth G. Pote, PhD., Director

Richard French, Quality Assurance Officer

If we can be of further assistance to you, Please Call us at 287-1716

Approved by:

Jas & Culett -

James E. Curlett Organics Supervisor/Chemist III

$MAINE \, HEALTH \, AND \, ENVIRONMENTAL \, TESTING \, LABORATORY \, \ -Visit \, our \, Web \, Site \, at: \, http://www.state.me.us/dhs/etl \, State \, S$

			an Services Augusta, Maine		1	
Continued from Previous	Page		HETL Sample Number:	F05705400	7	
HETL Sample Number:	F057054007			Description:	B10 7-8 FT	
Matrix: SOLID				Sample Point:	:	
Sampler: MOLLY ZOGBY	7			Sample Date:	10/26/2010	Time: 13:58:00
Method: VPH		Analyst	Vera Maheu	Analysis Dat	etime: 10/28/2010	
Analyte	Result		Units	RL	MCL	Qualifiers
Methyl tert-Butyl Ether	< 0.05		mg/Kg	0.05		
Benzene	<.05		mg/Kg	0.05		
Toluene	<.05		mg/Kg	0.05		
Ethylbenzene	<.05		mg/Kg	0.05		
m,p-Xylene	<0.1		mg/Kg	0.1		
o-Xylene	<.05		mg/Kg	0.05		
Naphthalene	<.1		mg/Kg	0.1		
C5-C8 Aliphatic Hydrocarbons	6.8		mg/Kg	2.5		
C9-C12 Aliphatic Hydrocarbon	s 34		mg/Kg	2.5		
C9-C10 Aromatic Hydrocarbons	1.6		mg/Kg	1.0		
Unadjusted C5-C8 Aliphatics	6.8		mg/Kg	2.5		

Surrogate Analytes (added as part of testing to verify perform	Result nance)	Amount	% Rec	Low % Rec	High % Rec	Qualifiers
Dibromofluoromethane	50	50.0	100.0	70	130	
Toluene-d8	53	50.0	106.0	70	130	
4-Bromofluorobenzene	51	50.0	102.0	70	130	

mg/Kg

Unadjusted C9-C12 Aliphatics

36

2.5

HETL Sample Number: F057054007

Units & Measurement

"mg/L" = Milligrams per liter;	"ug/L" = Micrograms per Liter;	"mg/Kg" = Milligrams per Kilogram;
"ug/Kg" = Micrograms per Kilogram;	"PPM" = Parts per Million;	"NTU" = Nephelometric Turbidity Units;

The MCL, Maximum Contaminant Level is listed for comparing your results with recommended levels. In the "Qualifier" column, an " * " is placed to indicate any results that exceed this MCL.

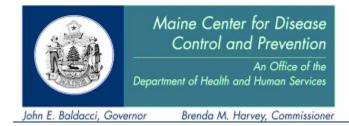
If there are no " * " in the "Qualifier" column, your water is considered satisfactory for those tests.

All solid results are reported on a "Dry Weight" basis.

 $NC = Not \ confirmed \qquad NQ = Not \ Quantitated \qquad NA = Not \ Analyzed \qquad J = Approximately \qquad U = Undetected \qquad R = Rejected$

RL-Reporting Limit is the lowest concentration which can be reliably reported on a routine basis.

"<" = Less than ">" = Greater than


MCL - Maximum Contaminant Level is the highest level allowed by EPA for public water supplies. Also used here as the maximum advisory limit set by the Maine Centers for Disease Control and Prevention.

Note: Results below the advisory limit, including < and J are considered satisfactory for that parameter.

Disclaimer

Your report consists of the number of pages listed on the cover page. Any attachments after the last numbered page are for informational purposes only and not part of the formal report.

The results in this report are for the submitted sample(s) only.

4:22:00PM

MOLLY ZOGBY DEPT OF ENVIRONMENTAL PROTECTION DEP SHS 17 AUGUSTA ME 04333 Fax#:

Project Name: TWIN BRIDGE MARKET

No. of Samples in Folder

F057054001,	F057054002,	F057054003
F057054004,	F057054005,	F057054006
F057054007,	F057054008,	F057054009

9

CERTIFICATION

The HETL hereby certifies that all test results for this sample were analyzed by the method listed, including preservation, preparation, and holding times, unless otherwise indicated.

Kenneth G. Pote, PhD., Director

Richard French, Quality Assurance Officer

If we can be of further assistance to you, Please Call us at 287-1716

Approved by:

Jas & Culett -

James E. Curlett Organics Supervisor/Chemist III

Logged: 10/26/2010 Folder/ Invoice # F057054 Office Use Only: Summary DEPP

> Released: 11/4/2010 Case #:

MAINE HEALTH AND ENVIRONMENTAL TESTING LABORATORY - Visit our Web Site at: http://www.state.me.us/dhs/etl

221 State Street, Station #12 Department of Human Services Augusta, Maine 04333 Tel. No. 207-287-1716 Fax. No. 207-287-6832 Continued from Previous Page HETL Sample Number: F057054008 Description: B10 7-8 FT HETL Sample Number: F057054008 Sample Point: Matrix: SOLID Time: 13:58:00 Sample Date: 10/26/2010 Sampler: MOLLY ZOGBY Method: EPH Analyst Vera Maheu Analysis Datetime: 10/29/2010 Prepared by: Preparation Method: Vera Maheu 3550B Amount Extracted Extraction pH Final Amount of Extract Date Prepared Time Prepared 10/29/2010 06:05 10.07g N/A 1.0mL Units RL MCL Qualifiers Analyte Result 0.2 Naphthalene < 0.2 mg/Kg 2-Methylnaphthalene < 0.2 mg/Kg 0.2 0.2 Phenanthrene < 0.2 mg/Kg Acenaphthene < 0.2 0.2 mg/Kg 20 Unadjusted C11-C22 Aromatics <20 mg/Kg C11-C22 Aromatic <20 mg/Kg 20 Hydrocarbons 20 C9-C18 Aliphatic Hydrocarbons <20 mg/Kg 20 C19-C36 Aliphatic <20 mg/Kg Hydrocarbons 0.2 Acenaphthylene < 0.2 mg/Kg < 0.2 0.2 Fluorene mg/Kg Anthracene < 0.2 mg/Kg 0.2 Fluoranthene < 0.2 0.2 mg/Kg 0.2 Pyrene < 0.2 mg/Kg 0.2 Benzo(a)anthracene < 0.2 mg/Kg Chrysene < 0.2 0.2 mg/Kg 0.2 Benzo(b)fluoranthene < 0.2 mg/Kg < 0.2 0.2 Benzo(k)fluoranthene mg/Kg 0.2 Benzo(a)pyrene < 0.2 mg/Kg 0.4 Indeno(1,2,3-cd)pyrene/Dibenz < 0.4 mg/Kg o(a,h)anthracene Benzo(g,h,i)perylene < 0.2 mg/Kg 0.2 Result Amount % Rec Low High Qualifiers Surrogate Analytes (added as part of testing to verify performance) % Rec % Rec 40 140 1-Chlorooctadecane 14.0 20.0 70.0 o-Terphenyl 16.5 40 140 20.0 82.5 2-Bromonaphthalene 20.2 20.0 40 140 101.0 2-Fluorobiphenyl 20.3 20.0 101.5 40 140

HETL Sample Number:

HETL Sample Number: F057054008

Units & Measurement

"mg/L" = Milligrams per liter;	"ug/L" = Micrograms per Liter;	"mg/Kg" = Milligrams per Kilogram;
"ug/Kg" = Micrograms per Kilogram;	"PPM" = Parts per Million;	"NTU" = Nephelometric Turbidity Units;

The MCL, Maximum Contaminant Level is listed for comparing your results with recommended levels. In the "Qualifier" column, an " * " is placed to indicate any results that exceed this MCL.

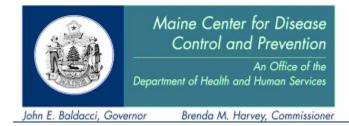
If there are no " * " in the "Qualifier" column, your water is considered satisfactory for those tests.

All solid results are reported on a "Dry Weight" basis.

 $NC = Not \ confirmed \qquad NQ = Not \ Quantitated \qquad NA = Not \ Analyzed \qquad J = Approximately \qquad U = Undetected \qquad R = Rejected$

RL-Reporting Limit is the lowest concentration which can be reliably reported on a routine basis.

"<" = Less than ">" = Greater than


MCL - Maximum Contaminant Level is the highest level allowed by EPA for public water supplies. Also used here as the maximum advisory limit set by the Maine Centers for Disease Control and Prevention.

Note: Results below the advisory limit, including < and J are considered satisfactory for that parameter.

Disclaimer

Your report consists of the number of pages listed on the cover page. Any attachments after the last numbered page are for informational purposes only and not part of the formal report.

The results in this report are for the submitted sample(s) only.

10/26/2010

F057054

11/4/2010

4:22:00PM

Logged:

Folder/ Invoice #

Summary

DEPP

Released:

Office Use Only:

Case #:

MOLLY ZOGBY DEPT OF ENVIRONMENTAL PROTECTION DEP SHS 17 AUGUSTA ME 04333 Fax#:

Project Name: TWIN BRIDGE MARKET

No. of Samples in Folder

F057054001,	F057054002,	F057054003
F057054004,	F057054005,	F057054006
F057054007,	F057054008,	F057054009

9

CERTIFICATION

The HETL hereby certifies that all test results for this sample were analyzed by the method listed, including preservation, preparation, and holding times, unless otherwise indicated.

Kenneth G. Pote, PhD., Director

Richard French, Quality Assurance Officer

If we can be of further assistance to you, Please Call us at 287-1716

Approved by:

Jas & Culett -

James E. Curlett Organics Supervisor/Chemist III

$MAINE \, HEALTH \, AND \, ENVIRONMENTAL \, TESTING \, LABORATORY \ - Visit \, our \, Web \, Site \, at: http://www.state.me.us/dhs/etl \, State \, Stat$

221 State Street , Continued from Previous F	, Station #12 Depar	rtment of Human Services			. 207-287-1716 Fax.	No. 207-287-6832
HETL Sample Number: F0 Matrix: NP-H20 Sampler: MOLLY ZOGBY	057054009			Description: Sample Point Sample Date	TWIN BRIDGE MA :: : 10/26/2010	ARKET Time: 12:25:00
Method: TEPH		Analyst Vera Mah	eu	Analysis Da	tetime: 10/28/2010	
Preparation Method:	3510C		Prepared by:	Vera M	aheu	
Date Prepared	Time Prepared	Amount Extracted	Extraction pH	Final A	mount of Extract	
10/28/2010	11:10	0.96L	<2		1.0mL	
Analyte	Result	Ur	iits	RL	MCL	Qualifiers
Adjusted EPH	<100	ug⁄	′L	100		
Unadjusted EPH	<100	ug⁄	′L	100		
Naphthalene	<1	ug∕	′L	1.0		
2-Methylnaphthalene	<1	ug⁄	′L	1.0		
Acenaphthylene	<1	ug⁄	′L	1.0		
Acenaphthene	<1	ug∕	′L	1.0		
Fluorene	<1	ug⁄	′L	1.0		
Phenanthrene	<1	ug	′L	1.0		
Anthracene	<1	ug∕	′L	1.0		
Fluoranthrene	<1	ug	′L	1.0		
Pyrene	<1	ug	′L	1.0		
Benzo(a)anthracene	<1	ug∕	′L	1.0		
Chrysene	<1	ug		1.0		
Benzo(b)fluoranthene	<1	ug/		1.0		
Benzo(k)fluoranthene	<1	ug/		1.0		
Benzo(a)pyrene	<1	ug∕		1.0		
Ideno(1,2,3-cd)pyrene/Dibenzo (a,h)anthracene	<2	ug		2.0		
Benzo(g,h,i)perylene	<1	ug/	Ľ	1.0		
Surrogate Analytes (added as part of testing to verify perform	Result nance)	Am	ount % Rec	Low % Rec	High % Rec	Qualifiers
o-Terphenyl	14	20	0.0 72.0	40	140	
1-Chlorooctadecane	12	20	.0 58.0	40	140	

HETL Sample Number: F057054009

Units & Measurement

mg/L' = Milligrams per liter;	"ug/L" = Micrograms per Liter;	"mg/Kg" = Milligrams per Kilogram;
"ug/Kg" = Micrograms per Kilogram;	"PPM" = Parts per Million;	"NTU" = Nephelometric Turbidity Units;

The MCL, Maximum Contaminant Level is listed for comparing your results with recommended levels. In the "Qualifier" column, an " * " is placed to indicate any results that exceed this MCL.

If there are no " * " in the "Qualifier" column, your water is considered satisfactory for those tests.

All solid results are reported on a "Dry Weight" basis.

NC = Not confirmed NQ = Not Quantitated NA = Not Analyzed J = Approximately U = Undetected R = Rejected

RL-Reporting Limit is the lowest concentration which can be reliably reported on a routine basis.

"<" = Less than ">" = Greater than

MCL - Maximum Contaminant Level is the highest level allowed by EPA for public water supplies. Also used here as the maximum advisory limit set by the Maine Centers for Disease Control and Prevention.

Note: Results below the advisory limit, including < and J are considered satisfactory for that parameter.

Disclaimer

Your report consists of the number of pages listed on the cover page. Any attachments after the last numbered page are for informational purposes only and not part of the formal report.

The results in this report are for the submitted sample(s) only.