

summitenv.com

MAINE DEP PETROLEUM VAPOR TRIAGE STUDY PHASE IIA CUMBERLAND FARMS – FACILITY 1834 53 MAIN STREET LIVERMORE FALLS, MAINE

Prepared for:

MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION 17 State House Station Augusta, Maine 04330

Prepared by: SUMMIT ENVIRONMENTAL CONSULTANTS, INC. 434 Cony Road Augusta, Maine 04330

and

JBR CONSULTING HYDROGEOLOGIST

20 Dryad Woods Road Raymond, Maine 04071

> April 13, 2011 Project # 10-3241

MAIN OFFICE: LEWISTON 640 Main Street Lewiston, ME 04240 207.795.6009 voice 207.795.6128 fax AUGUSTA 434 Cony Road Augusta, ME 04330 207.621.8334 voice 207.626.9094 fax **BANGOR** 8 Harlow Street, Suite 4A Bangor, ME 04401 207.262.9040 voice 207.262.9080 fax PORTLAND

1 Industrial Way, Suite 7 Portland, ME 04103 207.221.6360 voice 207.221.6146 fax

INTRODUCTION	1
1.0 OBJECTIVES	1
2.0 SITE BACKGROUND AND CONCEPTUAL SITE MODEL	1
3.0 METHODOLOGY	
4.0 RESULTS	
4.1 QUALITY ASSURANCE	5
4.2 SOURCE AREA SOIL	5
4.3 GROUNDWATER	6
4.4 SOIL VAPOR	6
5.0 CONCLUSIONS	7
5.1 HYDROGEOLOGIC INFLUENCES ON VAPOR MIGRATION	7
5.2 PETROLEUM DISTRIBUTION AND RELATIONSHIPS BETWEEN MEDIA	7
5.3 PREFERENTIAL PATHWAYS, OFFSITE MIGRATION AND RECEPTORS	7
5.4 CONCEPTUAL SITE MODEL CONFIRMATION AND UPDATE	
5.5 DATA GAPS AND RECOMMENDATIONS	

TABLES:

Table 1: Soil and Groundwater Vapor Intrusion Report Table 2: Summary of Soil Vapor Detections Table 3: Soil Gas Vapor Intrusion Report Table 4: Summary of Petroleum in Soil, Groundwater and Soil Vapor

Figures:

Figure 1: Site Location Map Figure 2: Sample Location Map

Appendices:

Appendix A: Boring Logs and Monitoring Well Installation Log Appendix B: Field Data Sheets Appendix C: Laboratory Reports (sent electronically)

INTRODUCTION

In June 2010, Summit Environmental Consultants, Inc. and JBR Consulting Hydrogeologist (Summit) along with four other consulting firms were selected by the Maine Department of Environmental Protection (MEDEP) to provide vapor intrusion investigation and data analysis services for petroleum sites throughout Maine. Summit was assigned two sites including the Cumberland Farms Incorporated (CFI) property located at 53 Main Street in Livermore Falls (the Site) to identify the potential for petroleum vapor intrusion (PVI) into site and area buildings. In July Summit completed a Site Assessment of the property to develop information about possible sources of vapor contamination at and adjacent to the Site. In August Summit developed a Work Plan for the project following MEDEP guidance and incorporating their input including a conceptual model and description of the scope of investigations. This report provides the results of this PVI Triage Study - PHASE IIA and follows the reporting format and content provided by MEDEP.

1.0 OBJECTIVES

The objectives of the study were to:

- Sample residual soil contamination (if indicated by field observations) at potential source areas that were reasonably accessible (i.e. near USTs and pump islands)
- Sample groundwater beneath and downgradient of source areas if contamination was indicated by field observations
- Characterize the horizontal and vertical attenuation of Chemicals of Potential Concern (CPOCs) in soil vapor from both soil and groundwater contamination areas
- Assess on-site soil vapor pathways to identify potential risks to on-site and off-site receptors
- •

2.0 SITE BACKGROUND AND CONCEPTUAL SITE MODEL

Facility Use/Petroleum Storage

The Site consists of approximately 0.54 acres of commercial land along the east side of Main Street. One concrete and mortar building (approximately 3,600 square feet) and a steel canopy with four gasoline pump islands are located on the property. The pump islands are connected to three on-site underground gasoline storage tanks (USTs). The building is occupied by a Cumberland Farms convenience store and gasoline station and also contains a vacant space formerly occupied by a Chinese restaurant.

Release

The primary soil vapor sources for the site are the former USTs at the same location as the current USTs and the pump islands. Summit obtained a copy of a Maine Underground Storage Tank Site Assessment, dated August 22, 1997, completed by EnviroInvestigations & Remediation, Inc. (ERI) for the Site. During the removal of three 8,000-gallon underground gasoline-storage tanks (USTs), petroleum contamination was observed to be present. The MEDEP established a cleanup goal of 1,500 parts per million (ppm) by headspace screening with a photoionization detector (PID). Soils exhibiting headspace readings greater than 1,500 ppm were removed from the excavation areas for the installation of the new USTs and the new

piping trench and shipped to Commercial Recycling Systems (CRS) in South Portland, Maine for asphalt batching. Only soils within the excavation for the new USTs were required to be removed. A total of 15.51 tons of contaminated soil was shipped to CRS.

The spill history for the site included four small incidental releases (less than 10 gallons) which appeared to occur mostly on pavement limiting impacts to soils. A small amount of gasoline flowed into a catch basin in 1990, but free product was collected with sorbent pads.

Releases from the former Puffin Stop which abuts the north side of the site are included based on the possibility of impact to the CFI site. Five USTs were removed from the Puffin Stop in April 1989 (three 8,000-gallon gasoline, one 5,000-gallon gasoline and one 5,000-gallon diesel tank). This removal was performed by Les Wilson and Sons of Westbrook, Maine. No further information regarding the condition of the tanks or the condition of the soils was discovered. There are currently four USTs on the property (one 12,000-gallon gasoline, two 10,000-gallon gasoline and one 10,000-gallon diesel tank); the Puffin Stop is currently out of service. Spill files for the Puffin Stop included four surface spills ranging from 8 to 50 gallons which were largely cleaned up with sand, Speedi-dry or sorbent pads with no further action anticipated.

Finally a spill report for a site approximately 0.03 miles southwest of the Site across Route 4 (Keene's Discount Gas) indicated only low field screening responses (up to 20 ppmv) during a UST removal and no further action was anticipated.

Chemicals of Potential Concern (COPCs)

The primary chemical of potential concern is gasoline and its associated volatile petroleum constituents primarily benzene, napthalene, 1,3-butadiene and selected petroleum fractions. Chlorinated VOCs from offsite sources represent secondary COPCs.

Subsurface Exposure Pathway

The paved areas of the site (elevation ~370 feet above mean sea level) slope southwest towards the Androscoggin River about 600 feet from the site (the river elevation is estimated at 320 feet msl). Maine Geologic Survey has mapped glacial till beneath the Site (compact mixture of silt, sand and gravel). Prior to the this investigation, the depth to groundwater and bedrock was unknown; based on the mapped site soils, topography and the location and elevation of the river, groundwater was anticipated to be less than 10 to 20 feet below ground if sufficient soil thickness is present above bedrock.

The former (and current) UST location(s) and pump islands are located topographically downgradient from the slab on grade convenience store. With the significant topographic relief at the site and the river serving as a groundwater discharge area, any contaminated groundwater beneath the dispensers or USTs would be anticipated to flow southwest away from the CFI store.

Subsurface public utilities include sewer and water and are believed to enter the north and west sides of the store respectively. Smaller on-site electrical conduit that runs from the store to the USTs, dispensers and any signage represent additional potential pathways.

Based on the relatively high PID cleanup guideline used at the CFI site in 1997, it is likely that soil vapors at the site have been impacted by petroleum constituents (benzene, toluene, ethylbenzene, xylenes, fractions and other VOCs). Soil vapor migration is anticipated to be limited in the native glacial till at this site with migration in granular fill materials including utility runs and beneath concrete slabs and parking areas representing more likely pathways.

3.0 METHODOLOGY

A one-day Geoprobe investigation was completed which included field screening and sampling of soils and soil vapor and groundwater sampling and analyses. A stepped approach was developed by MEDEP to guide the number and location of samples based on whether contamination was present at the suspected source area. Because drilling activities are restricted near tanks, piping and dispensers at operating UST facilities and based on site history and hydrogeology it was decided not to shut the facility down, but to include explorations directly downgradient of the UST/pump island areas. A subslab vapor sample was included from within the building. As required by DEP regulations, Summit retained a licensed Tank Installer, Bill Carver, to be present during subsurface explorations near USTs and ancillary equipment.

Sample locations are shown on Figure 2 and are summarized as follows:

Source Areas

Based on the 1997 UST removal report, it was considered likely that there was some residual petroleum in soils below the former USTs at a depth of 12 feet or greater. No information was reported relative to the pump islands, though they were considered potential sources for at least shallow soil contamination.

Migration and Preferential Pathways - 15 feet Downgradient

To assess petroleum migration from the source areas in soil vapor and groundwater, the following explorations were completed:

- six Geoprobe borings (SB-102, GW-103, SV-103, GW-104, GW-105, SV-105) at locations 15 to 20 feet downgradient of the USTs, pump islands and on the property line downgradient of USTs on the abutting former Puffin Stop property.
- Two hand auger borings (SV-01, SV-03)
- one subslab soil vapor sampling location (SV-02).

<u>Soil</u>

Geoprobe borings were advanced using a four-foot sampler with dedicated disposable acetate sampling sleeves and were completed to depths ranging from 4 feet bgs at SB-102 to 12 feet bgs at GW-105. Refusal was encountered at depths ranging from 4 feet at B-102 to 11.5 feet at SV-103. Refusal was not encountered at GW-105.

Soil samples were collected continuously, logged for geologic classification and screened with a *MiniRae 3000*° field-portable PID equipped with a 10.6 eV probe, calibrated with 100 ppm isobutylene and recording uncorrected results. One soil sample was collected at boring SV-103 from 7.5 feet bgs and submitted to Maine Environmental Laboratory/Analytics Environmental Laboratory (MEL/AEL) for Massachusetts Department of Environmental Protection (MADEP) Volatile Petroleum Hydrocarbon (VPH) and Extractable Petroleum Hydrocarbons (EPH) based on PID and odor indications of petroleum. Boring logs are provided in Appendix A.

<u>Groundwater</u>

Monitoring wells were installed at GW-103 located directly downgradient of the current pump islands (and adjacent to SV-103); at GW-104 downgradient from USTs on the adjacent property; and at GW-105 directly downgradient of the USTs on the Site. Wells were constructed

PETROLEUM VAPOR INTRUSION (PVI) TRIAGE STUDY - PHASE IIA CUMBERLAND FARMS – FACILITY 1834

of 1 inch PVC installed two to four feet into the water table to allow ground water sampling and to provide depth to groundwater data. Groundwater samples were collected using a Geoflow peristaltic pump at a low flow rate and submitted to MEL/AEL for VPH analyses. Well construction logs are included in Appendix A.

<u>Soil Vapor</u>

Soil vapor sampling probes were installed consistent with methods described in the current MEDEP SOPs for Collecting Soil Gas Samples.

Soil vapor probes were supplied by Geoprobe and consisted of $\frac{1}{2}$ inch x 6 inch double woven stainless steel wire screens with 0.0057 inch slots connected to $\frac{1}{4}$ inch teflon tubing. They were installed as follows:

- SV-01 set in a hand auger boring at three feet below ground surface (bgs) adjacent to the water line entrance on the northwest side of the building to assess this preferential pathway in granular backfill
- SV-02 a subslab sample collected at 0.5 feet below slab surface by drilling a hole in the concrete floor slab of the cooler room and installing a probe and teflon tubing and sealing the tubing around the hole.
- SV-03 set at 1.6 feet adjacent to the electrical conduit entrance on the south side of the building to assess vapor migration in granular fill along this utility.
- SV-103 two probes (shallow and deep) set in a Geoprobe boring at 7 feet and 5.5 feet bgs to assess vapor migration at a location directly downgradient of the pump islands. The deep probe became saturated with water so only the shallow probe was sampled.
- SV-105 set in Geoprobe boring at 4.5 feet bgs above a silt zone that was present across the site from about 6.5 to 12 feet bgs.

Field screening of soil gas extracted with a peristaltic pump was performed with a CO2/O2/Methane meter to ensure that atmospheric concentrations of CO2 were not present and that the soil gas samples were representative of soil vapor. Soil vapor samples were collected in 30 minute Summa canisters and submitted to Alpha Analytical for analyses by the MADEP Air Petroleum Hydrocarbon (APH) method for petroleum parameters and by TO-15 for Volatile Organic Compounds (VOCs). Canisters typically started at 27 to 30 inches (of mercury) vacuum and finished at 3 to 5 inches of vacuum. Soil vapor probe construction and sampling information is provided on Field Data Sheets in Appendix B.

Receptors

Potential receptors of petroleum vapors at the site include customers and workers at the store and building occupants on adjacent commercial and residential properties to the southeast, south and southwest across Route 4.

4.0 RESULTS

Results of field and laboratory analyses are provided in Table 1 (Soil and Groundwater Vapor Intrusion Report), Table 2 (Summary of Soil Vapor Detections) and Table 3 (Soil Gas Vapor Intrusion Report) prepared from MEDEPs EGAD data base providing a comprehensive tabulation of analytes, results, detection limits and data qualifiers.

PETROLEUM VAPOR INTRUSION (PVI) TRIAGE STUDY - PHASE IIA CUMBERLAND FARMS – FACILITY 1834

4.1 QUALITY ASSURANCE

A comparison of post sample field and laboratory measurements of carbon dioxide, oxygen and methane at soil vapor probes indicate the following (see Table 3):

- Field measurements of carbon dioxide (with the exception of SV-02) were greater than 5% (the upper range of the instrument), while lab results ranged from 1.8 to 7.0 % indicating field measurements ranged from 2.8 times higher to 0.7 of lab results.
- Field measurements of oxygen ranged from 11.3 to 18.8 %, while lab results ranged from 9.0 to 16.5 % (at SV-105 and SV-02 respectively) indicating field measurements were up to 1.3 times higher than lab results.
- Methane was detected at SV-103 at 8.5 % in the field, but was not detected at 0.147% in the lab.

A comparison of pre- and post sample carbon dioxide measurements at soil vapor probes (except the sub slab sample SV-02) indicate field evidence of a good seal, with all pre- and post sample values greater than 5 %. A good seal was also indicated by the large difference between ambient carbon dioxide (0.36 to 0.8%) and post sample results (all greater than 5%). Based on a low post sample carbon dioxide (field and lab result) and somewhat elevated oxygen results it appears there may have been some leakage at SV-02.

One of the lab duplicates detected 1,3-butadiene at 26 ug/m³, but none was detected in any of the samples.

Samples were delivered to MEL on September 15, 2010. All samples were delivered within the applicable holding times and within the specified temperature range. Summit obtained sample results from MEL on September 23, 2010. Included in the sample results package was a copy of QA data. The lab did not indicate interferences or problems had occurred in the analytical stages or handling of the samples.

Summit shipped the soil gas samples to Alpha Analytical on September 13, 2010 and received confirmation of their delivery on September 14, 2010 at 10:00 am (within holding time). Summit obtained analytical results from Alpha on September 21, 2010.

4.2 SOURCE AREA SOIL

Site specific surficial geology consisted of medium sand fill beneath the asphalt to about 4 feet bgs which was underlain by a fine to medium sand to about 8 feet bgs. At SV-103 and GW-105 a silt was present to about 11 feet bgs which was underlain by dense fine sand till at SV-103. The silt extended to the bottom of the boring at GW-105 at 12 feet bgs. The depth to the water table ranged from 5.3 feet bgs at GW-104 on the north side of the site to 8 feet bgs at GW-105 in the south central portion of the Site.

PID and odor indications of petroleum in soil samples were observed only at SV-103 and GW-103 (maximum uncorrected PID results for SV-103 were 1430 ppm at 7.5 feet bgs and 945 ppm at 7 feet bgs at GW-103). PID results are included on Soil Boring Logs in Appendix A.

Laboratory results for the one soil sample submitted for lab analyses (SV-103 at 7.5 feet bgs) indicated significant detections of petroleum target compounds as well as VPH and EPH fractions (see Table 1). There was no 1,3-butadiene detected in soil at SV-103. Significant EPH detections suggest the possibility of diesel fuel or weathered gasoline either at the site or from other sources.

PETROLEUM VAPOR INTRUSION (PVI) TRIAGE STUDY - PHASE IIA CUMBERLAND FARMS – FACILITY 1834

4.3 GROUNDWATER

Results of groundwater samples are also presented in Table 1 and indicate petroleum was only detected at GW-103 located immediately downgradient of the pump islands and adjacent to SV-103. No detections were reported at GW-104 on the north property line or at GW-105 located immediately downgradient of the USTs.

Benzene and 1,3-butadiene were not detected in groundwater at GW-103, but other target analytes were detected at concentrations ranging from 0.1 to 9.5 mg/liter. VPH fractions were detected at 8.9 to 14 mg/liter.

4.4 SOIL VAPOR

Soil vapor detections are summarized in Table 2 with the complete Soil Gas Vapor Intrusion Report provided in Table 3. Low to high levels of MADEP-APH were detected in all soil vapor probes. Based on a comparison of detected concentrations to the Maine Residential Multi-Contaminant Chronic Soil Gas Target (G-1), exceedences occurred at all probes except SV-02 (sub slab sample) and included the following:

- benzene (SV-01 and SV-105)
- C5-C8 aliphatic hydrocarbons (SV-103)
- C9-C12 aliphatic hydrocarbons (SV-01 and SV-103)
- ethylbenzene (SV-105)
- napthalene (SV-01, SV-03 and SV-105)
- Tetrachloroethylene was detected above target levels at SV-105 but not at other probes.

Exceedence factors (soil vapor concentration divided by target concentration) ranged from 1.8 for ethylbenzene at SV-105 to more than 1100 for C5-C8 aliphatic hydrocarbons at SV-103. Benzene, toluene and aliphatic hydrocarbons were detected well below target levels in the sub slab sample (SV-02). There was no 1,3-butadiene detected at any of the probes.

Based on a review of Table 2 and 3, two possible preferential pathways have been identified in granular utility backfill:

- Between SV-103 and SV-01, based on the proximity of these probes to the waterline servicing the building and comparable soil vapor chemistry. Attenuation factors between these two locations (about 95 feet) ranged from 10 to 2000.
- Between SV-105 and SV-03 along the electric conduit coming from the USTs to the south end of the building. Attenuation factors between these two locations (about 65 feet) ranged from 2 to 28.

Based on a recent literature summary published in *Soil and Sediment Contamination* (Evaluation of Vapor Attenuation at Petroleum Hydrocarbon sites: Consideration for Site Screening and Investigations; 19:724-745, 2010) and provided by MEDEP, the potential for vapor intrusion impacts at this site appears to be moderate, based on a relatively thin unsaturated overburden (about 6 feet), granular fill soils and moderate to high concentration soil vapors at source areas.

5.0 CONCLUSIONS

5.1 HYDROGEOLOGIC INFLUENCES ON VAPOR MIGRATION

Soils

The permeable granular sand fill soils and limited unsaturated thickness (6 feet) likely allow for some vapor migration from two source areas:

- 1. The area immediately downgradient of the pump islands (and likely the islands themselves), and
- 2. The area at and immediately downgradient of the USTs.

While the soils are well oxygenated as confirmed by both field and laboratory data, the relatively thin unsaturated zone limits the amount of biodegradation. The moderate to high petroleum concentrations in soil vapor indicate a source of petroleum remains at the site; site history and ongoing operations indicate soils beneath the pump islands and to a lesser extent the USTs are the most likely source areas.

Groundwater

Petroleum was only detected at GW-103 located immediately downgradient of the pump islands. No detections were reported at GW-104 on the north property line or at GW-105 located immediately downgradient of the USTs. Benzene and 1,3-butadiene were not detected in groundwater at GW-103, but other target analytes were detected at concentrations ranging from 0.1 to 9.5 mg/liter. VPH fractions were detected at 8.9 to 14 mg/liter.

5.2 PETROLEUM DISTRIBUTION AND RELATIONSHIPS BETWEEN MEDIA

Table 4 presents a summary of petroleum in soil and soil vapor at SV-103 and in groundwater at the immediately adjacent GW-103. Several simple ratios of concentration are included as follows:

- Soil vapor concentration divided by soil concentration (ug/m³)/(ug/kg)
- Soil vapor concentration divided by groundwater concentration (ug/m³)/(ug/liter)
- Soil concentration divided by groundwater concentration (distribution coefficient or Kd = (ug/kg)/(ug/liter)

Based on a review of Table 4, the following observations are made:

- For the two analytes that exceeded soil gas targets (C5-C8 and C9-C12 aliphatic hydrocarbons), petroleum was detected at high concentrations in both soil and groundwater
- Concentrations of petroleum in soil were 90 to more than 200 times higher than concentrations in groundwater
- For some parameters, petroleum was detected at high concentrations in both soil and groundwater, but was not detected in soil vapor suggesting variable biodegradation rates or conditions for specific analytes or fractions.

5.3 PREFERENTIAL PATHWAYS, OFFSITE MIGRATION AND RECEPTORS

Based on a review of Table 2 and 3, two possible preferential pathways have been identified in granular utility excavation backfill:

PETROLEUM VAPOR INTRUSION (PVI) TRIAGE STUDY - PHASE IIA CUMBERLAND FARMS – FACILITY 1834

- Between SV-103 and SV-01, based on the proximity of these probes to the waterline servicing the building and comparable soil vapor chemistry. Attenuation factors between these two locations (about 95 feet) ranged from 10 to 2000.
- Between SV-105 and SV-03 along the electric conduit coming from the USTs to the south end of the building. Attenuation factors between these two locations (about 65 feet) ranged from 2 to 28.

Offsite transport of impacted groundwater (and associated soil vapor) appears likely given the high concentrations of targets and fractions at the downgradient property line and the significant topographic and hydraulic gradient to the southwest.

Receptors at the site are limited to customers and workers at the store. Abutting potential receptors include residences and/or commercial buildings to the southwest, south and southeast of the site which are located between 70 and 160 feet from impacted sample locations on the site.

5.4 CONCEPTUAL SITE MODEL CONFIRMATION AND UPDATE

Data collected for this VI investigation has allowed updating the Conceptual Model to include two likely preferential pathways in utility backfill as described above. Soil and groundwater contamination at SV-103/GW-103 appears to be the primary source of the observed soil vapor distribution, with some likely contribution from soils at the USTs. The areal extent of the source at SV-103/GW-103 is not known, nor has impacted soil or groundwater been detected at SV-105/GW-105.

5.5 DATA GAPS AND RECOMMENDATIONS

Based on substantial soil vapor exceedences of Maine's G-1 soil gas targets (more than 1100x for C5-C8 aliphatic hydrocarbons), confirming the presence and strength of the suspected sources would provide a better understanding of the risk posed to potential onsite and offsite receptor and the extent of contamination on the site. The following recommendations are offered for consideration:

- 1. Install hand auger or shallow Geoprobe borings on either side and downgradient of the area at SV-103/GW-103 to define and bound soil and groundwater contamination at this source area.
- 2. Collect a subslab sample from the store during the heating season ensuring a tight seal to measure influences of the building stack effect on soil vapor pressure, migration and possible intrusion.

Tables

															Table 1									
													So	il and Gro	undwater Vapor I	ntrusion	Report							
														Livermore	Falls Cumberlan	d Farms	1834							
															14-Apr-11								-	
																								Т
				MADE							MADE													1
Sample				IVIADE BENI			C5-C8/			C9-C10 A				C9-C12								M P_Y		
Point	Sample Date	Depth	Concentrat	Reporting		Linits	Concentrat	Reporting Oualifier	Linite	Concentrat	Romanic Reporting	Qualifier	Unite	Concentrat	Reporting Qualifier	Unite	Concentrat	eporting	Qualifier	l Inits	Concentrat	Reporting !		Unit
SOIL	Campie Date	Doptin	Concentrat	roporting	Quanter	Ormo	Concentrat	rtoporting i dualitor	OTINO	Concontrati	toporting	Quanner	onito	Concentrat	rteporting i dualitier	OTINO	Concentrativ	oporting	Qualinoi	OTINO	Concontra	reporting	Quanner	
SV-103	9/10/2010	7	5 7970	7080	1	UG/KG	2190000	177000	UG/KG	1050000	35400		UG/KG	1260000	177000	UG/KG		7080	U	UG/KG	16500	14200		UG
																0.0110			-					
GROUNDWA	ATER																					[-
GW-103	9/10/2010)																						
GW-103	9/10/2010 12:45 PM			200	U	UG/L	8930	5000	UG/L	11300	1000		UG/L	14300	5000	UG/L	1870	200		UG/L	9500	400		UG/
GW-103	9/23/2010)																						
																						L		
GW-104	9/10/2010)																				L		
GW-104	9/10/2010 2:55 PM			2	U	UG/L		50 U	UG/L		10	U	UG/L		50 U	UG/L		2	U	UG/L		4	U	UG/
CW/ 105	0/10/2010								+	+							+					<u> </u>	<u> </u>	+
GW-105	9/10/2010 0/10/2010 1:45 PM	1		2	11			50 11			10	11			50.11			2	11			4	<u></u>	
GW-105	9/10/2010 1.45 FW			2	. U	UG/L		50 0	UG/L		10	0	UG/L		50 0	UG/L		2	0	UG/L		4	0	100/
GW-105	5/25/2010	, 																						
ME MEG			4			UG/L	300		UG/L	200			UG/L	700		UG/L	30			UG/L				+
ME COMME	RCIAL GW SL		6.9			UG/L	3.2		UG/L	130			UG/L	2.7		UG/L	15			UG/L	41	(SUM OF /	ALL)	UG/
MA GW STA	NDARD (GW-2)		2000			UG/L	3000		UG/L	7000			UG/L	5000		UG/L	20000			UG/L				
	, ,																							
																						L		
				MADE	P-VPH			MADEP-VPH			MADE	P-EPH			MADEP-EPH			MADE	P-EPH			MADE	P-EPH	
			Constant	O-XY		L La la -	0	IOLUENE	1.1	Constant	NAPIE		1.1	C9-C18	ALIPHATIC HYDROC	ARBONS	C11-C22 A	ROMATI		CARBONS	2-			NE
501			Concentrat	Reporting	Qualifier	Units	Concentrat	Reporting I Qualifier	Units	Concentrat	Reporting	Qualifier	Units	Concentrat	Reporting Qualifier	Units	ConcentratR	eporting	Qualifier	Units	Concentrat	Reporting L	Qualifier	Unit
SV-103	9/10/2010	7	5 5100	7080	1		8210	7080		557	288			93500	57400		37500	28800			1010	288		
31-103	3/10/2010	, <i>,</i>	.5 5150	7000	5	00/10	0210	7000	00/100	337	200		00/10	33300	57400	00/10	37300	20000		00/10	1910	200		00/
GROUNDWA	ATER																							+
GW-103	9/10/2010)																						1
GW-103	9/10/2010 12:45 PM	1	3320	200)	UG/L	132	200 J	UG/L													[-
GW-103	9/23/2010)																						
GW-104	9/10/2010)																						
GW-104	9/10/2010 2:55 PM			2	U	UG/L		2 U	UG/L													L		
																						L		<u> </u>
GW-105	9/10/2010)				110/1		0.11	110/1													<u> </u>		<u> </u>
GW-105	9/10/2010 1:45 PM		-	2	U	UG/L		20	UG/L	-												<u> </u>		+
GW-105	9/23/2010	1							+								+					<u> </u>		+
			+			-	600		LIG/I	+						+	+ +			+				+-
ME COMME	RCIAL GW SI	-	SEE M P XY		VEI		16000		UG/I	+			-			-	+			-			<u> </u>	+
MA GW STA	NDARD (GW-2)						50000		UG/L											1				+
	.= (==,	1																					1	1
L	1	1	1		1	- 1	1	1	1				1	1	1	1			1	1	1		L	<u>ــــــــــــــــــــــــــــــــــــ</u>

		MAD	EP-VPH			MAD	EP-VPH	
	METH	/L-TERT-B	UTYL ETHE	ER (MTBE)		NAPH	FHALENE	
nits	Concentrat	Reporting L	Qualifier	Units	Concentrat	Reporting I	Qualifier	Units
G/KG	5980	7080	J	UG/KG		7080	U	UG/KG
G/I		200	11		664	200		
0/L		200	0	00/L	004	200		00/L
G/L		2	U	UG/L		2	U	UG/L
G/L		2	U	UG/L		2	U	UG/L
	05			110/1	10			110/1
O /I	35			UG/L	10			UG/L
G/L	2000			UG/L	20			
	50000			UG/L	1000			00/L
				Q	С			
		MAD	EP-VPH			MAD	EP-VPH	
	BENZEN	IE, 1,4-DIB	ROMO-2-M	ETHYL, FID	BENZEN	E, 1,4-DIB	ROMO-2-M	ETHYL, PID
nits	Concentrat	Reporting L	Qualifier	Units	Concentrat	Reporting I	Qualifier	Units
G/KG								
			7	%			7	%
			2	70			2	70
	81			%	85			%
-		-						
	72			%	78			%
	1			I				

								Table 2							
							Sun	nmary of Soil Vap	or Detections						
							Liverm	ore Falls Cumber	land Farms 1834						
								14-Apr-1	1						
			FIELD		PID			MADEP-APH	MADEP-APH	MADEP-APH					
			CARBON	FIELD	SOIL GAS	MADEP-APH	MADEP-APH	C5-C8 ALIPHATIC	C9-C10 AROMATIC	C9-C12 ALIPHATIC	MADEP-APH	MADEP-APH	MADEP-APH	MADEP-APH	MADEP-APH
Sample			DIOXIDE	OXYGEN	SCREEN	1,3-BUTADIENE	BENZENE	HYDROCARBONS	HYDROCARBONS	HYDROCARBONS	ETHYLBENZENE	M,P-XYLENE	NAPHTHALENE	O-XYLENE	TOLUENE
Point	Sample Date	Depth	%	%	PPM	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3
SV-01	9/10/2010	ambient	0.8	20.8											
SV-01	9/10/2010 9:25 AM	3	5	15	2.3										
SV-01	9/10/2010 9:35 AM	3	5	14.2			16	1200	360	3300	47	81	17	28	110
SV-01	9/23/2010														
SV-02	9/10/2010	ambient	0.8	20.8											
SV-02	10:02:00 AM	0.5	5	18.5	0.3										
SV-02	10:35:00 AM	0.5	0.0005	18.8			2.2	270		58					2.6
SV-02	9/23/2010														
01/ 00	0/40/0040	a sector to sector	0.00												
SV-03	9/10/2010 0/40/2040 2:24 DM	amplent	0.62	20.8	0.7										
SV-03	9/10/2010 2:31 PM	5.5	5	19.6	0.7			440	400	040	0.0	45		5.4	
SV-03	9/10/2010 3:03 PM	5.5	5	18.2				440	130	640	9.8	10	20	5.1	11
30-03	9/23/2010														
SV/ 102	0/10/2010	ambiont	0.8	20.8											
SV-103	9/10/10 11·19 AM	ambient 55		17.5	667										
SV-103	9/10/10 11:52 AM	5.5	5	17.0	001			2400000		30000					
SV-103	9/23/2010	7	0					2.00000							
SV-103	9/23/2010	5.5													
SV-105	9/10/2010	ambient	0.36	20.8											
SV-105	9/10/2010 1:25 PM	4.5	5	11.6	1.8										
SV-105	9/10/2010 2:00 PM	4.5	5	11.3			34	1200	320	1300	87	150	6.8	49	310
SV-105	9/23/2010														
ME RESID	ENTIAL MULTI-CONTA	MINANT CH	IRONIC SOIL	GAS TARGE	ET (G-1)=	4.05	15.5	2100	500	2100	48.5		3.6		50000
EXCEEDA	NCE FACTOR (MAX CO	ONC/TARGE	T CONC) =			0.0	2.2	1142.9	0.7	14.3	1.8		5.6		0.0
Notes:															
1. See Tab	ole 3 for complete Soil G	as Vapor Inti	rusion Report	, including an	alytes that we	re not detected , de	tection limits and	data qualifiers.							
No entry	y = parameter not detect	ed.													
Bold en	trees exceed target con	centration.													

Table 3 Soil Gas Vapor Intrusion Report Livermore Falls Cumberland Farms 1834 14-Apr-11

															14	Abi-II																				
Method				EPA MET	HOD 3C		EPA METHO	0 3C		EPA METHO	0 3C		FIELD			FIELD			FIELD		FIE	LD		FI	ELD		MA	DEP-APH			MADEP	-APH			MADEP-APH	
Parameter				CARBON	DIOXIDE		METHAN			OXYGEN G	AS	C	ARBON DIO	XIDE	1	IETHANE			OXYGEN GAS		PID SOIL G	AS SCREEN		SUBSURFAC	E PRESSUR	E	1.3-B		ē		BENZE	ENE		C5-C8 ALIP	PHATIC HYDROC	ARBONS
Sample Point	Sample Date	Depth	Concentrat I	Reporting L	Qualifier Units	s Concentr	at Reporting L Qua	lifier Units	Concer	trat Reporting LQua	lifier Units	Concentrat Re	porting LQual	lifier Units	Concentrat Repor	ing LQualifi	ier Units	Concentrat F	Reporting LQualifier	Units Conce	entrat Reporting L	Qualifier Units	Concen	trat Reporting	LQualifier L	Inits C	Concentrat Reportin	ng L Qualifie	ar Units	Concentrat R	eporting LC	Qualifier U	nits Co	ncentrat Rep	oorting LQualifier	Units
LAB DUPLICATE	9/10/2010		1.77	0.154	D %		0.164 U	%	1	6.2 1.61 D	%																									T
LAB DUPLICATE	9/16/2010																										26 4	4.4 D	UG/M3	8.2	4.4 C) U	G/M3	1000	26 D	UG/M3
SV-01	9/10/2010											0.8		%				20.8		%																
SV-01	9/10/2010 9:25 AM		3									5		%	0.000	001 U	%	15		% 0.0	0023	%														
SV-01	9/10/2010 9:35 AM		3 4.4	0.226	D %		0.226 U	%	1	1.6 2.26 D	%	5		%				14.2		%							4	4.6 U	UG/M3	16	4.6 E) U	G/M3	1200	28 D	UG/M3
SV-01	9/23/2010																						-0.0	005	11	N H20										
SV-02	9/10/2010											0.8		%				20.8		%																
SV-02	10:02:00 AM	0.	5									5		%	0.000	001 U	%	18.5		% 0.0	0003	%														
SV-02	10:35:00 AM	0.	5 0.418	0.164	D %		0.164 U	%		6.5 1.64 D	%	0.0005		%				18.8		%								2 U	UG/M3	2.2	2 0) U	G/M3	270	12 D	UG/M3
SV-02	9/23/2010																						0.0	005	LT II	N H20										
SV-03	9/10/2010											0.62		%				20.8		%																
SV-03	9/10/2010 2:31 PM	5.	5									5		%	0.000	001 U	%	19.6		% 0.0	0007	%														
SV-03	9/10/2010 3:03 PM	5.	5 2.42	0.161	D %		0.161 U	%		5.8 1.61 D	%	5		%				18.2		%								2 U	UG/M3		2 L	JU	G/M3	440	12 D	UG/M3
SV-03	9/23/2010																						0.0	005	LT II	N H20										
SV-103	9/10/2010											0.8		%				20.8		%																
SV-103	9/10/10 11:19 AM	5.	5									5		%	8.5		%	17.5		% 0.	.0667	%														
SV-103	9/10/10 11:52 AM	5.	5 1.82		D %		0.147 U	%		5.8 1.47 D	%	5		%				17.7		%							40	000 U	UG/M3		4000 L	J U	G/M3 2	100000	24000 D	UG/M3
SV-103	9/23/2010		7																				0.0	015	LT II	N H20										
SV-103	9/23/2010	5.	5																				0.0	015	LT II	N H20										
SV-105	9/10/2010											0.36		%				20.8		%																
SV-105	9/10/2010 1:25 PM	4.	5									5		%	0.000	001 U	%	11.6		% 0.0	0018	%														
SV-105	9/10/2010 2:00 PM	4.	5 7.01	0.174	D %		0.174 U	%	8	.98 1.74 D	%	5		%				11.3		%								2 U	UG/M3	34	2 C) U	G/M3	1200	12 D	UG/M3
SV-105	9/23/2010																						0.0	005	LT II	N H20										
MAINE RESIDENTIAL MULTI-CONTAMINANT CHR	RONIC SOIL GAS TARGET	T (G-1)			-																						4.05		UG/M3	15.5		U	G/M3	2100		UG/M3

				MADEP-APH	4		MADEP-APH			MADEP-APH	4		MADEP-APH		MAD	EP-APH			MADEP-APH			MADEP-AP	Ή			MADEP-APH		TO15			TO15	j.
			C9-C10 AF	ROMATIC HYD	ROCARBONS	C9-C12 A	LIPHATIC HYDR	OCARBONS		ETHYLBENZE	NE		M,P-XYLENE		METHYL-TERT-BU	JTYL ETHE	R (MTBE)		NAPHTHALENE			O-XYLEN				TOLUENE		1,1,1-TRICHLOROI	THANE		1,1-DICHLORO	JETHANE
Sample Point	Sample Date	Depth	Concentrat R	eporting L Quali	fier Units	Concentrat I	Reporting L Qualifi	er Units	Concentrat R	eporting L Quali	fier Units	Concentrat R	eporting LQualifie	er Units	Concentrat Reporting	LQualifier	Units	Concentra	at Reporting LQualifie	r Units	Concentrat	Reporting LQua	lifier Units	Conc	entrat Rep	orting LQualifie	r Units	Concentrat Reporting LQuali	ier Units	Concentra	t Reporting LQ	Jalifier Units
LAB DUPLICATE	9/10/2010																				7.3	4.4 D	UG/M3	3								
LAB DUPLICATE	9/16/2010		98	22 D	UG/M3	260	31 D	UG/M3	13	4.4 D	UG/M3	19	8.8 D	UG/M3	4.	4 U	UG/M3		4.4 U	UG/M3					19	4.4 D	UG/M3	0.433 U	PPBV		0.433 U	PPBV
SV-01	9/10/2010																										-					
SV-01	9/10/2010 9:25 AM	3																														
SV-01	9/10/2010 9:35 AM	3	360	23 D	UG/M3	3300	32 D	UG/M3	47	4.6 D	UG/M3	81	9.2 D	UG/M3	4.	6 U	UG/M3	11	7 4.6 D	UG/M3	28	4.6 D	UG/M3	3	110	4.6 D	UG/M3	2.47 U	UG/M3		1.83 U	UG/M3
SV-01	9/23/2010																															
SV-02	9/10/2010																															
SV-02	10:02:00 AM	0.5																														
SV-02	10:35:00 AM	0.5		10 U	UG/M3	58	14 D	UG/M3		2 U	UG/M3		4 U	UG/M3		2 U	UG/M3		2 U	UG/M3		2 U	UG/M3	3	2.6	2 D	UG/M3	1.09 U	UG/M3		0.809 U	UG/M3
SV-02	9/23/2010																															
SV-03	9/10/2010																										-					
SV-03	9/10/2010 2:31 PM	5.5																											-			
SV-03	9/10/2010 3:03 PM	5.5	130	10 D	UG/M3	640	14 D	UG/M3	9.8	2 D	UG/M3	15	4 D	UG/M3		2 U	UG/M3	20	0 2 D	UG/M3	5.1	2 D	UG/M3	3	11	2 D	UG/M3	1.09 U	UG/M3		0.809 U	UG/M3
SV-03	9/23/2010																															
SV-103	9/10/2010																												_			
SV-103	9/10/10 11:19 AM	5.5																											-			
SV-103	9/10/10 11:52 AM	5.5		20000 U	UG/M3	30000	28000 D	UG/M3		4000 U	UG/M3		8000 U	UG/M3	400	0 U	UG/M3		4000 U	UG/M3		4000 U	UG/M3	3		4000 U	UG/M3	2130 U	UG/M3		1580 U	UG/M3
SV-103	9/23/2010	7																											-			
SV-103	9/23/2010	5.5																														
SV-105	9/10/2010																												_			
SV-105	9/10/2010 1:25 PM	4.5																											-			
SV-105	9/10/2010 2:00 PM	4.5	320	10 D	UG/M3	1300	14 D	UG/M3	87	2 D	UG/M3	150	4 D	UG/M3		2 U	UG/M3	6.8	8 2 D	UG/M3	49	2 D	UG/M3	3	310	2 D	UG/M3	1.09 U	UG/M3		0.809 U	UG/M3
SV-105	9/23/2010																															
																		1														

01-100	3/23/2010																												
MAINE RESIDENTIAL MULTI-CONTAMINANT CHRC	ONIC SOIL GAS TARGET (C	G-1)	500	UG/M3	2100	UG/I	M3 48.5	5	UG/M3				470		UG/M3	3.6		UG/M3			5000	10		UG/M3	50000	UG/M3	75		UG/M3
			TO1:	5		TO15		TO15	5	Т	r015		T	D15			TO15		TO	15		TC	D15		WL			WL	
			1,1-DICHLORO	DETHYLENE	1,2-DIBF	ROMOETHANE		1,2-DICHLORO	DETHANE	CIS-1,2-DICH	HLOROETHENE		TETRACHLO	ROETHYLI	ENE	TRAN	S-1,2-DICHLOROE	THENE	TRICHLORO	ETHYLENE		VINYL CI	HLORIDE		MEASURING POINT EI	EVATION	v	ATER LEVE	L DEPTH
Sample Point	Sample Date De	epth Conc	centrat Reporting I C	Qualifier Units	Concentrat Reportir	ng L Qualifier Units	s Concentra	t Reporting LO	ualifier Units	Concentrat Reporting	LQualifier Uni	ts Conce	entrat Reporting	LQualifier	Units	Concentrat	Reporting LOualifier	r Units	Concentrat Reporting L	Qualifier Units	Concentr	at Reporting I	LQualifier	Units	Concentrat Reporting I Qualif	er Units	Concentrat l	Reporting LQ	ualifier Units
LAB DUPLICATE	9/10/2010																												
LAB DUPLICATE	9/16/2010		0.433 U	J PPBV	0.4	133 U PPB	3V	0.433 U	PPBV	0.43	I3 U PPE	3V	3.84 0.433	D	PPBV		0.433 U	PPBV	0.433	U PPBV		0.433	U	PPBV					
SV-01	9/10/2010																										6	LT	FMP
SV-01	9/10/2010 9:25 AM	3																											
SV-01	9/10/2010 9:35 AM	3	1.79 U	J UG/M3	3	.48 U UG/I	M3	1.83 U	UG/M3	1.7	'9 U UG.	/M3	3.07	U	UG/M3		1.79 U	UG/M3	2.43	U UG/M3		1.16	U	UG/M3					
SV-01	9/23/2010																												
SV-02	9/10/2010																												
SV-02	10:02:00 AM	0.5																											
SV-02	10:35:00 AM	0.5	0.792 U	J UG/M3	1	.54 U UG/I	M3	0.809 U	UG/M3	0.79	12 U UG	/M3	1.36	υ	UG/M3		0.792 U	UG/M3	1.07	U UG/M3		0.511	U	UG/M3					
SV-02	9/23/2010																												
SV-03	9/10/2010																										6	LT	FMP
SV-03	9/10/2010 2:31 PM	5.5																											
SV-03	9/10/2010 3:03 PM	5.5	0.792 U	J UG/M3	1	.54 U UG/I	M3	0.809 U	UG/M3	0.79	2 U UG	/M3	1.36	i U	UG/M3		0.792 U	UG/M3	1.07	U UG/M3		0.511	U	UG/M3					
SV-03	9/23/2010																												
SV-103	9/10/2010																										6.4	LT	FMP
SV-103	9/10/10 11:19 AM	5.5																											
SV-103	9/10/10 11:52 AM	5.5	1550 U	J UG/M3	30	00 U UG/I	M3	1580 U	UG/M3	155	i0 U UG.	/M3	2650	U	UG/M3		1550 U	UG/M3	2100	U UG/M3		999	U	UG/M3					
SV-103	9/23/2010	7																											
SV-103	9/23/2010	5.5																											
	0,00,000																												
SV-105	9/10/2010																								96.51	SD FT	6	IT	EMP
SV-105	9/10/2010 1:25 PM	4.5												1												2211	Ŭ	2.	
SV-105	9/10/2010 2:00 PM	4.5	0.792 U	J UG/M3	1	54 U UG/I	M3	0.809 U	UG/M3	0.79	12 U UG	/M3	47.4 1.36	D	UG/M3		0.792 U	UG/M3	1.07	U UG/M3		0.511	U	UG/M3					
SV-105	9/23/2010		0.102 0	00/110		00/		5.000 0	00/1110	0.10				-	2.110			2 2/110	1.07	00/110		0.011	-						
	0/20/2010													1										1					
MAINE RESIDENTIAL MULTI-CONTAMINANT CHRC	ONIC SOIL GAS TARGET (C	G-1)	2100	UG/M3	0.205	UG/I	M3 4.7	7	UG/M3	650	UG	/M3	20.5	1	UG/M3	650		UG/M3	60	UG/M3	27.	.5		UG/M3					

															Table	4																	
												Summ	nary of Pe	etroleum	n in Soil,	Groundw	ater and So	il Vapor															
													Liver	more Fa	IIs Cumb	erland Fa	arms 1834	-										-		-	-		
															14-Apr	-11												-		-	-		
				MADEP-	-VPH		MAD	EP-VPH			MADEP-VPH	1		MAI	DEP-VPH			MADEP-VPH			MAD	EP-VPH	1	MA	DEP-VPH			MADEP-VPF	1	1	MADE	P-VPH	
Sample				BENZE	INE	C5-C8	3 ALIPHATI	CHYDROC	CARBONS	C9-C10	AROMATIC HYDR	ROCARBONS	C9-C12	ALIPHAT	FIC HYDRO	CARBONS		ETHYLBENZENE	1		M,P->	XYLENE		NAF	HTHALENE			O-XYLENE			TOL	UENE	
Point	Sample Date	Depth	Concentrat Rep	orting LQ	Qualifier Units	Concentr	at Reporting	Qualifier	Units	Concentrat	Reporting Qualif	ier Units	Concentra	at Reportin	ig I Qualifier	Units	Concentrat	Reporting Qualifie	r Units	Concentra	at Reporting	Qualifier	Units	Concentrat Report	ng I Qualifier	Units	Concentrat	Reporting Qualif	er Units	Concentrat	Reporting /	Qualifier	Units
SOIL																																	
SV-103	9/10/20	10	7.5 7970	7080	UG/KG	219000	0 17700	0	UG/KG	1050000	35400	UG/KG	1260000	1770	00	UG/KG		7080 U	UG/KG	16500	14200	0	UG/KG	7	080 U	UG/KG	5190	7080 J	UG/KG	8210	7080)	UG/KG
GBOUNDWATER		_	_			-	-			-			-		_	_	-		_	-		-	-					\vdash		++		-	────
GW-103	9/10/2010 12:45 F	PM		200 U	J UG/L	893	0 500	0	UG/L	11300	1000	UG/L	14300	50	00	UG/L	1870	200	UG/L	9500	400	0	UG/L	664	200	UG/L	3320	200	UG/L	132	200	J	UG/L
																																	1
SOIL VAPOR																																	
SV-103			5.5	4000 U	J UG/M3	240000	0 2400	0 D	UG/M3		20000 U	UG/M3	30000	280	00 D	UG/M3		4000 U	UG/M3		8000	0 U	UG/M3	4	000 U	UG/M3		4000 U	UG/M3		4000) U	UG/M3
																																	<u> </u>
SV /SOIL (ug/m3)/(ug/kg) =			<0.5			1.	.1			<0.02			0.024	1			_			<0.48	3						<0.77	$ \longrightarrow $		<0.49			'
SV/GW (ug/m3)/(ug/liter) -		_				26	Q		-	<1.8			21				-21			<0.84	1			<6.0	-		<12	, 		<30			+
						20	.5			\$1.0			2.				~2.1			NO -	*			20.0		-	<1.2		_				+
SOIL/GW = Kd = (ug/kg)/(ug/liter) =						24	5			93			88	3				35		2	2						2			62			
ME MEG			4		UG/L	30	0		UG/L	200		UG/L	700)		UG/L	30		UG/L					10		UG/L				600			UG/L
ME COMMERCIAL GW SL			6.9		UG/L	3.	2		UG/L	130		UG/L	2.7	7		UG/L	15		UG/L	41	1 (SUM OF	ALL)	UG/L	20		UG/L	SEE M,P X	YLENE LEVEL		16000			UG/L
MA GW STANDARD (GW-2)		_	2000		UG/L	300	0		UG/L	7000		UG/L	5000)	_	UG/L	20000		UG/L					1000	_	UG/L		+		50000			UG/L
	-		15.5		LIC/M2	210	0		LIG/M2	500		LIC/M2	2100			LIC/M2									_			├──┼ ──	<u> </u>	4			────┘
IVIE GOIVIIVIERGIAL SUIL GAS TARGET		1	15.5		06/1/13	210		1	00/10/3	500		0.0/10/3	2100	,		00/10/3			1	1		1	1		1	1	1	1	1	1 1		1	1 1

Figure 1

Site Location Map

Copyright (C) 1997, Maptech, Inc.

Figure 2

Sample Location Map

Appendices

Appendix A

Boring Logs and Monitoring Well Installation Log

		SUM	TIN			SOIL BOR	ING LOG	Boring #:	B-102
E	NVIRON	MENTAL CC	ONSULTANT	S, INC.	Project:	Site Investigat	ion	Project #:	10-3241
		640 Main	Street		Location:	Livermore Falls	s CFI	Sheet:	
	L	ewiston, Ma	ine 04240					Chkd by:	
Drilling	Co:	EPI			Boring Locatio	n:			
Personn	el:	Dave, Brian			Elevation:				
Summit	Staff:	JBR			Date started:	9/10/2010	Date Completed:	9/10/2010	
DF	RILLING M	IETHOD	SAM	NPLER		E	STIMATED GROUND V	NATER DEPTH	
Vehicle:	-	Geoprobe	Туре:	24" SPT	Date	Depth	Reference	Grour	ndwater Elevation
Model:		Track	Hammer:	140 lb.			Ex. Grade		
Method:	1	Dual Tube	Fall:	30"			Top of PVC		
Depth	Nia		Danath (64)	Diama // in		SAM	PLE	Churchanne	Field
(ft.)	NO.	Pen/Rec (In)	Depth (ft)	BIOWS/6 IN.	Crease la sur la	DESCRI	- TION	Stratum	Screening (ppmv)
	51	48/30			Grass, Ioam, I	ignt brown, me	dium sand, dry		0.4 ppm
-									
2									
-					-				
		-							
4					Silt, fine sand	with gravel an	d rock fragments, dry		
					Refusal @ 4'				
6					-				
-									
0					-				
°_									
10									
12									
_									
14									
					{				
					1				
16					1				
· · · -					1				
					1				
_					1				
18									
_									
20									
Granu	ar Soils	Cohesiv	ve Soils	% Composition	NOTES:				
Blows/ft.	Density	Blows/ft.	Consistency		4				
0-4	V. LOOSE	<2	V. soft	-EQ/ +====	1 Field cores	ing roculto in -	arts por million by vel		
4-10	LOOSE	2-4 1 0	SOTT	< 5 % trace	1. FIEID SCREEP	ing results in p	baits per million by Voli	ume (ppmv).	
30-50	Dense	4-8 8-15	FIIIN Stiff	15-15 IITTIE					
<u>50-50</u> ⊳50	V Dense	15-30	V Stiff	>25 and					
200	V. Dense	>30	Hard	~ 20 and					
		- 50							

		SUM	TIN			SOIL BOR	ING LOG	Boring #:	GW-103
E	NVIRON	MENTAL CC	ONSULTANT	S, INC.	Project:	Site Investigat	tion	Project #:	10-3241
		640 Main	Street	-	Location:	Livermore Fall	s CFI	Sheet:	
	L	ewiston, Ma	ine 04240		-			Chkd by:	
Drilling	Co:	EPI			Boring Locatio	n:			
Personn	iel:	Dave, Brian			Elevation:				
Summit	Staff:	JBR			Date started:	9/10/2010	Date Completed:	9/10/2010	
DF	RILLING N	IETHOD	SAN	MPLER		E	ESTIMATED GROUND	WATER DEPTH	
Vehicle:		Geoprobe	Type:	24" SPT	Date	Depth	Reference	Gro	undwater Elev.
Mothod		I rack	Hammer:	140 lb.	9/10/2010	0	EX. Grade		
Dopth		Dual Tube	raii.	30		SVW			Field
(ft)	No	Pen/Rec (in)	Denth (ft)	Blows/6 in		DESCRU		Stratum	Screening (nnmy)
()	S1	48/27	2000000	Diotiore ini	Asphalt	2200111		ottatati	oorooning (ppint)
					Light brown, r	nedium sand,	dry (Fill)		
-							5		
2									
_									
		10/1							
4_	52	48/4			Grey, fine to n	frequencies drive	vith gravel and rock		
						nagments, ur	y, yas uuui		
6									
-									
8					Rock				
					End of boring	@ 8'			
-									
10					Filter condito	21			
10					Pontonito to 2	3 ''			
					Road Box to d	irade			
					Rodu Box to g	luuo			
12									
-									
14									
I -									
14									
10									
-									
18					1				
-]				
I _									
20									
Granu	lar Soils	Cohesiv	re Soils	% Composition	Notes:				
Blows/ft.	Density	Blows/ft.	Consistency		1 Field	ning reachts '	norto non millore le	aluma (mmm)	
0-4	V. LOOSE	<2	V. soft	<5% troop	1. Field scree	ning results in	parts per million by v	oiume (ppmv).	
4-10	LUOSE	2-4 1 8	SOIT	<pre><pre>>>% IFace 5_15 little</pre></pre>					
30-50	Dense	4-0 8-15	Stiff	15-25 some					
>50	V. Dense	15-30	V. Stiff	>25 and					
- 50		>30	Hard	und					
P.				1	1				

		SUM	TIN			SOIL BOR	ING LOG	Boring #:	GW-104
E	NVIRON	MENTAL CO	NSULTANT	S, INC.	Project:	Site Investigat	ion	Project #:	10-3241
		640 Main	Street		Location:	Livermore Fall	s CFI	Sheet:	
	L	ewiston, Ma.	ine 04240					Chkd by:	
Drilling	Co:	EPI			Boring Locatio	n:			
Personn	el:	Dave, Brian			Elevation:				
Summit	Staff:	JBR			Date started:	9/10/2010	Date Completed:	9/10/2010	
DF	RILLING N	IETHOD	SAN	APLER	5.1		STIMATED GROUND	WATER DEPTH	
Venicle:		Geoprobe	Type:	24" SPT	Date	Depth	Reference	Groun	dwater Elevation
Method		Dual Tube	Fall.	30"	9/10/2010	5.3	Top of PVC		
Denth		Dual Tube	1 an.	30		SAM			Field
(ft.)	No.	Pen/Rec (in)	Depth (ft)	Blows/6 in.		DESCRI	PTION	Stratum	Screening (ppmv)
. /	S1	48/15			Grass				3 41 7
					Loam				
_					Light brown sa	and, trace of g	ravel		
2						moist black lay	ver (Fill) dry		
4	60	40/10			Light brown of	lt fine conduc	the energy of continuated		
4_	52	48/12			Light brown si	it, the sand w	in graver, saturated		
-									
6									
-									
_									
8_	S3	12"/6"			Same as abov	e (till)			
-					Dofucal @ 0.1				
10					Refusal @ 9.1				
10_									
					Filter sand to	4'			
-					Bentonite to 0	.6'			
12					Sand to grade				
-									
_									
14			-						
I -									
16									
· · · -									
					1				
18									
- 1									
20									
Grapu	lar Soile	Coboch	e Soile	% Composition	NOTES				
Blows/ft	Density	Blows/ft	Consistency		NUTES:				
0-4	V. Loose	<2	V, soft		1. Field scree	ning results in	parts per million by vo	lume (ppmv).	
4-10	Loose	2-4	Soft	<5% trace		.g. 19410 III		VEE	
10-30	Compact	4-8	Firm	5-15 little					
30-50	Dense	8-15	Stiff	15-25 some					
>50	V. Dense	15-30	V. Stiff	>25 and					
		>30	Hard						

		SUM	TIN		9	SOIL BOR	ING LOG	Boring #:	GW-105
E	NVIRON	MENTAL CC	NSULTANT	S, INC.	Project:	Site Investigat	ion	Project #:	10-3241
		640 Main	Street		Location:	Livermore Fall	s CFI	Sheet:	
	L	ewiston, Ma	ine 04240					Chkd by:	
Drilling	Co:	EPI			Boring Locatio	n:			
Personn	el:	Dave, Brian			Elevation:	0/10/2010	Data Carra L.L. L	0/40/0010	
Summit	Staff:	JRK	C		Date started:	9/10/2010	Date Completed:	9/10/2010	
Dh Vobiolo:	CILLING N	Georgeha	SAN Type:	ALER	Data	Donth	Deference		
Model.		Track	Type: Hammor	140 lb	0/10/2010		Ex Grade	GIU	unuwater Elev.
Method:		Dual Tube	Fall:	30"	//10/2010	0	Top of PVC		
Depth						SAM	PLE		Field
(ft.)	No.	Pen/Rec (in)	Depth (ft)	Blows/6 in.		DESCRI	PTION	Stratum	Screening (ppmv)
	S1	48/27			Asphalt				
_					Light brown, r	nedium sand,	dry (Fill)		
2_									
4	<u>S2</u>	48/36			Same as abov	e			
· · -		10/00				0			
			-						
6									
					Light brown si	It, very fine sa	nd, saturated		
		10/10							
8_	\$3	48/48			Olive silt, satu	rated with fine	sand layers,		
						saturated			
			-		-				
10									
12									
					Bottom of bor	ing @ 12'			
-									
14					Filtor Sand to	0 0'			
14-					Rentonite to s	urface			
					Road box insta	alled			
16]				
_									
18									
20									
Granu	ar Soils	Cohesiv	e Soils	% Composition	Notes:			I	
Blows/ft.	Density	Blows/ft.	Consistency						
0-4	V. Loose	<2	V. soft		1. Field scree	ning results in	parts per million by v	olume (ppmv).	
4-10	Loose	2-4	Soft	<5% trace		-			
10-30	Compact	4-8	Firm	5-15 little					
30-50	Dense	8-15	Stiff	15-25 some					
>50	V. Dense	15-30	V. Stiff	>25 and					
		>30	Hard						

SUMMIT					SOIL BORING LOG			Boring #:	Boring #: SV-103	
ENVIRONMENTAL CONSULTANTS, INC.			Project: Site Investigation			Project #:	Project #: 10-3241			
640 Main Street		Location:	Livermore Fall	s CFI	Sheet:					
Lewiston, Maine 04240					Chkd by:					
Drilling Co: EPI		Boring Location:								
Personnel: Dave, Brian		Elevation:								
Summit	Staff:	JBR			Date started:	9/10/2010	Date Completed:	9/10/2010		
	RILLING N	AETHOD	SAN	APLER			ESTIMATED GROUND	WATER DEPTH		
Venicie:		Geoprobe	Type:	24" SPT	Date Depth Reference Groundwater Elevati			dwater Elevation		
Method:		Dual Tube	Fall.	140 ID. 30"			Top of PVC			
Denth		Dual Tube	r an.	30		SAM			Field	
(ft.)	No.	Pen/Rec (in)	Depth (ft)	Blows/6 in.		DESCRI	PTION	Stratum	Screening (ppmv)	
. ,	S1	48/20			Asphalt	halt			0.5 ppm	
					Brown, mediu	m sand, dry/m	oist (Fill)			
2										
-										
4	50	10/26			Samo as abou	^			0.0 nnm	
4-	32	40/30			Grev fine to r	e nedium sand			0.9 ppm	
					Olive grev, fin	e to medium s	and, gas odor, drv			
-			-		oo g. oj,		ana, gao baon, ang			
6										
_									1430 ppm	
8	S3	48/27			Olive silt, mois	st, trace of gas	odor		24 ppm	
-										
10										
10_										
					Green, grey fi	ne sand with g	ravel, dense,		98 ppm	
						dry/moist, no	significant odor (till)			
12					Refusal @ 11.	5'				
_										
14					Bentonite chip	s to 7.2	F 1			
14_					Deep soil vapo	or probe @ 7-6	.5			
					Shallow soil ve	apor prohe @ F	5.5-5'			
					Sand to 4.5'	apor prone @ c				
16					Bentonite to 3	.5'				
					Sand to grade					
_										
18										
-										
20										
Granu	ar Soils	Cohesiv	e Soils	% Composition	NOTES					
Blows/ft.	Density	Blows/ft.	Consistency							
0-4	V. Loose	<2	V. soft		1. Field screening results in parts per million by volume (ppmv).					
4-10	Loose	2-4	Soft	<5% trace		-				
10-30	Compact	4-8	Firm	5-15 little						
30-50	Dense	8-15	Stiff	15-25 some						
>50	V. Dense	15-30	V. Stiff	>25 and	and					
		>30	Hard							

	SUMMIT		WELL CO	OMPLETION LOG	Well #:	MW-103
ENV	IRONMENTAL CONSULTA	NTS, INC.	Project:	VI Investigation	Project #:	10-3341
	640 Main Street		Location:	Cumberland Farms	Sheet:	1 of 1
	lewiston, Maine 04240)		Livermore Falls, Maine	Chkd by:	JKC
Drilling	Co: <u>EPI</u>		Well Location:	Near roadway		
Foreman	Staff: IRD		Data startod:	0/10/2010 Dato Comr	alatad:	0/10/2010
Summu	Stall. JDK		Date Started.		GW FLF	7/10/2010 /ΔΤΙΩΝS
	Flush-mounted		Surveyor	: Summit	Date	Elevation
	Roadbox	Stratum	Reference	e (MSL or TBM):	9/10/2010	94.01
	. /	from soil	Top of Pr	otective Casing:		
Depth		boring log	Тор	of inner casing: 96.17		
(ft.)	▶			Ground Surface:		
	Filter Sand		· ·	WELL CONSTRUCTION	DETAILS	
'_		SAND (FIII)				
2	Demonine		т	PRUTECTIVE CASH (Standning or roadboy):	roadboy	
2_	Filter Sand		l i j	Diameter (in.):	4.0	
3				Length (in.):	8.0	
				Concrete Seal (gal):	1	
4						
-		SAND with		WELL CASING AND SO	CREEN	6
5_		Gravel and		Matailat	Riser	Screen
6		RUCK		Materiai: Schodulo:	40	40
<u> </u>				Diameter (in).	40	1 0
7				Length (ft):	2.0	5.0
	· · · · · · · · · · · · · · · · · · ·		Interva	below ground surface (ft):	0-2	2-7
8				Slot size (in.):		0.1
	Bottom of boring @ 8'					
9_				FILTER AND SEAL MAT	ERIALS	
10				Turner	Fliter	Seal
10_				rype: Size:	Saliu	Dentonite
11				Quantity (lbs.).		
· · · –			Interva	below ground surface (ft):	0-1, 2-8	1-2
12				5		
				GROUT		
13			Туре (filter sand, bentonite, etc.):		
14			1	Quantity (gal. or lbs.):		
14			Interval	below ground surface (ft.):		
15				WELL DEVELOPMENT	DETAILS	
			Water leve	from measuring point (ft):	6	
16			Depth of wel	from measuring point (ft):	7	
				Total feet of water:	0.50	
17				Volume of water (gal):	0.064	
4.5			\	/olume of water evacuated:	1 gallon	
18				Method of development:	peristaltic pu	mp
19						
17						
20						
			J			
NOTES:						

SUMMIT					WELL CO	OMPLETION LOG	Well #:	MW-104
ENVIRONMENTAL CONSULTANTS, INC.					Project:	VI Investigation	Project #:	10-3341
640 Main Street			Location:	Cumberland Farms	Sheet:	1 of 1		
Iewiston, Maine 04240				Livermore Falls, Maine	Chkd by:	JKC		
Drilling	Co:	EPI	1		Well Location:	Upgradient of building		
Foreman: Dionne					Data startod:	0/10/2010 Data Comr	alotod:	0/10/2010
Summu	Jian	JDR	\	1			GW FLF	3/10/2010
Flush-mounted					Surveyor	: Summit	Date	Elevation
		Roa	adbox	Stratum	Reference	e (MSL or TBM):	9/10/2010	94.01
	_		/	from soil	Top of Pr	otective Casing:		
Depth			/	boring log	Top of inner casing: 99.31			
(ft.)		, 1	<u>ل</u>			Ground Surface:		
1			Filter Sand		\ \	WELL CONSTRUCTION	DETAILS	
'-	-		<u> </u>	SAND, trace				
2				Graver	т	PRUTECTIVE CASH	vG	
² -			Bentonite	(FIII)	l i j	Diameter (in)	4 0	
3				Silty SAND		Length (in.):	8.0	
-				with Gravel		Concrete Seal (gal):	1	
4								
						WELL CASING AND SO	CREEN	
5			: Filter: Sand				Riser	Screen
			_			Material:	PVC	PVC
6_	-		_			Schedule:	40	40
7			_			Diameter (in.):	1.0	1.0 E.O
·			-		Interva	below around surface (ft):	2.0	<u> </u>
8	/////	2	Cave-In		interva	Slot size (in.):	0-4	0.1
							L	
9						FILTER AND SEAL MAT	ERIALS	
		Ref	fusal @ 9.1'				Filter	Seal
10						Туре:	sand	bentonite
						Size:		
11_	_				Intorio	Quantity (lbs.):	0 0 0 7 5	2.2
12					Interva	below ground surface (it):	0-2, 2-7.5	2-3
12_						GROUT		
13					Type (filter sand, bentonite, etc.):		
-	1					Quantity (gal. or lbs.):		
14					Interval	below ground surface (ft.):		
15	_					WELL DEVELOPMENT	DETAILS	
17					Water leve	I from measuring point (ft):	5.3	
10	-				Depth of wel	Total feet of water	<u> </u>	
17						Volume of water (gal).	0.473	
l ''-					١	/olume of water evacuated:	1 gallon	
18						Method of development:	peristaltic pu	mp
_	1					·	· ·	
19								
20								
NOTES	<u> </u>				J			
NUTES:								

	SUMMIT		WELL CO	OMPLETION LOG	Well #:	MW-105
ENV	/IRONMENTAL CONSULTA	NTS, INC.	Project:	VI Investigation	Project #:	10-3341
	640 Main Street		Location:	Cumberland Farms	Sheet:	1 of 1
	Iewiston, Maine 0424	J		Livermore Falls, Maine	Chkd by:	JKC
Drilling	Co: <u>EPI</u>		Well Location:	Near USTs		
Summit	Staff IBR		Date started:	9/10/2010 Date Comr	leted.	9/10/2010
Summe	Stan. SDit		REFER	ENCE FLEVATIONS	GW FLF	ATIONS
	Flush-mounted		Surveyor	: Summit	Date	Elevation
	Roadbox	Stratum	Reference	e (MSL or TBM):	9/10/2010	90.97
	. /	from soil	Top of Pr	otective Casing:		
Depth		boring log	Тор	of inner casing: <u>96.77</u>		
(ft.)				Ground Surface:	DETAILO	
1	Filter Sand		· · ·	WELL CONSTRUCTION	DETAILS	
'-	Bentonite	SAND (FIII)				
2	DEIROINE		Т	rice (Standpipe or roadbox):	roadbox	
			.,	Diameter (in.):	4.0	
3				Length (in.):	8.0	
				Concrete Seal (gal):	1	
4_				WELL CASING AND SO	CREEN	
5	Filter Sand				Riser	Screen
				Material:	PVC	PVC
6		L	-	Schedule:	40	40
		Silty SAND	-	Diameter (in.):	1.0	1.0
7_			lu tomas	Length (ft):	2.0	10.0
8		SILI WITH	Interva	below ground surface (ft): Slot size (in):	0-2	2-12
0_		SAND Mycr3		5101 5120 (11.7.		0.1
9				FILTER AND SEAL MAT	ERIALS	
					Filter	Seal
10				Type:	sand	bentonite
11				SIZE:		
''_			Interva	below ground surface (ft):	0-1 2-12	1-2
12			interva		0-1, 2-12	1-2
	Bottom of Boring @ 12'		1	GROUT		
13			Туре (filter sand, bentonite, etc.):		
				Quantity (gal. or lbs.):		
14_			Interval	below ground surface (ft.):		
15				WELL DEVELOPMENT	DETAILS	
			Water leve	from measuring point (ft):	5.8	
16			Depth of wel	I from measuring point (ft):	12	
47				I otal feet of water:	6.20	
1/_			, , , , , , , , , , , , , , , , , , ,	volume of water (gal):	0.793	
18				Method of development:	peristaltic pu	mp
10						
19_						
20						
NOTES:	1	1	1			

Appendix B

Field Data Sheets

Soil Gas Sampling Field Sheet Maine DEP

Site Name:	CUMB Farms	Sample Location Sketch
Town:	Livo Falls	
Date:	9/10	• • • • • • • • • • • • • • • • • • •
Sample I.D.:	SV-105	
Sampling	(Source) (Utility) (Mitigation)	1 svore
Purpose	(Receptor) (Other)	
Personnel:	Mike Deuling - Sum	17 and 17 and 10 and
Project Manager		
Collection Device:	(Summa Can) (Tedlar Bag)	Tank,
Sample Penetration Location:	Ashphalt) (Concrete) (Soil)	disp
Soil Type:	(Fill) (Till) (Sand & Gravel) (Glacial Marine)	4sland SU
Sample Depth:	4,5-3,5	
Depth to Water:	2 6.0 695	wood (the)
Suspected COCs:	(Petroleum) (Solvents)	Barrier Pole
Cannister I.D.:	506	Prad
Flow Control I.D.:	0100	
Flow control rate:	69 ML/Min	
O ₂ Ambient	20,890	
CO ₂ Ambient	0.36 %	
subsurface pressure/vacuum	(+/- inches of water column)	
Pre-Sample: O ₂	11.6 %	
Pre-Sample CO ₂ :	570	
Pre-Sample PID:	1.8 PPMV	
Pre-Sample CH ₄ :	(% Volume, %LEL, PPM)	
Sample Initiation	1:25 PM	
Initial Vacuum:	-30"	
Sample End Time	2:00 pm	
Final Vaccum:	-3.0 "	meth
Post Sample O ₂ :	11.3%	
Post Sample CO ₂ :	5 %	5 ppm CO-pre samply
05	Sd to 3.5	Finiched w/road
Notes:	chips to J. T	6 ox
	Sand Ja Cut	
	-me to surt	a C-1

SV-
Soil Gas Sampling Field Sheet Maine DEP

•

Site Name:	cumb	Farms		Sample Location S	Sketch
Town:	Lin Fa	115			
Date:	9/10/1	0			
Sample I.D.:	SV-10	2(<u>}</u>	
Sampling	(Source) (Util	lity) (Mitigation)			
Purpose	(Recepto	or (Other)	ungrad, F Saure		or y
Personnel: 7	Devlina	-Summi	1 2011-		
Project	()				
Manager					81
Collection Device:	Summa Car	n) (Tedlar Bag)			2
Sample Penetration Location:	(Ashphalt)	Concrete)	Ð		
Soil Type:	(Fill) (Till) (S (Glacia	Sand & Gravel) I Marine)			Pispislan
Sample Depth:	5.5				
Depth to Water:	6,4				
Suspected COCs:	(Petroleum)	Solvents)	DUP	tond (
Cannister I.D.:	110	194		Tsland all	in?
Flow Control I.D.:	0062	0227		- Shar Sha	
Flow control rate:	71 Mal/min	70 ML/mi	U .		
O ₂ Ambient	20.8%				
CO ₂ Ambient	0.8%	•	:. 		
subsurface pressure/vacuum		+/- inches of water column)			
Pre-Sample: O ₂	17.5%	_			
Pre-Sample CO ₂ :	5.00%	-			
Pre-Sample PID;	667ppm				
Pre-Sample CH ₄ :	17%	(% Volume, %LEt., PPM)			
Sample Initiation Time:	30"	· · ·	_ ·		
Initial Vacuum:	5	-29.0			
Sample End Time:		1:50			
Final Vaccum:	-4	-2			
Post Sample O ₂ :	17.72				
Post Sample CO ₂ :	5%			Post CHU	. 4%
initial	CO = 50	0ppm		Postco	375 PPm
Notes: P	urge	u/per	istalt	i'C	
Éd	exper 1	apor p	role ma	y be belo	w water
L	to Game	les colles	sted fr	om shello	w probli
Notes: P	eeper 1 https://www.	w/ per lapor p les coilea	vobe ma	om shello	w water w proble.

Indoor Air/Subslab Sampling Field Sheet Maine DEP

Site Name:	cumB Farm	Sample Location Sketch
Town:	Liv Falls	
Date:	9/10/10	
Sample I.D.:	SU-07 DE	
Project Monagori	ressey - sym	mit / Hand
Sampling	Qmith DFP	lentra.
Personnel:	De-Hing Symmi	$[T_{1}]$
Collection Device:	(Summa Can) Tediar Bag)	
Sample Type:	(Subslab) (Indoor Air)	Store
Sampling Location:	utilitie room	to the text
Foundation Floor Type:	(Dirt) (Concrete)	closel door
Foundation Wall Type:	(Concrete) (Block) (Stone) (Brick) (Slab on Grade)	1-1-1-T
Sump Hole:	(Yes) (No)	coolers envergi
Penetrations in Floor:	(Sewer) (Water) (Gas) (Cracks)	ed 2/2/ 2001
Penetrations in Wall	(Sewer) (Water) (Gas) (Electric) (Cracks)	50-02
Suspected COCs:	(Petroleum) (Solvents)	
Cannister I.D.:	467	
Flow Control I.D.:	265	
Flow control rate:	Coco mil /mil).	
O2 Ambient	20,81	
CO ₂ Ambient	1, 3.70	
Pre-Sample: O ₂	18.5 %	
Pre-Sample CO ₂ :	590	
Pre-Sample PID:	0.3 ppmv	
Pre-Sample CH₄:	0%	
Sample Initiation Time:	10:08 AM	
Initial Vacuum:	- 301' Hg,	
Sample End Time:	10:35	
Final Vaccum:	-ill' Ha	
Post Sample O ₂ :	18.8 070	
Post Sample CO ₂ :	5%	
Notes/Observat	ions:	

.

Indoor Air/Subslab Sampling Field Sheet Maine DEP

Site Name:	H El Cumb	Sample Location Sketch	
Town:	Liv. Falls	-7	
Date:	9/10	SV-03	l
Sample I.D.:	SV-03	12 in le	h
Project Monagori		Stort	
Sampling	Tree Smith		ı
Personnel:	mike Peyling	entrene / / / /	
Collection Device:	(Summa Can)(Tediar Bag)	Asphelt	
Sample Type:	(Subşlab) (Indoor Air)	soil vapor)	
Sampling Location:	Flect conduit		
Foundation Floor Type:	(Dirt) (Concrete)		
Foundation Wall Type:	(Concrete) (Block) (Stone) (Brick) (Slab on Grade)		
Sump Hole:	(Yes) (No)		
Penetrations in Floor:	(Sewer) (Water) (Gas) (Cracks) (Drains)		
Penetrations in Wall:	(Sewer) (Water) (Gas) (Electric) (Cracks)		
Suspected COCs:	(Petroleum) (Solvents)		
Cannister I.D.:	. 116 .		
Flow Control I.D.:	0365		
Flow control rate:	72 mc/min		
O ₂ Ambient	20.8%		
'CO ₂ Ambient	0.62%		
Pre-Sample: O ₂	19.6%		
Pre-Sample CO ₂ :	5.00%		
Pre-Sample PID:	0.7ppm		
Pre-Sample CH ₄ :	0%		
Sample Initiation Time:	2131		
Initial Vacuum:	-30+"Hy		
Sample End Time	3:03 PM		
Final Vaccum:	-3.0		
Post Sample O ₂ :	18.2 %		
Post Sample CO2	5.00 %		
Notes/Observa	tions:		

. •

.

Soil Gas Sampling Field Sheet Maine DEP

Site Name:	Cumb Farms		Sample	Location S	Sketch	ļ		
Town:	Liv. Falls			tore	5 1 1 1			
Date:	9/10/10						· · · · · · · · · · · · · · · · · · ·	• • •
Sample I.D.:	54-01	·	b	Sideu	191K	-1	، با باند. رو با <u>مقسور</u>	
Sampling Purpose	(Source) Utility (Mitigation) (Receptor) (Other)		P	851-0		·	Ta	nKs
Sampling Personnel:	Mike Deyling	····· · · · · · · · · · · · · · · · ·						
Project Manager	Tron - DED Tresser - Summit		- H-	- Idi	P Zile	J		
Collection Device:	(Summa Can) (Tedlar Bag)		- \\					
Sample Penetration Location:	(Ashphalt) (Concrete) (Soil)		- x					
Soil Type:	(Fill) (Till) (Sand & Gravel) (Glacial Marine)		51	······································				
Sample Depth:	3		<u> </u>					
Depth to Water:	NA							
Suspected COCs:	(Petroleum) (Solvents)							
Cannister I.D.:	(do2		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
Flow Control I.D.:	268		; ; ;					
Flow control rate:	100 mL/min							
O ₂ Ambient	20.8%		r					
CO ₂ Ambient	0.8%							in an an a' start an a' sta In an an an a' start an a' s
subsurface pressure/vacuum	NA (+/- inches of water column)							
Pre-Sample: O ₂	15%							
Pre-Sample CO ₂ :	5%							
Pre-Sample PID:	2,3 PPMV					+		
Pre-Sample CH ₄ :	0 7. (% Volume, %LEL, PPM)							
Sample Initiation Time:	9.25							
Initial Vacuum:	-30' Hg							
Sample End Time:	9135 AM							
Final Vaccum:	-4,935	·	.*	·····	ii			
Post Sample O ₂ :	14,2 20							
Post Sample CO ₂ :	590							
• Notes: P	urge u/perista	1+ic						

Appendix C

Laboratory Reports

ANALYTICAL REPORT

Lab Number:	L1014295
Client:	Summit Environmental
	434 Cony Road
	Augusta, ME 04330
ATTN:	John Cressey
Phone:	(207) 621-8334
Project Name:	LIVERMORE FALLS CFI
Project Number:	Not Specified
Report Date:	09/21/10

Certifications & Approvals: MA (M-MA030), NY (11627), CT (PH-0141), NH (2206), NJ (MA015), RI (LAO00299), ME (MA0030), PA (Registration #68-02089), LA NELAC (03090), FL NELAC (E87814), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name:	LIVERMORE FALLS CFI
Project Number:	Not Specified

 Lab Number:
 L1014295

 Report Date:
 09/21/10

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1014295-01	SV-03	LIVERMORE FALLS, ME	09/10/10 15:03
L1014295-02	SV-103	LIVERMORE FALLS, ME	09/10/10 11:52
L1014295-03	SV-105	LIVERMORE FALLS, ME	09/10/10 14:00
L1014295-04	SV-103 DUP	LIVERMORE FALLS, ME	09/10/10 11:50
L1014295-05	SV-01	LIVERMORE FALLS, ME	09/10/10 09:35
L1014295-06	SV-02	LIVERMORE FALLS, ME	09/10/10 10:35

L1014295

Project Name: LIVERMORE FALLS CFI

Report Date: 09/21/10

Lab Number:

Project Number: Not Specified

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	YES
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A res	ponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Were all QC performance standards specified in the CAM protocol(s) achieved?

YES

Н

 Lab Number:
 L1014295

 Report Date:
 09/21/10

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

MCP Related Narratives

Canisters were released from the laboratory on August 27 and September 7, 2010. The canister certification data is provided as an addendum. The internal standards were within method criteria.

Volatile Organics in Air (Low Level)

L1014295-02 and -04 have elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

L1014295-05: Prior to sample analysis, the canister was pressurized with UHP Nitrogen due to canister size. The pressurization resulted in a dilution of the sample. The reporting limits have been elevated accordingly.

Lab Number: L1014295 **Report Date:** 09/21/10

Case Narrative (continued)

Petroleum Hydrocarbons in Air

L1014295-02 and -04 have elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

L1014295-05: Prior to sample analysis, the canister was pressurized with UHP Nitrogen due to canister size. The pressurization resulted in a dilution of the sample. The reporting limits have been elevated accordingly.

Fixed Gas

L1014295-01 through -06: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen in order to facilitate the transfer of sample to the Gas Chromatograph. The addition of Nitrogen resulted in a dilution of the sample. The reporting limits have been elevated accordingly.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

While M. im Kathleen O'Brien

Title: Technical Director/Representative

Date: 09/21/10

AIR

 Lab Number:
 L1014295

 Report Date:
 09/21/10

Lab ID:	L1014295-01	Date Collected:	09/10/10 15:03
Client ID:	SV-03	Date Received:	09/14/10
Sample Location:	LIVERMORE FALLS, ME	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15		
Analytical Date:	09/17/10 01:18		
Analyst:	RY		

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level) -	Mansfield Lab)						
Vinyl chloride	ND	0.200		ND	0.511			1
1,1-Dichloroethene	ND	0.200		ND	0.792			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Trichloroethene	ND	0.200		ND	1.07			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	94		60-140
Bromochloromethane	99		60-140
chlorobenzene-d5	96		60-140

09/21/10

Project Name: LIVERMORE FALLS CFI

Lab Number: L1014295 Report Date:

Project Number: Not Specified

Lab ID:	L1014295-02 D	Date Collected:	09/10/10 11:52
Client ID:	SV-103	Date Received:	09/14/10
Sample Location:	LIVERMORE FALLS, ME	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15		
Analytical Date:	09/17/10 09:47		
Analyst:	RY		

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level)	- Mansfield Lab	I						
Vinyl chloride	ND	391.		ND	999.			1956
1,1-Dichloroethene	ND	391.		ND	1550			1956
trans-1,2-Dichloroethene	ND	391.		ND	1550			1956
1,1-Dichloroethane	ND	391.		ND	1580			1956
cis-1,2-Dichloroethene	ND	391.		ND	1550			1956
1,2-Dichloroethane	ND	391.		ND	1580			1956
1,1,1-Trichloroethane	ND	391.		ND	2130			1956
Trichloroethene	ND	391.		ND	2100			1956
1,2-Dibromoethane	ND	391.		ND	3000			1956
Tetrachloroethene	ND	391.		ND	2650			1956

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	109		60-140
Bromochloromethane	109		60-140
chlorobenzene-d5	102		60-140

 Lab Number:
 L1014295

 Report Date:
 09/21/10

Lab ID:	L1014295-03	Date Collected:	09/10/10 14:00
Client ID:	SV-105	Date Received:	09/14/10
Sample Location:	LIVERMORE FALLS, ME	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15		
Analytical Date:	09/17/10 01:54		
Analyst:	RY		

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level) -	Mansfield Lab)						
Vinyl chloride	ND	0.200		ND	0.511			1
1,1-Dichloroethene	ND	0.200		ND	0.792			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Trichloroethene	ND	0.200		ND	1.07			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	7.00	0.200		47.4	1.36			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	120		60-140
Bromochloromethane	123		60-140
chlorobenzene-d5	116		60-140

 Lab Number:
 L1014295

 Report Date:
 09/21/10

Lab ID:	L1014295-04 D	Date Collected:	09/10/10 11:50
Client ID:	SV-103 DUP	Date Received:	09/14/10
Sample Location:	LIVERMORE FALLS, ME	Field Prep:	Not Specified
Matrix:	Soil_Vapor		-
Anaytical Method:	48,TO-15		
Analytical Date:	09/17/10 04:12		
Analyst:	RY		

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level) -	Mansfield Lab)						
Vinyl chloride	ND	412.		ND	1050			2061
1,1-Dichloroethene	ND	412.		ND	1630			2061
trans-1,2-Dichloroethene	ND	412.		ND	1630			2061
1,1-Dichloroethane	ND	412.		ND	1670			2061
cis-1,2-Dichloroethene	ND	412.		ND	1630			2061
1,2-Dichloroethane	ND	412.		ND	1670			2061
1,1,1-Trichloroethane	ND	412.		ND	2250			2061
Trichloroethene	ND	412.		ND	2210			2061
1,2-Dibromoethane	ND	412.		ND	3160			2061
Tetrachloroethene	ND	412.		ND	2790			2061

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	134		60-140
Bromochloromethane	126		60-140
chlorobenzene-d5	119		60-140

Serial_No:09211014:09

 Lab Number:
 L1014295

 Report Date:
 09/21/10

Project Name: LIVERMORE FALLS CFI

Project Number: Not Specified

Lab ID:	L1014295-05 D	Date Collected:	09/10/10 09:35
Client ID:	SV-01	Date Received:	09/14/10
Sample Location:	LIVERMORE FALLS, ME	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15		
Analytical Date:	09/17/10 02:30		
Analyst:	RY		

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level) -	Mansfield Lat)						
Vinyl chloride	ND	0.453		ND	1.16			2.264
1,1-Dichloroethene	ND	0.453		ND	1.79			2.264
trans-1,2-Dichloroethene	ND	0.453		ND	1.79			2.264
1,1-Dichloroethane	ND	0.453		ND	1.83			2.264
cis-1,2-Dichloroethene	ND	0.453		ND	1.79			2.264
1,2-Dichloroethane	ND	0.453		ND	1.83			2.264
1,1,1-Trichloroethane	ND	0.453		ND	2.47			2.264
Trichloroethene	ND	0.453		ND	2.43			2.264
1,2-Dibromoethane	ND	0.453		ND	3.48			2.264
Tetrachloroethene	ND	0.453		ND	3.07			2.264

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	127		60-140
Bromochloromethane	123		60-140
chlorobenzene-d5	117		60-140

 Lab Number:
 L1014295

 Report Date:
 09/21/10

Lab ID:	L1014295-06	Date Collected:	09/10/10 10:35
Client ID:	SV-02	Date Received:	09/14/10
Sample Location:	LIVERMORE FALLS, ME	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15		
Analytical Date:	09/17/10 03:04		
Analyst:	RY		

	ppbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level) -	Mansfield Lab)						
Vinyl chloride	ND	0.200		ND	0.511			1
1,1-Dichloroethene	ND	0.200		ND	0.792			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Trichloroethene	ND	0.200		ND	1.07			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	112		60-140
Bromochloromethane	112		60-140
chlorobenzene-d5	105		60-140

Report Date: 09/21/10

Method Blank Analysis Batch Quality Control

Analytical Method:48,TO-15Analytical Date:09/16/10 17:06

	ppbV					Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level) -	Mansfield L	ab for sar	mple(s):	01-06 Batch:	WG43	2800-4		
Vinyl chloride	ND	0.200		ND	0.511			1
1,1-Dichloroethene	ND	0.200		ND	0.792			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Trichloroethene	ND	0.200		ND	1.07			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1

Lab Control Sample Analysis Batch Quality Control

Project Name: LIVERMORE FALLS CFI

Project Number: Not Specified Lab Number: L1014295 Report Date: 09/21/10

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air (Low Level) - Mansfie	ld Lab Associat	ed sample(s): 01-06 Batch	: WG43	2800-3			
Vinyl chloride	97		-		70-130	-		
1,1-Dichloroethene	98		-		70-130	-		
trans-1,2-Dichloroethene	89		-		70-130	-		
1,1-Dichloroethane	90		-		70-130	-		
cis-1,2-Dichloroethene	94		-		70-130	-		
1,2-Dichloroethane	97		-		70-130	-		
1,1,1-Trichloroethane	94		-		70-130	-		
Trichloroethene	96		-		70-130	-		
1,2-Dibromoethane	94		-		70-130	-		
Tetrachloroethene	96		-		70-130	-		

Lab Duplicate Analysis

Project Name: LIVERMORE FALLS CFI

Not Specified

Project Number:

Batch Quality Control

Lab Number: L1014295 09/21/10 Report Date:

Parameter Native Sample **Duplicate Sample** Units RPD Qual **RPD** Limits Volatile Organics in Air (Low Level) - Mansfield Lab Associated sample(s): 01-06 QC Batch ID: WG432800-5 QC Sample: L1014293-01 Client ID: DUP Sample Vinyl chloride ppbV ND ND NC 25 NC 25 1,1-Dichloroethene ND ND ppbV 25 ND ND ppbV NC trans-1,2-Dichloroethene 1,1-Dichloroethane ND ND ppbV NC 25 cis-1,2-Dichloroethene ND ND ppbV NC 25 1,2-Dichloroethane ND ND ppbV NC 25 ND ND ppbV NC 25 1,1,1-Trichloroethane Trichloroethene ND ND NC 25 ppbV 1,2-Dibromoethane ND ND NC 25 ppbV Tetrachloroethene 3.87 3.84 ppbV 25 1

Serial_N	lo:09211014:09
Lab Number:	L1014295
Report Date:	09/21/10

Lab ID:	L1014295-01	D	Date Collected:	09/10/10 15:03
Client ID:	SV-03		Date Received:	09/14/10
Sample Location:	LIVERMORE FALLS	S, ME	Field Prep:	Not Specified
Matrix:	Soil_Vapor		Extraction Method:	
Analytical Method:	51,3C			
Analytical Date:	09/17/10 21:26			
Analyst:	RY			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Fixed Gases by GC - Mansfield Lab						
Oxygen	15.8		%	1.61		1.606
Methane	ND		%	0.161		1.606
Carbon Dioxide	2.42		%	0.161		1.606

	Serial_No:09211014:09
LIVERMORE FALLS CFI	Lab Number: L1014295
Not Specified	Report Date: 09/21/10
SAMPLE RESULTS	

Lab ID:	L1014295-02 D)	Date Collected:
Client ID:	SV-103		Date Received:
Sample Location:	LIVERMORE FALLS, I	ME	Field Prep:
Matrix:	Soil_Vapor		Extraction Method:
Analytical Method:	51,3C		
Analytical Date:	09/17/10 22:08		
Analyst:	RY		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Fixed Gases by GC - Mansfield Lab						
Oxygen	15.8		%	1.47		1.467
Methane	ND		%	0.147		1.467
Carbon Dioxide	1.82		%	0.147		1.467

09/10/10 11:52 09/14/10 Not Specified

Project Name:

Project Number:

		Serial_No:09211014:0			
Project Name:	LIVERMORE FALLS CFI	Lab Number:	L1014295		
Project Number:	Not Specified	Report Date:	09/21/10		
	SAMPLE RESULTS				
Lab ID: Client ID:	L1014295-03 D	Date Collected:	09/10/10 14:00		
Sample Location: Matrix:	LIVERMORE FALLS, ME Soil_Vapor	Field Prep: Extraction Method:	Not Specified		
Analytical Method: Analytical Date:	51,3C 09/17/10 22:51				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Fixed Gases by GC - Mansfield Lab						
Oxygen	8.98		%	1.74		1.745
Methane	ND		%	0.174		1.745
Carbon Dioxide	7.01		%	0.174		1.745

Analyst:

RY

Serial_No:09211014:0				
Lab Number:	L1014295			
Report Date:	09/21/10			

Project Name: LIVERMORE FALLS CFI

Project Number: Not Specified

Lab ID:	L1014295-04 D	Date Collected:	09/10/10 11:50
Client ID:	SV-103 DUP	Date Received:	09/14/10
Sample Location:	LIVERMORE FALLS, ME	Field Prep:	Not Specified
Matrix:	Soil_Vapor	Extraction Method:	
Analytical Method:	51,3C		
Analytical Date:	09/17/10 23:34		
Analyst:	RY		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Fixed Gases by GC - Mansfield Lab						
Oxygen	15.9		%	1.54		1.545
Methane	ND		%	0.154		1.545
Carbon Dioxide	1.77		%	0.154		1.545

Serial_No:09211014:0				
Lab Number:	L1014295			
Report Date:	09/21/10			

Lab ID:	L1014295-05 D	Date Collected: 09/10/10 09:35
Client ID:	SV-01	Date Received: 09/14/10
Sample Location:	LIVERMORE FALLS, ME	Field Prep: Not Specified
Matrix:	Soil_Vapor	Extraction Method:
Analytical Method:	51,3C	
Analytical Date:	09/18/10 00:16	
Analyst:	RY	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Fixed Gases by GC - Mansfield Lab						
Oxygen	11.6		%	2.26		2.264
Methane	ND		%	0.226		2.264
Carbon Dioxide	4.40		%	0.226		2.264

		Serial_No:0	9211014:09
Project Name:	LIVERMORE FALLS CFI	Lab Number:	L1014295
Project Number:	Not Specified	Report Date:	09/21/10
	SAN	IPLE RESULTS	
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date:	L1014295-06 D SV-02 LIVERMORE FALLS, ME Soil_Vapor 51,3C 09/18/10 00:59	Date Collected: Date Received: Field Prep: Extraction Method:	09/10/10 10:35 09/14/10 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Fixed Gases by GC - Mansfield Lab						
Oxygen	16.5		%	1.64		1.646
Methane	ND		%	0.164		1.646
Carbon Dioxide	0.418		%	0.164		1.646

Analyst:

RY

Project Name:	LIVERMORE FALLS CFI	Lab Number:	L1014295		
Project Number:	Not Specified	Report Date:	09/21/10		
Mathed Plank Analysis					

Method Blank Analysis Batch Quality Control

Analytical Method:51,3CAnalytical Date:09/17/10 16:19Analyst:RY

Parameter	Result	Qualifier	Units	s RL	MDL
Fixed Gases by GC - Mansfield La	b for sample	(s): 01-06	Batch:	WG432998-2	
Oxygen	ND		%	1.00	
Methane	ND		%	0.100	
Carbon Dioxide	ND		%	0.100	

Lab Control Sample Analysis Batch Quality Control

Project Name: LIVERMORE FALLS CFI

Project Number: Not Specified Lab Number: L1014295 Report Date: 09/21/10

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Fixed Gases by GC - Mansfield Lab	Associated sample(s):	01-06	Batch: WG432998-1					
Oxygen	93		-		80-120	-		
Methane	95		-		80-120	-		
Carbon Dioxide	106		-		80-120	-		

Lab Duplicate Analysis Batch Quality Control

Project Name: LIVERMORE FALLS CFI

 Lab Number:
 L1014295

 Report Date:
 09/21/10

Project Number: Not Specified

Parameter	Native Sample	Duplicate Sam	ple Units	RPD	Qual RPD Limits
Fixed Gases by GC - Mansfield Lab Associated samp	e(s): 01-06 QC Batch II	D: WG432998-10	QC Sample: L10142	295-03 Clien	t ID: SV-105
Oxygen	8.98	8.85	%	1	5
Methane	ND	ND	%	NC	5
Carbon Dioxide	7.01	7.01	%	0	5
Fixed Gases by GC - Mansfield Lab Associated samp	e(s): 01-06 QC Batch II	D: WG432998-11	QC Sample: L10142	295-04 Clien	t ID: SV-103 DUP
Oxygen	15.9	15.5	%	3	5
Methane	ND	ND	%	NC	5
Carbon Dioxide	1.77	1.77	%	0	5
Fixed Gases by GC - Mansfield Lab Associated samp	e(s): 01-06 QC Batch II	D: WG432998-12	QC Sample: L10142	295-05 Clien	t ID: SV-01
Oxygen	11.6	12.1	%	4	5
Methane	ND	ND	%	NC	5
Carbon Dioxide	4.40	4.40	%	0	5
Fixed Gases by GC - Mansfield Lab Associated samp	e(s): 01-06 QC Batch II	D: WG432998-13	QC Sample: L10142	295-06 Clien	t ID: SV-02
Oxygen	16.5	16.7	%	1	5
Methane	ND	ND	%	NC	5
Carbon Dioxide	0.418	0.416	%	0	5

Lab Duplicate Analysis Batch Quality Control

Project Name: LIVERMORE FALLS CFI

Lab Number: L1014295 09/21/10 Report Date:

Project Number: Not Specified

Parameter		Native Sa	ample	Duplicate Sa	mple Ur	nits	RPD	RPD Limits
Fixed Gases by GC - Mansfield Lab	Associated sample(s):	: 01-06	QC Batch ID:	WG432998-3	QC Sample	: L101429	3-01 Client	ID: DUP Sample
Oxygen		11.7		11.6	C	%	1	5
Methane		ND		ND	C	%	NC	5
Carbon Dioxide		2.85		2.91	C	%	2	5
Fixed Gases by GC - Mansfield Lab	Associated sample(s):	: 01-06	QC Batch ID:	WG432998-4	QC Sample	: L101429	3-02 Client	ID: DUP Sample
Oxygen		15.2		14.7	C	%	3	5
Methane		ND		ND	C	%	NC	5
Carbon Dioxide		2.81		2.82	C	%	0	5
Fixed Gases by GC - Mansfield Lab	Associated sample(s):	: 01-06	QC Batch ID:	WG432998-5	QC Sample	: L101429	3-03 Client I	ID: DUP Sample
Oxygen		11.4		11.6	C	%	2	5
Methane		ND		ND	C	%	NC	5
Carbon Dioxide		1.98		1.98	C	%	0	5
Fixed Gases by GC - Mansfield Lab	Associated sample(s):	: 01-06	QC Batch ID:	WG432998-6	QC Sample	: L101429	3-04 Client I	ID: DUP Sample
Oxygen		17.9		17.4	C	%	3	5
Methane		ND		ND	C	%	NC	5
Carbon Dioxide		0.18)	0.182	c	%	1	5

Lab Duplicate Analysis Batch Quality Control

Project Name: LIVERMORE FALLS CFI

 Lab Number:
 L1014295

 Report Date:
 09/21/10

Project Number: Not Specified

Parameter Na	ative Sample	Duplicate Sam	ple Units	RPD	RPD Limits
Fixed Gases by GC - Mansfield Lab Associated sample(s):	01-06 QC Batch ID:	WG432998-7 (QC Sample: L1014293	-05 Client ID:	DUP Sample
Oxygen	16.6	16.8	%	1	5
Methane	ND	ND	%	NC	5
Carbon Dioxide	1.59	1.59	%	0	5
Fixed Gases by GC - Mansfield Lab Associated sample(s):	01-06 QC Batch ID:	WG432998-8 (QC Sample: L1014295	-01 Client ID:	SV-03
Oxygen	15.8	16.2	%	2	5
Methane	ND	ND	%	NC	5
Carbon Dioxide	2.42	2.41	%	0	5
Fixed Gases by GC - Mansfield Lab Associated sample(s):	01-06 QC Batch ID:	WG432998-9 (QC Sample: L1014295	-02 Client ID:	SV-103
Oxygen	15.8	16.0	%	1	5
Methane	ND	ND	%	NC	5
Carbon Dioxide	1.82	1.82	%	0	5

			Serial_No:09	9211014:09		
Project Name:	LIVERMORE FALLS CFI		Lab Number:	L1014295		
Project Number:	Not Specified		Report Date:	09/21/10		
	\$	SAMPLE RESULTS				
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1014295-01 SV-03 LIVERMORE FALLS, ME Soil_Vapor 96,APH 09/17/10 01:18 RY		Date Collected: Date Received: Field Prep:	09/10/10 15:03 09/14/10 Not Specified		
Quality Control Information						
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						

Quarty control monnation	
Sample Type:	30 minute Composite
Sample Container Type:	Canister - 2.7 Liter
Sampling Flow Controller:	Mechanical
Sampling Zone:	Unknown
Sampling Flow Meter RPD of pre & post-sampling calibration check:	<=20%
Were all QA/QC procedures REQUIRED by the method followed?	Yes
Were all performance/acceptance standards for the required procedures achieved?	Yes
Were significant modifications made to the method as specified in Sect 11.1.2?	No

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air - M	ansfield Lab				
1,3-Butadiene	ND	ug/m3	2.0		1
Methyl tert butyl ether	ND	ug/m3	2.0		1
Benzene	ND	ug/m3	2.0		1
Toluene	11	ug/m3	2.0		1
C5-C8 Aliphatics, Adjusted	440	ug/m3	12		1
Ethylbenzene	9.8	ug/m3	2.0		1
p/m-Xylene	15	ug/m3	4.0		1
o-Xylene	5.1	ug/m3	2.0		1
Naphthalene	20	ug/m3	2.0		1
C9-C12 Aliphatics, Adjusted	640	ug/m3	14		1
C9-C10 Aromatics Total	130	ug/m3	10		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		50-200
Bromochloromethane	93		50-200
Chlorobenzene-d5	92		50-200

			Serial_No:	09211014:09		
Project Name:	LIVERMORE FALLS	CFI	Lab Number:	L1014295		
Project Number:	Not Specified		Report Date:	09/21/10		
		SAMPLE RESULTS				
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1014295-02 D SV-103 LIVERMORE FALLS Soil_Vapor 96,APH 09/17/10 03:37 RY	, ME	Date Collected: Date Received: Field Prep:	09/10/10 11:52 09/14/10 Not Specified		
Quality Control Information						

Sample Type:	30 minute Composite
Sample Container Type:	Canister - 2.7 Liter
Sampling Flow Controller:	Mechanical
Sampling Zone:	Unknown
Sampling Flow Meter RPD of pre & post-sampling calibration check:	<=20%
Were all QA/QC procedures REQUIRED by the method followed?	Yes
Were all performance/acceptance standards for the required procedures achieved?	Yes
Were significant modifications made to the method as specified in Sect 11.1.2?	No

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air - N	lansfield Lab					
1,3-Butadiene	ND		ug/m3	4000		2000
Methyl tert butyl ether	ND		ug/m3	4000		2000
Benzene	ND		ug/m3	4000		2000
Toluene	ND		ug/m3	4000		2000
C5-C8 Aliphatics, Adjusted	2400000		ug/m3	24000		2000
Ethylbenzene	ND		ug/m3	4000		2000
p/m-Xylene	ND		ug/m3	8000		2000
o-Xylene	ND		ug/m3	4000		2000
Naphthalene	ND		ug/m3	4000		2000
C9-C12 Aliphatics, Adjusted	30000		ug/m3	28000		2000
C9-C10 Aromatics Total	ND		ug/m3	20000		2000

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	130		50-200
Bromochloromethane	127		50-200
Chlorobenzene-d5	118		50-200

			Serial_No:	09211014:09
Project Name:	LIVERMORE FALLS CFI		Lab Number:	L1014295
Project Number:	Not Specified		Report Date:	09/21/10
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1014295-03 SV-105 LIVERMORE FALLS, ME Soil_Vapor 96,APH 09/17/10 01:54 RY		Date Collected: Date Received: Field Prep:	09/10/10 14:00 09/14/10 Not Specified

Quality Control Information	
Sample Type:	30 minute Composite
Sample Container Type:	Canister - 2.7 Liter
Sampling Flow Controller:	Mechanical
Sampling Zone:	Unknown
Sampling Flow Meter RPD of pre & post-sampling calibration check:	<=20%
Were all QA/QC procedures REQUIRED by the method followed?	Yes
Were all performance/acceptance standards for the required procedures achieved?	Yes
Were significant modifications made to the method as specified in Sect 11.1.2?	No

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air - I	Mansfield Lab				
1,3-Butadiene	ND	ug/m3	2.0		1
Methyl tert butyl ether	ND	ug/m3	2.0		1
Benzene	34	ug/m3	2.0		1
Toluene	310	ug/m3	2.0		1
C5-C8 Aliphatics, Adjusted	1200	ug/m3	12		1
Ethylbenzene	87	ug/m3	2.0		1
p/m-Xylene	150	ug/m3	4.0		1
o-Xylene	49	ug/m3	2.0		1
Naphthalene	6.8	ug/m3	2.0		1
C9-C12 Aliphatics, Adjusted	1300	ug/m3	14		1
C9-C10 Aromatics Total	320	ug/m3	10		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	111		50-200
Bromochloromethane	116		50-200
Chlorobenzene-d5	112		50-200

			Serial_No:	09211014:09
Project Name:	LIVERMORE FALLS	CFI	Lab Number:	L1014295
Project Number:	Not Specified		Report Date:	09/21/10
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1014295-04 D SV-103 DUP LIVERMORE FALLS Soil_Vapor 96,APH 09/17/10 04:12 RY	, ME	Date Collected: Date Received: Field Prep:	09/10/10 11:50 09/14/10 Not Specified
		Quality Control Information		

Quality Control Information	
Sample Type:	30 minute Composite
Sample Container Type:	Canister - 2.7 Liter
Sampling Flow Controller:	Mechanical
Sampling Zone:	Unknown
Sampling Flow Meter RPD of pre & post-sampling calibration check:	<=20%
Were all QA/QC procedures REQUIRED by the method followed?	Yes
Were all performance/acceptance standards for the required procedures achieved?	Yes
Were significant modifications made to the method as specified in Sect 11.1.2?	No

Parameter	Result	Qualifier L	Jnits	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air - N	lansfield Lab					
1,3-Butadiene	ND	u	g/m3	4200		2100
Methyl tert butyl ether	ND	u	g/m3	4200		2100
Benzene	ND	u	g/m3	4200		2100
Toluene	ND	u	g/m3	4200		2100
C5-C8 Aliphatics, Adjusted	2400000	u	g/m3	25000		2100
Ethylbenzene	ND	u	g/m3	4200		2100
p/m-Xylene	ND	u	g/m3	8400		2100
o-Xylene	ND	u	g/m3	4200		2100
Naphthalene	ND	u	g/m3	4200		2100
C9-C12 Aliphatics, Adjusted	ND	u	g/m3	29000		2100
C9-C10 Aromatics Total	ND	U	g/m3	21000		2100

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	124		50-200
Bromochloromethane	122		50-200
Chlorobenzene-d5	113		50-200

Serial_No:09211014:0		
Lab Number:	L1014295	
Report Date:	09/21/10	

Project Name: LIVERMORE FALLS CFI

Project Number: Not Specified

Lab ID:	L1014295-05 D
Client ID:	SV-01
Sample Location:	LIVERMORE FALLS, ME
Matrix:	Soil_Vapor
Analytical Method:	96,APH
Analytical Date:	09/17/10 02:30
Analyst:	RY

Date Collected:	09/10/10 09:35
Date Received:	09/14/10
Field Prep:	Not Specified

Quality Control Information	
Sample Type:	100 ml/min Composite
Sample Container Type:	Canister - 1 Liter
Sampling Flow Controller:	Mechanical
Sampling Zone:	Unknown
Sampling Flow Meter RPD of pre & post-sampling calibration check:	<=20%
Were all QA/QC procedures REQUIRED by the method followed?	Yes
Were all performance/acceptance standards for the required procedures achieved?	Yes
Were significant modifications made to the method as specified in Sect 11.1.2?	No

Parameter	Result	Qualifier Un	its RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air - I	Mansfield Lab				
1,3-Butadiene	ND	ug/r	n3 4.6		2.3
Methyl tert butyl ether	ND	ug/r	n3 4.6		2.3
Benzene	16	ug/r	n3 4.6		2.3
Toluene	110	ug/r	n3 4.6		2.3
C5-C8 Aliphatics, Adjusted	1200	ug/r	n3 28		2.3
Ethylbenzene	47	ug/r	n3 4.6		2.3
p/m-Xylene	81	ug/r	n3 9.2		2.3
o-Xylene	28	ug/r	n3 4.6		2.3
Naphthalene	17	ug/r	n3 4.6		2.3
C9-C12 Aliphatics, Adjusted	3300	ug/r	n3 32		2.3
C9-C10 Aromatics Total	360	ug/r	m3 23		2.3

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	117		50-200
Bromochloromethane	119		50-200
Chlorobenzene-d5	112		50-200

			Serial_No:	09211014:09
Project Name:	LIVERMORE FALLS CFI		Lab Number:	L1014295
Project Number:	Not Specified		Report Date:	09/21/10
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1014295-06 SV-02 LIVERMORE FALLS, ME Soil_Vapor 96,APH 09/17/10 03:04 RY		Date Collected: Date Received: Field Prep:	09/10/10 10:35 09/14/10 Not Specified
	-			

Quality Control Information	
Sample Type:	30 minute Composite
Sample Container Type:	Canister - 2.7 Liter
Sampling Flow Controller:	Mechanical
Sampling Zone:	Unknown
Sampling Flow Meter RPD of pre & post-sampling calibration check:	<=20%
Were all QA/QC procedures REQUIRED by the method followed?	Yes
Were all performance/acceptance standards for the required procedures achieved?	Yes
Were significant modifications made to the method as specified in Sect 11.1.2?	No

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air - M	lansfield Lab				
1,3-Butadiene	ND	ug/m3	2.0		1
Methyl tert butyl ether	ND	ug/m3	2.0		1
Benzene	2.2	ug/m3	2.0		1
Toluene	2.6	ug/m3	2.0		1
C5-C8 Aliphatics, Adjusted	270	ug/m3	12		1
Ethylbenzene	ND	ug/m3	2.0		1
p/m-Xylene	ND	ug/m3	4.0		1
o-Xylene	ND	ug/m3	2.0		1
Naphthalene	ND	ug/m3	2.0		1
C9-C12 Aliphatics, Adjusted	58	ug/m3	14		1
C9-C10 Aromatics Total	ND	ug/m3	10		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	103		50-200
Bromochloromethane	106		50-200
Chlorobenzene-d5	99		50-200

 Project Name:
 LIVERMORE FALLS CFI
 Lab Number:
 L1014295

 Project Number:
 Not Specified
 Report Date:
 09/21/10

Method Blank Analysis Batch Quality Control

Analytical Method:96,APHAnalytical Date:09/16/10 17:06Analyst:RY

Parameter	Result	Qualifier	Units	RL	MDL
Petroleum Hydrocarbons in Air -	Mansfield Lab	for sample(s):	01-06	Batch: WG432	2801-4
1,3-Butadiene	ND		ug/m3	2.0	
Methyl tert butyl ether	ND		ug/m3	2.0	
Benzene	ND		ug/m3	2.0	
Toluene	ND		ug/m3	2.0	
C5-C8 Aliphatics, Adjusted	ND		ug/m3	12	
Ethylbenzene	ND		ug/m3	2.0	
p/m-Xylene	ND		ug/m3	4.0	
o-Xylene	ND		ug/m3	2.0	
Naphthalene	ND		ug/m3	2.0	
C9-C12 Aliphatics, Adjusted	ND		ug/m3	14	
C9-C10 Aromatics Total	ND		ug/m3	10	

Lab Control Sample Analysis Batch Quality Control

Project Name: LIVERMORE FALLS CFI

Project Number: Not Specified Lab Number: L1014295 Report Date: 09/21/10

-	LCS	0	L 0/ P.	CSD	0	%Recovery		0	
Parameter	%Recovery	Quai	70K	ecovery	Quai	Limits	RPD	Quai	RPD Limits
Petroleum Hydrocarbons in Air - Mansfield Lat	o Associated s	ample(s):	01-06	Batch:	WG432801-3	3			
1,3-Butadiene	86			-		70-130	-		
Methyl tert butyl ether	93			-		70-130	-		
Benzene	90			-		70-130	-		
Toluene	99			-		70-130	-		
C5-C8 Aliphatics, Adjusted	96			-		70-130	-		
Ethylbenzene	102			-		70-130	-		
p/m-Xylene	102			-		70-130	-		
o-Xylene	104			-		70-130	-		
Naphthalene	118			-		50-150	-		
C9-C12 Aliphatics, Adjusted	123			-		70-130	-		
C9-C10 Aromatics Total	92			-		70-130	-		

Lab Duplicate Analysis Batch Quality Control

Project Name: LIVERMORE FALLS CFI

Lab Number: L1014295 09/21/10 Report Date:

Project Number: Not Specified

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Petroleum Hydrocarbons in Air - Mansfield Lab Sample	Associated sample(s): 01-06	QC Batch ID: WG432801-5	QC Sample:	L101429	93-01 Cli	ent ID: DUP
1,3-Butadiene	26	26	ug/m3	0		30
Methyl tert butyl ether	ND	ND	ug/m3	NC		30
Benzene	8.0	8.2	ug/m3	2		30
Toluene	19	19	ug/m3	0		30
C5-C8 Aliphatics, Adjusted	1000	1000	ug/m3	0		30
Ethylbenzene	13	13	ug/m3	0		30
p/m-Xylene	19	19	ug/m3	0		30
o-Xylene	7.0	7.3	ug/m3	4		30
Naphthalene	ND	ND	ug/m3	NC		30
C9-C12 Aliphatics, Adjusted	270	260	ug/m3	4		30
C9-C10 Aromatics Total	99	98	ug/m3	1		30

Project Number:

Report Date: 09/21/10

Canister and Flow Controller Information

					Initial	Pressure			
Samplenum	Client ID	Media ID	Media Type	Cleaning Batch ID	Pressure (in. Hg)	on Receipt (in. Hg)	Flow Out mL/min	Flow In mL/min	% RSD
L1014295-01	SV-03	0365	#90 SV		-	-	72	69	4
L1014295-01	SV-03	116	2.7L Can	11013618	-29.5	-0.7	-	-	-
L1014295-02	SV-103	0062	#90 SV		-	-	71	74	4
L1014295-02	SV-103	110	2.7L Can	11013194	-29.5	-1.1	-	-	-
L1014295-03	SV-105	0100	#30 SV		-	-	69	66	4
L1014295-03	SV-105	506	2.7L Can	11013618	-29.5	-2.0	-	-	-
L1014295-04	SV-103 DUP	0227	#90 SV		-	-	70	71	1
L1014295-04	SV-103 DUP	194	2.7L Can	11013618	-29.5	-2.6	-	-	-
L1014295-05	SV-01	0268	#90 SV		-	-	100	100	0
L1014295-05	SV-01	662	1.0L Can	L1013135	-29.1	-1.6	-	-	-
L1014295-06	SV-02	0265	#90 SV		-	-	66	64	3
L1014295-06	SV-02	467	2.7L Can	11013618	-29.5	-0.7	-	-	-

Air Volatiles Can Certification

Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1013135
Project Number:	CANISTER QC BAT	Report Date:	09/21/10

Lab ID:	L1013135-01	Date Collected:	08/25/10 00:00
Client ID:	CAN 713 SHELF 13	Date Received:	08/25/10
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15		
Analytical Date:	08/26/10 12:06		
Analyst:	AJ		

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level) -	Mansfield Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.200		ND	0.344			1
Propane	ND	0.200		ND	0.606			1
Dichlorodifluoromethane	ND	0.200		ND	0.988			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.776			1
Chloroethane	ND	0.200		ND	0.527			1
Ethanol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.841			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.14			1
Acetone	ND	1.00		ND	2.37			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.200		ND	0.434			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.792			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1013135

 Report Date:
 09/21/10

Lab ID: Client ID:	L1013135-01 CAN 713 SHELI	L1013135-01 CAN 713 SHELF 13					Collecte Receive	08/25/10 00:00 08/25/10	
Sample Location:						Field	Prep:		Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r Factor
Volatile Organics in	Air (Low Level) - M	ansfield Lat)						
Methylene chloride		ND	1.00		ND	3.47			1
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		ND	0.200		ND	0.622			1
Freon-113		ND	0.200		ND	1.53			1
trans-1,2-Dichloroether	ne	ND	0.200		ND	0.792			1
1,1-Dichloroethane		ND	0.200		ND	0.809			1
Methyl tert butyl ether		ND	0.200		ND	0.720			1
Vinyl acetate		ND	0.200		ND	0.704			1
2-Butanone		ND	0.200		ND	0.589			1
cis-1,2-Dichloroethene		ND	0.200		ND	0.792			1
Ethyl Acetate		ND	0.500		ND	1.80			1
Chloroform		ND	0.200		ND	0.976			1
Tetrahydrofuran		ND	0.200		ND	0.589			1
2,2-Dichloropropane		ND	0.200		ND	0.923			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		ND	0.200		ND	0.704			1
Diisopropyl ether		ND	0.200		ND	0.835			1
tert-Butyl Ethyl Ether		ND	0.200		ND	0.835			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
1,1-Dichloropropene		ND	0.200		ND	0.907			1
Benzene		ND	0.200		ND	0.638			1
Carbon tetrachloride		ND	0.200		ND	1.26			1
Cyclohexane		ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether		ND	0.200		ND	0.835			1
Dibromomethane		ND	0.200		ND	1.42			1
1,2-Dichloropropane		ND	0.200		ND	0.924			1
Bromodichloromethane		ND	0.200		ND	1.34			1
1,4-Dioxane		ND	0.200		ND	0.720			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1013135

 Report Date:
 09/21/10

Lab ID: Client ID:	L1013135-01 CAN 713 SHEL	F 13			Date Collected: Date Received: Field Prep:			08/25/10 00:00 08/25/10	
Sample Location.			Vdqq			ua/m3	Prep.		NOT Specified
Parameter		Results	RL	MDL	Results	RL	RL MDL		r Factor
Volatile Organics in	Air (Low Level) - M	lansfield Lat)						
Trichloroethene		ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	9	ND	0.200		ND	0.934			1
Heptane		ND	0.200		ND	0.819			1
2,4,4-trimethyl-1-pente	ne	ND	0.500		ND	2.29			1
cis-1,3-Dichloropropen	е	ND	0.200		ND	0.907			1
4-Methyl-2-pentanone		ND	0.200		ND	0.819			1
2,4,4-trimethyl-2-pente	ne	ND	0.500		ND	2.29			1
trans-1,3-Dichloroprope	ene	ND	0.200		ND	0.907			1
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1
Toluene		ND	0.200		ND	0.753			1
1,3-Dichloropropane		ND	0.200		ND	0.923			1
2-Hexanone		ND	0.200		ND	0.819			1
Dibromochloromethane	9	ND	0.200		ND	1.70			1
1,2-Dibromoethane		ND	0.200		ND	1.54			1
Butyl acetate		ND	0.500		ND	2.37			1
Octane		ND	0.200		ND	0.934			1
Tetrachloroethene		ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroetha	ane	ND	0.200		ND	1.37			1
Chlorobenzene		ND	0.200		ND	0.920			1
Ethylbenzene		ND	0.200		ND	0.868			1
p/m-Xylene		ND	0.400		ND	1.74			1
Bromoform		ND	0.200		ND	2.06			1
Styrene		ND	0.200		ND	0.851			1
1,1,2,2-Tetrachloroetha	ane	ND	0.200		ND	1.37			1
o-Xylene		ND	0.200		ND	0.868			1
1,2,3-Trichloropropane		ND	0.200		ND	1.20			1
Nonane		ND	0.200		ND	1.05			1
Isopropylbenzene		ND	0.200		ND	0.982			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1013135

 Report Date:
 09/21/10

Lab ID:	L1013135-01					Date (Collecte	d:	08/25/10 00:00
Client ID:	CAN 713 SHELF	13		Date I	Receive	d:	08/25/10		
Sample Location:						Field	Prep:		Not Specified
			ppbV			ug/m3		Dilution	
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	. Factor
Volatile Organics in	Air (Low Level) - Ma	ansfield Lab)						
Bromobenzene		ND	0.200		ND	1.28			1
2-Chlorotoluene		ND	0.200		ND	1.03			1
n-Propylbenzene		ND	0.200		ND	0.982			1
4-Chlorotoluene		ND	0.200		ND	1.03			1
4-Ethyltoluene		ND	0.200		ND	0.982			1
1,3,5-Trimethybenzene		ND	0.200		ND	0.982			1
tert-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	9	ND	0.200		ND	0.982			1
Decane		ND	0.200		ND	1.16			1
Benzyl chloride		ND	0.200		ND	1.03			1
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2-Dibromo-3-chlorop	ropane	ND	0.200		ND	1.93			1
Undecane		ND	0.200		ND	1.28			1
Dodecane		ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	•	ND	0.200		ND	1.48			1
Naphthalene		ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	,	ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1

L1013135 09/21/10

Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:
Project Number:	CANISTER QC BAT	Report Date:

Lab ID:	L1013135-01	Date Collected:	08/25/10 00:00
Client ID:	CAN 713 SHELF 13	Date Received:	08/25/10
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	08/26/10 12:06		
Analyst:	AJ		

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	lansfield Lab							
Dichlorodifluoromethane	ND	0.050		ND	0.247			1
Chloromethane	ND	0.500		ND	1.03			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	2.00		ND	4.75			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.08			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	1.00		ND	3.47			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.403			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1013135

 Report Date:
 09/21/10

Lab ID: L1013135-0 Client ID: CAN 713 S Sample Location:		F 13			Date Collected: Date Received: Field Prep:			08/25/10 00:00 08/25/10 Not Specified	
·			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r Factor
Volatile Organics in	Air by SIM - Mansf	ield Lab							
Bromodichloromethane	•	ND	0.020		ND	0.134			1
Trichloroethene		ND	0.020		ND	0.107			1
1,4-Dioxane		ND	0.100		ND	0.360			1
cis-1,3-Dichloropropene	9	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloroprope	ene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1
Toluene		ND	0.020		ND	0.075			1
Dibromochloromethane)	ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroetha	ane	ND	0.020		ND	0.137			1
Chlorobenzene		ND	0.020		ND	0.092			1
Ethylbenzene		ND	0.020		ND	0.087			1
p/m-Xylene		ND	0.040		ND	0.174			1
Bromoform		ND	0.020		ND	0.206			1
Styrene		ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroetha	ane	ND	0.020		ND	0.137			1
o-Xylene		ND	0.020		ND	0.087			1
Isopropylbenzene		ND	0.500		ND	2.46			1
1,3,5-Trimethybenzene		ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	9	ND	0.020		ND	0.098			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
sec-Butylbenzene		ND	0.500		ND	2.74			1
p-Isopropyltoluene		ND	0.500		ND	2.74			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1
n-Butylbenzene		ND	0.500		ND	2.74			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1013135

 Report Date:
 09/21/10

Lab ID: Client ID: Sample Location:	F 13				Date Collected: Date Received: Field Prep:			08/25/10 00:00 08/25/10 Not Specified	
			ppbV		ug/m3			Dilution	
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics	in Air by SIM - Mans	field Lab							
1,2,4-Trichlorobenze	ene	ND	0.050		ND	0.371			1
Naphthalene		ND	0.050		ND	0.262			1
1,2,3-Trichlorobenze	ene	ND	0.050		ND	0.371			1
Hexachlorobutadien	e	ND	0.050		ND	0.533			1

Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1013194
Project Number:	CANISTER QC BAT	Report Date:	09/21/10

Lab ID:	L1013194-01	Date Collected:	08/25/10 00:00
Client ID:	CAN 514 SHELF 8	Date Received:	08/25/10
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15		
Analytical Date:	08/26/10 12:43		
Analyst:	AJ		

			ug/m3		Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level)	- Mansfield Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.200		ND	0.344			1
Propane	ND	0.200		ND	0.606			1
Dichlorodifluoromethane	ND	0.200		ND	0.988			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.776			1
Chloroethane	ND	0.200		ND	0.527			1
Ethanol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.841			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.14			1
Acetone	ND	1.00		ND	2.37			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.200		ND	0.434			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.792			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1013194

 Report Date:
 09/21/10

Lab ID: Client ID:	L1013194-01 CAN 514 SHELF	- 8				Date (Date I	Collecte Receive	d: d:	08/25/10 00:00 08/25/10
Sample Location:		-				Field	Prep:		Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r Factor
Volatile Organics in	Air (Low Level) - Ma	ansfield Lat)						
Methylene chloride		ND	1.00		ND	3.47			1
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		ND	0.200		ND	0.622			1
Freon-113		ND	0.200		ND	1.53			1
trans-1,2-Dichloroether	ne	ND	0.200		ND	0.792			1
1,1-Dichloroethane		ND	0.200		ND	0.809			1
Methyl tert butyl ether		ND	0.200		ND	0.720			1
Vinyl acetate		ND	0.200		ND	0.704			1
2-Butanone		ND	0.200		ND	0.589			1
cis-1,2-Dichloroethene		ND	0.200		ND	0.792			1
Ethyl Acetate		ND	0.500		ND	1.80			1
Chloroform		ND	0.200		ND	0.976			1
Tetrahydrofuran		ND	0.200		ND	0.589			1
2,2-Dichloropropane		ND	0.200		ND	0.923			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		ND	0.200		ND	0.704			1
Diisopropyl ether		ND	0.200		ND	0.835			1
tert-Butyl Ethyl Ether		ND	0.200		ND	0.835			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
1,1-Dichloropropene		ND	0.200		ND	0.907			1
Benzene		ND	0.200		ND	0.638			1
Carbon tetrachloride		ND	0.200		ND	1.26			1
Cyclohexane		ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether		ND	0.200		ND	0.835			1
Dibromomethane		ND	0.200		ND	1.42			1
1,2-Dichloropropane		ND	0.200		ND	0.924			1
Bromodichloromethane		ND	0.200		ND	1.34			1
1,4-Dioxane		ND	0.200		ND	0.720			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1013194

 Report Date:
 09/21/10

Lab ID:	L1013194-01					Date (Collecte	d:	08/25/10 00:00
Client ID:	CAN 514 SHELF	- 8				Date I	Receive	d:	08/25/10
Sample Location:						Field	Prep:		Not Specified
-			ppbV		Desults	ug/m3		Qualifia	Dilution Factor
Volatilo Organico in	Air (Low Lovol) - M		RL	MDL	Results	RL	MDL	Quaime	
Volatile Organics in	All (LOW Level) - M)						
Trichloroethene		ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane)	ND	0.200		ND	0.934			1
Heptane		ND	0.200		ND	0.819			1
2,4,4-trimethyl-1-pente	ne	ND	0.500		ND	2.29			1
cis-1,3-Dichloropropen	e	ND	0.200		ND	0.907			1
4-Methyl-2-pentanone		ND	0.200		ND	0.819			1
2,4,4-trimethyl-2-penter	ne	ND	0.500		ND	2.29			1
trans-1,3-Dichloroprope	ene	ND	0.200		ND	0.907			1
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1
Toluene		ND	0.200		ND	0.753			1
1,3-Dichloropropane		ND	0.200		ND	0.923			1
2-Hexanone		ND	0.200		ND	0.819			1
Dibromochloromethane	e	ND	0.200		ND	1.70			1
1,2-Dibromoethane		ND	0.200		ND	1.54			1
Butyl acetate		ND	0.500		ND	2.37			1
Octane		ND	0.200		ND	0.934			1
Tetrachloroethene		ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroetha	ane	ND	0.200		ND	1.37			1
Chlorobenzene		ND	0.200		ND	0.920			1
Ethylbenzene		ND	0.200		ND	0.868			1
p/m-Xylene		ND	0.400		ND	1.74			1
Bromoform		ND	0.200		ND	2.06			1
Styrene		ND	0.200		ND	0.851			1
1,1,2,2-Tetrachloroetha	ane	ND	0.200		ND	1.37			1
o-Xylene		ND	0.200		ND	0.868			1
1,2,3-Trichloropropane		ND	0.200		ND	1.20			1
Nonane		ND	0.200		ND	1.05			1
Isopropylbenzene		ND	0.200		ND	0.982			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1013194

 Report Date:
 09/21/10

Lab ID:	L1013194-01					Date (Collecte	d:	08/25/10 00:00
Client ID:	CAN 514 SHELF	8				Date I	Receive	d:	08/25/10
Sample Location:						Field	Prep:		Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Factor
Volatile Organics in	Air (Low Level) - Ma	ansfield Lab							
Bromobenzene		ND	0.200		ND	1.28			1
2-Chlorotoluene		ND	0.200		ND	1.03			1
n-Propylbenzene		ND	0.200		ND	0.982			1
4-Chlorotoluene		ND	0.200		ND	1.03			1
4-Ethyltoluene		ND	0.200		ND	0.982			1
1,3,5-Trimethybenzene)	ND	0.200		ND	0.982			1
tert-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	e	ND	0.200		ND	0.982			1
Decane		ND	0.200		ND	1.16			1
Benzyl chloride		ND	0.200		ND	1.03			1
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2-Dibromo-3-chlorop	ropane	ND	0.200		ND	1.93			1
Undecane		ND	0.200		ND	1.28			1
Dodecane		ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene)	ND	0.200		ND	1.48			1
Naphthalene		ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene)	ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1

L1013194

09/21/10

Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:
Project Number:	CANISTER QC BAT	Report Date:

Lab ID:	L1013194-01	Date Collected:	08/25/10 00:00
Client ID:	CAN 514 SHELF 8	Date Received:	08/25/10
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	08/26/10 12:43		
Analyst:	AJ		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	ansfield Lab							
Dichlorodifluoromethane	ND	0.050		ND	0.247			1
Chloromethane	ND	0.500		ND	1.03			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	2.00		ND	4.75			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.08			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	1.00		ND	3.47			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.403			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1013194

 Report Date:
 09/21/10

Lab ID: Client ID: Sample Location:	L1013194-01 CAN 514 SHELF	- 8				Date Date Field	Collecte Receive Prep:	d: d:	08/25/10 00:00 08/25/10 Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Factor
Volatile Organics in	Air by SIM - Mansfi	eld Lab							
Bromodichloromethane		ND	0.020		ND	0.134			1
Trichloroethene		ND	0.020		ND	0.107			1
1,4-Dioxane		ND	0.100		ND	0.360			1
cis-1,3-Dichloropropene	e	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloroprope	ene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1
Toluene		ND	0.020		ND	0.075			1
Dibromochloromethane)	ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroetha	ine	ND	0.020		ND	0.137			1
Chlorobenzene		ND	0.020		ND	0.092			1
Ethylbenzene		ND	0.020		ND	0.087			1
p/m-Xylene		ND	0.040		ND	0.174			1
Bromoform		ND	0.020		ND	0.206			1
Styrene		ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroetha	ine	ND	0.020		ND	0.137			1
o-Xylene		ND	0.020		ND	0.087			1
Isopropylbenzene		ND	0.500		ND	2.46			1
1,3,5-Trimethybenzene		ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	9	ND	0.020		ND	0.098			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
sec-Butylbenzene		ND	0.500		ND	2.74			1
p-Isopropyltoluene		ND	0.500		ND	2.74			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1
n-Butylbenzene		ND	0.500		ND	2.74			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1013194

 Report Date:
 09/21/10

Lab ID: Client ID: Sample Location:	L1013194-01 CAN 514 SHEL	F 8			Date Collected: Date Received: Field Prep:			08/25/10 00:00 08/25/10 Not Specified	
			ppbV		ug/m3			Dilution	
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics i	in Air by SIM - Mansi	ield Lab							
1,2,4-Trichlorobenzer	ne	ND	0.050		ND	0.371			1
Naphthalene		ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzer	ne	ND	0.050		ND	0.371			1
Hexachlorobutadiene	•	ND	0.050		ND	0.533			1

L1013618 09/21/10

Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:
Project Number:	CANISTER QC BAT	Report Date:

Lab ID:	L1013618-01	Date Collected:	09/02/10 00:00
Client ID:	CAN 116 SHELF 2	Date Received:	09/02/10
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15		
Analytical Date:	09/02/10 19:20		
Analyst:	RY		

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level)	Mansfield Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.200		ND	0.344			1
Propane	ND	0.200		ND	0.606			1
Dichlorodifluoromethane	ND	0.200		ND	0.988			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.776			1
Chloroethane	ND	0.200		ND	0.527			1
Ethanol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.841			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.14			1
Acetone	ND	1.00		ND	2.37			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.200		ND	0.434			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.792			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1013618

 Report Date:
 09/21/10

Lab ID: Client ID:	L1013618-01 CAN 116 SHELF	2				Date (Date I	Collecte Receive	d: d:	09/02/10 00:00 09/02/10
Sample Location.			Vdqq			uq/m3	Prep.		Not Specified
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r Factor
Volatile Organics in	Air (Low Level) - Ma	ansfield Lat	D						
Methylene chloride		ND	1.00		ND	3.47			1
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		ND	0.200		ND	0.622			1
Freon-113		ND	0.200		ND	1.53			1
trans-1,2-Dichloroethen	e	ND	0.200		ND	0.792			1
1,1-Dichloroethane		ND	0.200		ND	0.809			1
Methyl tert butyl ether		ND	0.200		ND	0.720			1
Vinyl acetate		ND	0.200		ND	0.704			1
2-Butanone		ND	0.200		ND	0.589			1
cis-1,2-Dichloroethene		ND	0.200		ND	0.792			1
Ethyl Acetate		ND	0.500		ND	1.80			1
Chloroform		ND	0.200		ND	0.976			1
Tetrahydrofuran		ND	0.200		ND	0.589			1
2,2-Dichloropropane		ND	0.200		ND	0.923			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		ND	0.200		ND	0.704			1
Diisopropyl ether		ND	0.200		ND	0.835			1
tert-Butyl Ethyl Ether		ND	0.200		ND	0.835			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
1,1-Dichloropropene		ND	0.200		ND	0.907			1
Benzene		ND	0.200		ND	0.638			1
Carbon tetrachloride		ND	0.200		ND	1.26			1
Cyclohexane		ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether		ND	0.200		ND	0.835			1
Dibromomethane		ND	0.200		ND	1.42			1
1,2-Dichloropropane		ND	0.200		ND	0.924			1
Bromodichloromethane		ND	0.200		ND	1.34			1
1,4-Dioxane		ND	0.200		ND	0.720			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1013618

 Report Date:
 09/21/10

Lab ID: Client ID:	L1013618-01 CAN 116 SHELI	3618-01 116 SHELF 2				Date Collected: Date Received:			09/02/10 00:00 09/02/10
Sample Location:						Field	Prep:		Not Specified
Demonster		Desults	ppbV		Bogulto	ug/m3		Qualifia	Dilution Factor
Volatile Organics in	Air (Low Level) - M	Results	RL	MDL	Results	KL	MDL	Quaimei	
Tricklass alloss			,						
		ND	0.200		ND	1.07			1
2,2,4- I rimethylpentane		ND	0.200		ND	0.934			1
Heptane		ND	0.200		ND	0.819			1
2,4,4-trimethyl-1-penter	ne	ND	0.500		ND	2.29			1
cis-1,3-Dichloropropene	9	ND	0.200		ND	0.907			1
4-Methyl-2-pentanone		ND	0.200		ND	0.819			1
2,4,4-trimethyl-2-penter	ne	ND	0.500		ND	2.29			1
trans-1,3-Dichloroprope	ene	ND	0.200		ND	0.907			1
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1
Toluene		ND	0.200		ND	0.753			1
1,3-Dichloropropane		ND	0.200		ND	0.923			1
2-Hexanone		ND	0.200		ND	0.819			1
Dibromochloromethane)	ND	0.200		ND	1.70			1
1,2-Dibromoethane		ND	0.200		ND	1.54			1
Butyl acetate		ND	0.500		ND	2.37			1
Octane		ND	0.200		ND	0.934			1
Tetrachloroethene		ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroetha	ine	ND	0.200		ND	1.37			1
Chlorobenzene		ND	0.200		ND	0.920			1
Ethylbenzene		ND	0.200		ND	0.868			1
p/m-Xylene		ND	0.400		ND	1.74			1
Bromoform		ND	0.200		ND	2.06			1
Styrene		ND	0.200		ND	0.851			1
1,1,2,2-Tetrachloroetha	ane	ND	0.200		ND	1.37			1
o-Xylene		ND	0.200		ND	0.868			1
1,2,3-Trichloropropane		ND	0.200		ND	1.20			1
Nonane		ND	0.200		ND	1.05			1
Isopropylbenzene		ND	0.200		ND	0.982			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1013618

 Report Date:
 09/21/10

Lab ID:	L1013618-01					Date (Collecte	d:	09/02/10 00:00
Client ID:	CAN 116 SHELF	2				Date I	Receive	d:	09/02/10
Sample Location:						Field	Prep:		Not Specified
		ppbV				ug/m3		Dilution	
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Factor
Volatile Organics in	Air (Low Level) - Ma	ansfield Lab	1						
Bromobenzene		ND	0.200		ND	1.28			1
2-Chlorotoluene		ND	0.200		ND	1.03			1
n-Propylbenzene		ND	0.200		ND	0.982			1
4-Chlorotoluene		ND	0.200		ND	1.03			1
4-Ethyltoluene		ND	0.200		ND	0.982			1
1,3,5-Trimethybenzene)	ND	0.200		ND	0.982			1
tert-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzen	e	ND	0.200		ND	0.982			1
Decane		ND	0.200		ND	1.16			1
Benzyl chloride		ND	0.200		ND	1.03			1
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2-Dibromo-3-chlorop	ropane	ND	0.200		ND	1.93			1
Undecane		ND	0.200		ND	1.28			1
Dodecane		ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene)	ND	0.200		ND	1.48			1
Naphthalene		ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene)	ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1

							Serial_	_No:0921	1014:09
Project Name:	BATCH CANISTER	R CERTIFIC	CATION			Lab N	lumber	: L [.]	1013618
Project Number:	CANISTER QC BA	АT				Repo	rt Date:	09	9/21/10
		Air Ca	nister Ce	ertificatio	n Results				
Lab ID:	L1013618-01					Date (Collected	l: ()9/02/10 00:00
Client ID:	CAN 116 SHELF	2				Date F	Received	l: (09/02/10
Sample Location:						Field F	Prep:	1	Not Specified
	_		ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in	Air (Low Level) - Ma	nsfield Lab							

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	103		60-140
Bromochloromethane	115		60-140
chlorobenzene-d5	97		60-140

L1013618

09/21/10

Lab Number:

Report Date:

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Lab ID:	L1013618-01	Date Collected:	09/02/10 00:00
Client ID:	CAN 116 SHELF 2	Date Received:	09/02/10
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	09/02/10 19:20		
Analyst:	RY		

		ррьV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	lansfield Lab							
Dichlorodifluoromethane	ND	0.050		ND	0.247			1
Chloromethane	ND	0.500		ND	1.03			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	2.00		ND	4.75			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.08			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	1.00		ND	3.47			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.403			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1013618

 Report Date:
 09/21/10

Lab ID: Client ID:	L1013618-01 CAN 116 SHELE	- 2				Date (Collecte	d: d:	09/02/10 00:00
Sample Location:	O/IN THE OFFICE	2				Field	Prep:	u.	Not Specified
·			ppbV			ug/m3	·		Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Factor
Volatile Organics in	Air by SIM - Mansfi	eld Lab							
Bromodichloromethane		ND	0.020		ND	0.134			1
Trichloroethene		ND	0.020		ND	0.107			1
1,4-Dioxane		ND	0.100		ND	0.360			1
cis-1,3-Dichloropropene	9	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloroprope	ene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1
Toluene		ND	0.020		ND	0.075			1
Dibromochloromethane	1	ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroetha	ne	ND	0.020		ND	0.137			1
Chlorobenzene		ND	0.020		ND	0.092			1
Ethylbenzene		ND	0.020		ND	0.087			1
p/m-Xylene		ND	0.040		ND	0.174			1
Bromoform		ND	0.020		ND	0.206			1
Styrene		ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroetha	ne	ND	0.020		ND	0.137			1
o-Xylene		ND	0.020		ND	0.087			1
Isopropylbenzene		ND	0.500		ND	2.46			1
1,3,5-Trimethybenzene		ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	9	ND	0.020		ND	0.098			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
sec-Butylbenzene		ND	0.500		ND	2.74			1
p-Isopropyltoluene		ND	0.500		ND	2.74			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1
n-Butylbenzene		ND	0.500		ND	2.74			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1013618

 Report Date:
 09/21/10

Lab ID: Client ID:	L1013618-01 CAN 116 SHEL	F 2				Date (Date F	Collecte Receive	d: d:	09/02/10 00:00 09/02/10
Sample Location:						Field I	Prep:		Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics	in Air by SIM - Mans	field Lab							
1,2,4-Trichlorobenze	ene	ND	0.050		ND	0.371			1
Naphthalene		ND	0.050		ND	0.262			1
1,2,3-Trichlorobenze	ne	ND	0.050		ND	0.371			1
Hexachlorobutadiene	9	ND	0.050		ND	0.533			1

							Serial_	_No:09211	014:09
Project Name:	BATCH CANISTEI	R CERTIFI	CATION			Lab N	lumber	: L1	013618
Project Number:	CANISTER QC BA	АT				Repo	rt Date:	09	/21/10
		Air C	anister Ce	ertificatio	n Results				
Lab ID:	L1013618-01					Date (Collected	d: 0	9/02/10 00:00
Client ID:	CAN 116 SHELF	2				Date I	Received	d: 0	9/02/10
Sample Location:						Field I	Prep:	N	ot Specified
	_		ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in	Air by SIM - Mansfie	eld Lab							

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	95		60-140
bromochloromethane	99		60-140
chlorobenzene-d5	97		60-140

AIR Petro Can Certification

		Serial_No:09	9211014:09
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1013135
Project Number:	CANISTER QC BAT	Report Date:	09/21/10
	AIR CAN CERTIFICATION RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1013135-01 CAN 713 SHELF 13 Not Specified Air 96,APH 08/27/10 17:22 AR	Date Collected: Date Received: Field Prep:	08/25/10 00:00 08/25/10 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Petroleum Hydrocarbons in Air - Mansfield Lab									
1,3-Butadiene	ND		ug/m3	2.0		1			
Methyl tert butyl ether	ND		ug/m3	2.0		1			
Benzene	ND	1	ug/m3	2.0		1			
Toluene	ND		ug/m3	2.0		1			
C5-C8 Aliphatics, Adjusted	ND		ug/m3	12		1			
Ethylbenzene	ND		ug/m3	2.0		1			
p/m-Xylene	ND		ug/m3	4.0		1			
o-Xylene	ND		ug/m3	2.0		1			
Naphthalene	ND		ug/m3	2.0		1			
C9-C12 Aliphatics, Adjusted	ND		ug/m3	14		1			
C9-C10 Aromatics Total	ND		ug/m3	10		1			

		Serial_No:	09211014:09
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1013194
Project Number:	CANISTER QC BAT	Report Date:	09/21/10
	AIR CAN CERTIFI	CATION RESULTS	
Lab ID:	L1013194-01	Date Collected:	08/25/10 00:00
Client ID:	CAN 514 SHELF 8	Date Received:	08/25/10
Sample Location:	Not Specified	Field Prep:	Not Specified
Matrix:	Air		
Analytical Method:	96,APH		
Analytical Date:	08/27/10 18:36		
Analyst:	AR		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Petroleum Hydrocarbons in Air - Mansfield Lab									
1,3-Butadiene	ND		ug/m3	2.0		1			
Methyl tert butyl ether	ND		ug/m3	2.0		1			
Benzene	ND		ug/m3	2.0		1			
Toluene	ND		ug/m3	2.0		1			
C5-C8 Aliphatics, Adjusted	ND		ug/m3	12		1			
Ethylbenzene	ND		ug/m3	2.0		1			
p/m-Xylene	ND		ug/m3	4.0		1			
o-Xylene	ND		ug/m3	2.0		1			
Naphthalene	ND		ug/m3	2.0		1			
C9-C12 Aliphatics, Adjusted	ND		ug/m3	14		1			
C9-C10 Aromatics Total	ND		ug/m3	10		1			

			Serial_No:0	9211014:09
Project Name:	BATCH CANISTER (CERTIFICATION	Lab Number:	L1013618
Project Number:	CANISTER QC BAT		Report Date:	09/21/10
		AIR CAN CERTIFICATION RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1013618-01 CAN 116 SHELF 2 Not Specified Air 96,APH 09/03/10 17:40 RY		Date Collected: Date Received: Field Prep:	09/02/10 00:00 09/02/10 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Petroleum Hydrocarbons in Air - Mansfield Lab									
1,3-Butadiene	ND		ug/m3	2.0		1			
Methyl tert butyl ether	ND		ug/m3	2.0		1			
Benzene	ND		ug/m3	2.0		1			
Toluene	ND		ug/m3	2.0		1			
C5-C8 Aliphatics, Adjusted	ND		ug/m3	12		1			
Ethylbenzene	ND		ug/m3	2.0		1			
p/m-Xylene	ND		ug/m3	4.0		1			
o-Xylene	ND		ug/m3	2.0		1			
Naphthalene	ND		ug/m3	2.0		1			
C9-C12 Aliphatics, Adjusted	ND		ug/m3	14		1			
C9-C10 Aromatics Total	ND		ug/m3	10		1			

Project Name:LIVERMORE FALLS CFIProject Number:Not Specified

Lab Number: L1014295 Report Date: 09/21/10

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler

N/A Present/Intact

Container Information				Temp	מו		
Container ID	Container Type	Cooler	рН	deg Ċ	Pres	Seal	Analysis(*)
L1014295-01A	Canister - 2.7 Liter	N/A	N/A		NA	Present/Intact	APH-10(30),FIXGAS(30),TO15- LL(30)
L1014295-02A	Canister - 2.7 Liter	N/A	N/A		NA	Present/Intact	APH-10(30),FIXGAS(30),TO15- LL(30)
L1014295-03A	Canister - 2.7 Liter	N/A	N/A		NA	Present/Intact	APH-10(30),FIXGAS(30),TO15- LL(30)
L1014295-04A	Canister - 2.7 Liter	N/A	N/A		NA	Present/Intact	APH-10(30),FIXGAS(30),TO15- LL(30)
L1014295-05A	Canister - 1 Liter	N/A	N/A		NA	Present/Intact	APH-10(30),FIXGAS(30),TO15- LL(30)
L1014295-06A	Canister - 2.7 Liter	N/A	N/A		NA	Present/Intact	APH-10(30),FIXGAS(30),TO15- LL(30)

Project Name: LIVERMORE FALLS CFI

Project Number: Not Specified

Lab Number: L1014295

Report Date: 09/21/10

GLOSSARY

Acronyms

- EPA · Environmental Protection Agency.
- LCS · Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD · Laboratory Control Sample Duplicate: Refer to LCS.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD · Matrix Spike Sample Duplicate: Refer to MS.
- NA · Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI · Not Ignitable.
- RL · Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E -Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **H** The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- **Q** The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.

Report Format: Data Usability Report

Project Name: LIVERMORE FALLS CFI

Project Number: Not Specified

 Lab Number:
 L1014295

 Report Date:
 09/21/10

Data Qualifiers

- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report
Lab Number:
 L1014295

 Report Date:
 09/21/10

REFERENCES

- 48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.
- 51 Determination of Carbon Dioxide, Methane, Nitrogen and Oxygen from Stationary Sources. Method 3C. Appendix A, Part 60, 40 CFR (Code of Federal Regulations). June 20, 1996.
- 96 Method for the Determination of Air-Phase Petroleum Hydrocarbons (APH), MassDEP, December 2009, Revision 1 with QC Requirements & Performance Standards for the Analysis of APH by GC/MS under the Massachusetts Contingency Plan, WSC-CAM-IXA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised July 19, 2010 – Mansfield Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0141.

Wastewater/Non-Potable Water (Inorganic Parameters: pH, Turbidity, Conductivity, Alkalinity, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Vanadium, Zinc, Total Residue (Solids), Total Suspended Solids (non-filterable), Total Cyanide. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables, Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, PAHs, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.)

Solid Waste/Soil (Inorganic Parameters: pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Organic Carbon, Total Cyanide, Corrosivity, TCLP 1311. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Volatile Organics, Acid Extractables, Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Florida Department of Health Certificate/Lab ID: E87814. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SM2320B, EPA 120.1, SM2510B, EPA 245.1, EPA 150.1, EPA 160.2, SM2540D, EPA 335.2, SM2540G, EPA 180.1. <u>Organic Parameters</u>: EPA 625, 608.)

Solid & Chemical Materials (Inorganic Parameters: 6020, 7470, 7471, 9045, 9014. Organic Parameters: EPA 8260, 8270, 8082, 8081.)

Air & Emissions (EPA TO-15.)

Louisiana Department of Environmental Quality Certificate/Lab ID: 03090. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 120.1, 150.1, 160.2, 180.1, 200.8, 245.1, 310.1, 335.2, 608, 625, 1631, 3010, 3015, 3020, 6020, 9010, 9014, 9040, SM2320B, 2510B, 2540D, 2540G, 4500CN-E, 4500H-B, <u>Organic Parameters</u>: EPA 3510, 3580, 3630, 3640, 3660, 3665, 5030, 8015 (mod), 3570, 8081, 8082, 8260, 8270,)

Solid & Chemical Materials (Inorganic Parameters: 6020, 7196, 7470, 7471, 7474, 9010, 9014, 9040, 9045, 9060. <u>Organic Parameters</u>: EPA 8015 (mod), EPA 3570, 1311, 3050, 3051, 3060, 3580, 3630, 3640, 3660, 3665, 5035, 8081, 8082, 8260, 8270.)

Biological Tissue (Inorganic Parameters: EPA 6020. Organic Parameters: EPA 3570, 3510, 3610, 3630, 3640, 8270.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA030.

Non-Potable Water (Inorganic Parameters: SM4500H+B. Organic Parameters: EPA 624.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 2206. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: EPA 200.8, 245.1, 1631E, 120.1, 150.1, 180.1, 310.1, 335.2, 160.2, SM2540D, 2540G, 4500CN-E, 4500H+B, 2320B, 2510B. <u>Organic Parameters</u>: EPA 625, 608.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA015. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: SW-846 1312, 3010, 3020A, 3015, 6020, SM2320B, EPA 200.8, SM2540C, 2540D, 2540G, EPA 120.1, SM2510B, EPA 180.1, 245.1, 1631E, SW-846 9040B, 6020, 9010B, 9014 <u>Organic Parameters</u>: EPA 608, 625, SW-846 3510C, 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082 8260B, 8270C)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 6020, 9010B, 9014, 1311, 1312, 3050B, 3051, 3060A, 7196A, 7470A, 7471A, 9045C, 9060. <u>Organic Parameters</u>: SW-846 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082, 8260B, 8270C, 3570, 8015B.)

Atmospheric Organic Parameters (EPA TO-15)

Biological Tissue (Inorganic Parameters: SW-846 6020 Organic Parameters: SW-846 8270C, 3510C, 3570, 3610B, 3630C, 3640A)

New York Department of Health Certificate/Lab ID: 11627. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 310.1, SM2320B, EPA 365.2, 160.1, EPA 160.2, SM2540D, EPA 200.8, 6020, 1631E, 245.1, 335.2, 9014, 150.1, 9040B, 120.1, SM2510B, EPA 376.2, 180.1, 9010B. <u>Organic Parameters</u>: EPA 624, 8260B, 8270C, 608, 8081A, 625, 8082, 3510C, 3511, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 9040B, 9045C, SW-846 Ch7 Sec 7.3, EPA 6020, 7196A, 7471A, 7474, 9014, 9040B, 9045C, 9010B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8081A, DRO 8015B, 8082, 1311, 3050B, 3580, 3050B, 3035, 3570, 3051, 5035, 5030B.)

Air & Emissions (EPA TO-15.)

Rhode Island Department of Health Certificate/Lab ID: LAO00299. NELAP Accredited via LA-DEQ.

Refer to MA-DEP Certificate for Non-Potable Water.

Refer to LA-DEQ Certificate for Non-Potable Water.

Texas Commission of Environmental Quality Certificate/Lab ID: T104704419-08-TX. NELAP Accredited.

Solid & Chemical Materials (<u>Inorganic Parameters</u>: EPA 6020, 7470, 7471, 1311, 7196, 9014, 9040, 9045, 9060. <u>Organic Parameters</u>: EPA 8015, 8270, 8260, 8081, 8082.)

Air (Organic Parameters: EPA TO-15)

U.S. Army Corps of Engineers

Department of Defense Certificate/Lab ID: L2217.01.

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312,3051, 6020, 747A, 7474, 9045C,9060, SM 2540G, ASTM D422-63. <u>Organic Parameters</u>: EPA 3580, 3570, 3540C, 5035, 8260B, 8270C, 8270 Alk-PAH, 8082, 8081A, 8015 (SHC), 8015 (DRO).

Air & Emissions (EPA TO-15.)

Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: 8270C: Biphenyl.

																	S	erial	_Nc	:092	2110)14:()9		
Form No: 101-02 (19-Jun-09)			*SAMPLE MATRIX CODES			6 30-02	S SV-01	905 - VS 14	3 SN-105	2 50-103	14295 1 SV-03	ALPHA Lab ID (Lab Use Only) Sample ID		Other Project Specific Requirements/Com	These samples have been previously analyzed by Alpha	Email: troy. t. smithe mainer gov	Fax:	Phone: (20) & 22-6,00	-Anderstan Jonnand ME OHE	Address: 312 CANG LOND	Client MAINE DEP	Client Information	TEL: 508-822-9300 FAX: 508-822-3288	320 Forbes Blvd, Mansfield, MA 02048	AIR A
	Elle Xmr.	Relinquished By: Date	vy = vynauent Art (indoor/viiddoor) V = Soul Vapor/Landfill Gas/SVE Duer = Please Specify			6/10/10 10:02 10:35 -30	cilio/10 9:25 9:35 -30.	9/10/16 11: 19 11:50 -29	9/10/1:25 2:00 -30	9/10/10 11:19 11:52 -30	9/10/10 2:31 3:03 - 30	COllection Initial Date Start Time End Time Vacuum	Columns Below Mus	iments:	Date Due: Time:			Turn-Around Time	ALPHA Quote #	Project Manager: DETER EREMIT	Project #:	Project Location: LINGAMONE FAUS	Project Name: LINFRMARE FALLS WILL	Project Information	NALYSIS PAGE (
Wi	1/10 FEDEX	/Time Received By:	Container Type			-4 SU MAD IL 4676	-5 SV MAD IL WOZD	-2 SV MAD IL 194 0	-3 SV MAD IL SOGO	-4 SV MAD IC 110 C	-3 SV MAD IL 116 0	Final Sample Sampler's Can I D I Vacuum Matrix* Initials Size Can co	st Be Filled Out			ioveai)	icresser Osummiter	Report to, (if different than 'Project Manager)	Additional Deliverables:	Merchants:	(Default based on Regulatory Criteria	S MC Criteria Checker:	umotras = FAX	Report Information - Data Dei	DF Date Recide in Lab. 9
9/14/10 1342-	9/13/10 /120	Date/Time:	22 D2			265 7 7 7	268 × × ×	XXX	X X COL	X X X	7 X X 296	D-Flow 14, 15, 15 D-Flow 14, 15, 15 D-Flow 10, 10, 15, 15 D-Flow 10, 10, 15 D-Flow 10, 15, 15 D-Flow 10, 15 D-	A by TO E D. SIM GASES A TO.10	15 BONG		ANALYSIS	I.Com	MAINE ED	State/Fed Prog	Regulatory Requ	Indicated)	ATTN: PE-	Same as Client inf	liverables Billing Informatic	LD ALPHA.Job#
	ninited are subjective suppose		ase brin clearly legibly and poletely. Samples can not be one of the second second			æ					$\partial_2 + O_2 + CH_4$	imple Comments (i.e. PID)						1	ram Criteria	irements/Report Limits	-	The Eremme	5 PO #:	5	L4101141295

Page 71 of 71

195 Commerce Way Suite E Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906 www.analyticslab.com

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107 Report Number: 67789 Revision: Rev. 0

Re: DEP 2496-10

Enclosed are the results of the analyses on your sample(s). Samples were received on 15 September 2010 and analyzed for the tests listed. Samples were received in acceptable condition, with the exceptions noted below or on the chain of custody. These results pertain to samples as received by the laboratory and for the analytical tests requested on the chain of custody. The results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. Please see individual reports for specific methodologies and references.

Lab Number	Sample Date	Station Location	Analysis	Comments
67789-1	09/10/10	SV-103 (7.5')	MADEP EPH	
	09/10/10	SV-103 (7.5')	Volatile Petroleum Hydrocarbons	3
67789-2	09/10/10	GW-103	Volatile Petroleum Hydrocarbons	3
67789-3	09/10/10	GW-104	Volatile Petroleum Hydrocarbons	3
67789-4	09/10/10	GW-105	Volatile Petroleum Hydrocarbons	ŝ
67789-5	09/10/10	Trip Blank (aq)	Volatile Petroleum Hydrocarbons	3
67789-6	09/10/10	Trip Blank (s)	Electronic Data Deliverable	
	09/10/10	Trip Blank (s)	Volatile Petroleum Hydrocarbons	3

Sample Receipt Exceptions: None

Analytics Environmental Laboratory is certified by the states of New Hampshire, Maine, Massachusetts, Connecticut, Rhode Island, Virginia, Maryland, and is accredited by the Department of Defense (DOD) ELAP program. A list of actual certified parameters is available upon request.

If you have any questions on these results, please do not hesitate to contact us.

Authorized signature

Stephen L. Knollmeyer Lab. Director

123/2010

Date

This report shall not be reproduced, except in full, without the written consent of Analytics Environmental Laboratory, LLC.

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: SV-103 (7.5') 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

September 22, 2010

SAN	IPLE DATA
Lab Sample ID:	67789-1
Matrix:	Solid
Percent Solid:	90
Dilution Factor:	3542
Collection Date:	09/10/10
Lab Receipt Date:	09/15/10
Analysis Date:	09/17/10

VPH ANALYTICAL RESULTS										
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result						
Unadjusted C5-C8 Aliphatics	N/A	177000	μg/kg	2200000						
Unadjusted C9-C12 Aliphatics	N/A	177000	μg/kg	2330000						
Benzene	C5-C8	7080	µg/kg	7970						
Ethylbenzene	C9-C12	7080	μg/kg	U						
Methyl-tert-butyl ether	C5-C8	7080	μg/kg	5980 J						
Naphthalene	N/A	7080	μg/kg	U						
Toluene	C5-C8	7080	μg/kg	8210						
m- & p-Xylenes	C9-C12	14200	μg/kg	16500						
o-Xylene	C9-C12	7080	μg/kg	5190 J						
C5-C8 Aliphatics Hydrocarbons ^{1,2}	N/A	177000	μg/kg	2190000						
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	177000	μg/kg	1260000						
C9-C10 Aromatic Hydrocarbons ¹	N/A	35400	µg/kg	1050000						
Surrogate % Recovery (2,5-Dibron	notoluene) PID			*						
Surrogate % Recovery (2.5-Dibron	notoluene) FID			*						
Surrogate Acceptance Range			70-130%							
¹ Hvdrocarbon Range data exclude	¹ Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range									

²C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist. Results are expressed on a dry weight basis. * The surrogates were diluted out.

Authorized signature: Mulli

Data Path : C:\msdchem\1\DATA\091710-K\ Data File : K28971.D Signal(s) : Signal #1: FID1A.CH Signal #2: ELC2B.CH Acq On : 17 Sep 2010 7:32 pm Operator : JJL Sample : 67789-1,50X Misc : 2,8.43,SOIL ALS Vial : 18 Sample Multiplier: 1 Integration File signal 1: autoint1.e 88 9/20/10 Integration File signal 2: autoint2.e Quant Time: Sep 20 11:14:46 2010 Quant Method : C:\msdchem\1\METHODS\VPH072210.M Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004 QLast Update : Fri Jul 23 15:04:23 2010 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Small noise peaks clipped Volume Inj. : Signal #1 Phase :

Signal #1 Info :

Signal #2 Phase: Signal #2 Info :

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: SV-103 (7.5') 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

September 22, 2010

SAM	IPLE DATA
Lab Sample ID:	67789-1
Matrix:	Solid
Percent Solid:	90
Dilution Factor:	1.1
Collection Date:	09/10/10
Lab Receipt Date:	09/15/10
Extraction Date:	09/16/10
Analysis Date:	09/18/10

	EPH ANALYTICA	AL RESULT	ſS	
RANGE/TAI	RGET ANALYTE	RL	Units	Result
Unadjusted C	11-C22 Aromatics	28800	µg/kg	39900
	Naphthalene	288	µg/kg	557
Diesel PAH	2-Methylnaphthalene	288	µg/kg	1910
Analytes	Phenanthrene	288	µg/kg	U
	Acenaphthene	288	μg/kg	U
	Acenaphthylene	288	µg/kg	U
	Fluorene	288	µg/kg	U
	Anthracene	288	µg/kg	U
	Fluoranthene	288	µg/kg	U
Other	Pvrene	288	μg/kg	U
Target PAH	Benzo[a]anthracene	288	μg/kg	U
Analytes	Chrysene	288	μg/kg	U
	Benzolblfluoranthene	288	μg/kg	U
	Benzo[k]fluoranthene	288	μg/kg	U
	Benzolalpyrene	288	µg/kg	U
	Indeno[1,2,3-cd]pyrene	288	μg/kg	U
	Dibenzo[a,h]anthracene	288	μg/kg	U
	Benzolg.h.ilpervlene	288	μg/kg	U
C9-C18 Aliph	natic Hydrocarbons	57400	µg/kg	93500
C19-C36 Alir	ohatic Hvdrocarbons	57400	μg/kg	U
C11-C22 Aro	matic Hydrocarbons ^{1,2}	28800	μg/kg	37500
Aliphatic Sur	rogate % Recovery (1-Chloro-octadecane)			61
Aromatic Sur	rogate % Recovery (O-Terphenyl)			73
Sample Surro	gate Acceptance Range	**		40-140%
#1 Fractionati	ion Surrogate <u>% Recovery</u> (2-Fluorobiphenyl)			66
#2 Fractionati	ion Surrogate % Recovery (2-Bromonaphthalene)			65
Fractionation	Surrogate Acceptance Range			40-140%
1		·		· .1 .

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that ²C11-C22 Aromatic Hydrocarbons exclude the concentration of Target PAH Analytes.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY MADEP Extractable Petroleum Hydrocarbons (EPH), ORS Division of Environmental Analysis, May 2004 Revision 1.1. Samples were extracted in accordance with SW-846 Method 3545

COMMENTS: EPH analyses utilized the use of a GC/MS system to detect and quantify ranges and target analytes. Samples were received in accordance with method criteria unless noted on the sample receipt checklist. Results are expressed on a dry weight basis.

SIGNATURE: Mulhull

D71691.D ARM80410.M

Analytics Report 67789 page 5 of 18

Analytics Report 67789 page 6 of 18

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: GW-103 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

September 21, 2010

SAN	IPLE DATA
Lab Sample ID:	67789-2
Matrix:	Aqueous
Percent Solid:	N/A
Dilution Factor:	100
Collection Date:	09/10/10
Lab Receipt Date:	09/15/10
Analysis Date:	09/17/10

	VPH A	NALYTIC	AL RESULT	S	
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result	
Unadjusted C5-C8 Aliphatics	N/A	5000	μg/L	9060	
Unadjusted C9-C12 Aliphatics	N/A	5000	μg/L	40200	
Benzene	C5-C8	200	μg/L	U	
Ethylbenzene	C9-C12	200	μg/L	1870	
Methyl-tert-butyl ether	C5-C8	200	μg/L	<u>U</u>	
Naphthalene	N/A	200	μg/L	664	
Toluene	C5-C8	200	μg/L	132 J	
m- & p-Xylenes	C9-C12	400	μg/L	9500	
o-Xvlene	C9-C12	200	$\mu g/L$	3320	
C5-C8 Aliphatics Hydrocarbons ^{1,2}	N/A	5000	μg/L	8930	
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	5000	μg/L	14300	
C9-C10 Aromatic Hydrocarbons	N/A	1000	μg/L	11300	
Surrogate % Recovery (2,5-Dibron	notoluene) PID			*	
Surrogate % Recovery (2,5-Dibron	notoluene) FID			*	
Surrogate Acceptance Range				70-130%	

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

²C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist. * The surrogates were diluted out.

Authorized signature: Mullull

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: GW-104 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

September 21, 2010

SAN	IPLE DATA
Lab Sample ID:	67789-3
Matrix:	Aqueous
Percent Solid:	N/A
Dilution Factor:	1
Collection Date:	09/10/10
Lab Receipt Date:	09/15/10
Analysis Date:	09/16/10

VPH ANALYTICAL RESULTS										
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result						
Unadjusted C5-C8 Aliphatics	N/A	50	$\mu g/L$	U						
Unadjusted C9-C12 Aliphatics	N/A	50	μg/L	U						
Benzene	C5-C8	2	μg/L	U						
Ethylbenzene	C9-C12	2	$\mu g/L$	U						
Methyl-tert-butyl ether	C5-C8	2	$\mu g/L$	U						
Naphthalene	N/A	2	μg/L	U						
Toluene	C5-C8	2	$\mu g/L$	U						
m- & p-Xylenes	C9-C12	4	μg/L	U						
o-Xylene	C9-C12	2	μg/L	U						
C5-C8 Aliphatics Hydrocarbons ^{1,2}	N/A	50	μg/L	U						
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	50	μg/L	U						
C9-C10 Aromatic Hydrocarbons	N/A	10	$\mu g/L$	U						
Surrogate % Recovery (2.5-Dibror	notoluene) PID			85						
Surrogate % Recovery (2,5-Dibron	notoluene) FID			81						
Surrogate Acceptance Range				70-130%						
¹ Hydrocarbon Range data exclude	concentrations of	any surrogat	e(s) and/or inter	nal standards eluting in that range.						

²C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist.

Authorized signature: Mulhill

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\091610-K\ Data File : K28936.D Signal(s) : Signal #1: FID1A.CH Signal #2: ELC2B.CH Acq On : 16 Sep 2010 4:18 pm : JJL Operator Sample : 67789-3 Misc : 5000 ALS Vial : 11 Sample Multiplier: 1 28 1/1/10 Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e Quant Time: Sep 17 10:27:40 2010 Quant Method : C:\msdchem\1\METHODS\VPH072210.M Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004 QLast Update : Fri Jul 23 15:04:23 2010 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Small noise peaks clipped Volume Inj. : Signal #1 Phase :

Signal #1 Info :

Signal #2 Phase: Signal #2 Info :

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: GW-105 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

September 21, 2010

SAM	IPLE DATA
Lab Sample ID:	67789-4
Matrix:	Aqueous
Percent Solid:	N/A
Dilution Factor:	1
Collection Date:	09/10/10
Lab Receipt Date:	09/15/10
Analysis Date:	09/16/10

VPH ANALYTICAL RESULTS									
DANCE/TARGET ANAL VTE	Elution Range	RL	Units	Result					
Unadjusted C5-C8 Aliphatics	N/A	50	$\mu g/L$	U					
Unadjusted C9-C12 Aliphatics	N/A	50	$\mu g/L$	U					
Benzene	C5-C8	2	μg/L	U					
Ethylbenzene	C9-C12	2	μg/L	<u> </u>					
Methyl-tert-butyl ether	C5-C8	2	$\mu g/L$	<u> </u>					
Naphthalene	N/A	2	μg/L	<u> </u>					
Toluene	C5-C8	2	μg/L	U					
m- & p-Xylenes	C9-C12	4	μg/L	<u>U</u>					
o-Xvlene	C9-C12	2	μ g/L	U					
C5-C8 Aliphatics Hydrocarbons ^{1,2}	N/A	50	μg/L	<u>U</u>					
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	50	μg/L	U					
C9-C10 Aromatic Hydrocarbons	N/A	10	$\mu g/L$	U					
Surrogate % Recovery (2,5-Dibror	notoluene) PID			78					
Surrogate % Recovery (2,5-Dibror	notoluene) FID			72					
Surrogate Acceptance Range				70-130%					

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

²C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist.

Authorized signature: Multhell

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\091610-K\ Data File : K28937.D Signal(s) : Signal #1: FID1A.CH Signal #2: ELC2B.CH Acq On : 16 Sep 2010 4:42 pm Operator : JJL Sample : 67789-4 Misc : 5000 ALS Vial : 12 Sample Multiplier: 1 98 9/17/10 Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e Quant Time: Sep 17 10:29:41 2010 Quant Method : C:\msdchem\1\METHODS\VPH072210.M Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004 QLast Update : Fri Jul 23 15:04:23 2010 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Small noise peaks clipped Volume Inj. : Signal #1 Phase : Signal #2 Phase:

Signal #1 Info :

Signal #2 Phase: Signal #2 Info :

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: Trip Blank (aq) 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

September 21, 2010

SAMPLE DATA				
Lab Sample ID:	67789-5			
Matrix:	Aqueous			
Percent Solid:	N/A			
Dilution Factor:	1			
Collection Date:	09/10/10			
Lab Receipt Date:	09/15/10			
Analysis Date:	09/17/10			

VPH ANALYTICAL RESULTS					
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result	
Unadjusted C5-C8 Aliphatics	N/A	50	μg/L	U	
Unadjusted C9-C12 Aliphatics	N/A	50	μg/L	U	
Benzene	C5-C8	2	μg/L	U	
Ethylbenzene	C9-C12	2	μg/L	U	
Methyl-tert-butyl ether	C5-C8	2	μg/L	U	
Naphthalene	N/A	2	μg/L	U	
Toluene	C5-C8	2	μg/L	U	
m- & p-Xylenes	C9-C12	4	$\mu g/L$	U	
o-Xylene	C9-C12	2	μg/L	U	
C5-C8 Aliphatics Hydrocarbons ^{1,2}	N/A	50	μg/L	U	
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	50	μg/L	U	
C9-C10 Aromatic Hydrocarbons ¹	N/A	10	μg/L	· U	
Surrogate % Recovery (2,5-Dibron	notoluene) PID			88	
Surrogate % Recovery (2.5-Dibron	notoluene) FID			90	
Surrogate Acceptance Range				70-130%	
$\frac{1}{1}$ Undersether Dense data and underset training of any summer $t(a)$ and/or intermal standards shuting in that songe					

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. ²C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist.

Authorized signature: Mullull

Data Path : C:\msdchem\1\DATA\091710-K\ Data File : K28962.D Signal(s) : Signal #1: FID1A.CH Signal #2: ELC2B.CH Acq On : 17 Sep 2010 3:50 pm Operator : JJL : 67789--5 Sample : 5000 Misc ALS Vial : 9 Sample Multiplier: 1 Integration File signal 1: autoint1.e 28 9/20/10 Integration File signal 2: autoint2.e Quant Time: Sep 20 10:45:34 2010 Quant Method : C:\msdchem\1\METHODS\VPH072210.M Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004 QLast Update : Fri Jul 23 15:04:23 2010 Response via : Initial Calibration 6890 Scale Mode: Small noise peaks clipped Integrator: ChemStation Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info Signal #2 Info : :

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: Trip Blank (s) 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

September 21, 2010

SAMPLE DATA

Lab Sample ID:	67789-6
Matrix:	Solid
Percent Solid:	100
Dilution Factor:	50
Collection Date:	09/10/10
Lab Receipt Date:	09/15/10
Analysis Date:	09/16/10

VPH ANALYTICAL RESULTS					
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result	
Unadjusted C5-C8 Aliphatics	N/A	2500	μg/kg	U	
Unadjusted C9-C12 Aliphatics	N/A	2500	µg/kg	U	
Benzene	C5-C8	100	µg/kg	<u>U</u>	
Ethylbenzene	C9-C12	100	µg/kg	U	
Methyl-tert-butyl ether	C5-C8	100	µg/kg	U	
Naphthalene	N/A	100	µg/kg	U	
Toluene	C5-C8	100	µg/kg	<u>U</u>	
m- & p-Xylenes	C9-C12	200	µg/kg	U	
o-Xylene	C9-C12	100	µg/kg	U	
C5-C8 Aliphatics Hydrocarbons ^{1,2}	N/A	2500	µg/kg	<u>U</u>	
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	2500	µg/kg	<u>U</u>	
C9-C10 Aromatic Hydrocarbons	N/A	500	μg/kg	U	
Surrogate % Recovery (2,5-Dibromotoluene) PID				82	
Surrogate % Recovery (2,5-Dibromotoluene) FID				75	
Surrogate Acceptance Range				70-130%	

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

 2 C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist. Results are expressed on a dry weight basis.

Authorized signature:____Mululul

Data Path : C:\msdchem\1\DATA\091610-K\ Data File : K28940.D Signal(s) : Signal #1: FID1A.CH Signal #2: ELC2B.CH Acq On : 16 Sep 2010 5:56 pm : JJL Operator Sample : 67789-6 Misc : 100,10.00,SOIL ALS Vial : 15 Sample Multiplier: 1 88 alinlio Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e Quant Time: Sep 17 10:33:12 2010 Quant Method : C:\msdchem\1\METHODS\VPH072210.M Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004 QLast Update : Fri Jul 23 15:04:23 2010 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Small noise peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase:

MAINE ENVIRONMENTA	AL LABORATORY- Chain of Custody	ANALYSES	LABORATORY REPORT #
One Main Street Yarmouth, Mair	ne 04096-6716 (207) 846-6569 fax: (207) 846-9066		
е-тпац:	: melab@maine.rr.com		Delivered by
PROJECT MANAGER H. Kodis	TELEPHONE FAX # / E-MAIL		
COMPANY	PURCHASE ORDER # / BILL TO		
ADDRESS			TURNAROUND REQUEST
			E Priority (SURTEABLE)
PROJECT NAME DEP2496-10	sampler NAME J. Rand		
AMPL S	FIELD FILTRATION SAMPLE D METHOD SAMPLING		
IDENTIFICATION # CONT #	YES NO MATRIX & DATE TIME DATE TIME	Eb	LABORATORY IDENTIFICATION/ SUBCONTRACTOR
tics (7.5') 2 Mag	1 X Soil X Oneo4/665 9/10/10 8:24		1 - 84E9
Rep	5 X 50il X ≤6c '' "	x	
Way 2 No M2 ort 6	X HZO X HEL/2615 9/10/10 12:45 >		6.
40N C 401-M5778	x x 1 2:55		, r
SOI-ME SOI-ME Page			, t
⁶ Trip Blank Vor			
Trip Blank 1 Nor	X medy X medy/2.		
of 1			
8			
	CD alimping		
Received within hold time Received in good condition	yes D no D N/A Custody seal present D yes D no O ves D no D N/A * T is B is a vertice of the seal	OMMENTS	Combedard Farmer
Temp. Blank °C 3. C /Frozen ice packs	DIA Resource Labo	ME DEFEDD (FINAMON	
Samples received preserved V(Aes 🗆 n/A		
	DATE	ECEIVED/BY:	The all the second s
	PATA IS NO TIME 10 A	EDENED BY: LALA A	
RELINQUISHED BY:/	DATE ¹ TIME		C & allulia
COC-04 / alra			

AEL

ANALYTICS SAMPLE RECEIPT CHECKLIST

AEL LAB#: 67789	COOLER NUMBER:	69
CLIENT: MEL	NUMBER OF COOLERS:	
PROJECT: DEP 2446.10	DATE RECEIVED:	9/15/10
A: PRELIMINARY EXAMINATION:	DATE COOLER OPENED:	9/15/10
1. Cooler received by(initials):	Date Received:	9/15/10
2. Circle one:	Shipped	\sim
3. Did cooler come with a shipping slip?	Y	(N/A)
3a. Enter carrier name and airbill number here:		
4. Were custody seals on the outside of cooler? How many & where: Seal Date:	Seal Name:	N
5. Did the custody seals arrive unbroken and intact upon arrival?	Y	
6. COC#: D/A		
7. Were Custody papers filled out properly (ink,signed, etc)?	$\left(\widetilde{Y} \right)$	N
8. Were custody papers sealed in a plastic bag?	Ŷ	Ν
9. Did you sign the COC in the appropriate place?	Ŷ	N
10. Was the project identifiable from the COC papers?	Ŷ	Ν
11. Was enough ice used to chill the cooler? (V) N	Temp. of cooler:	3°
B. Log-In: Date samples were logged in:	By: 2	
12. Type of packing in cooler(bubble wrap, popcorn)	'D	N
13. Were all bottles sealed in separate plastic bags?	(\mathfrak{V})	Ν
14. Did all bottles arrive unbroken and were labels in good condition?	Ð	Ν
15. Were all bottle labels complete(ID,Date,time,etc.)	Y	⊗ *
16. Did all bottle labels agree with custody papers?	(\mathbf{y})	N
17. Were the correct containers used for the tests indicated:	Ŷ	N
18. Were samples received at the correct pH?	Y	NA
19. Was sufficient amount of sample sent for the tests indicated?	Ì	N
20. Were bubbles absent in VOA samples?	Y	(A)
If NO, List Sample ID's and Lab #s: TRIP BL	WK 67789.5.A	CONTAINED
BUBBLE	SMALLER MAN PH	A SIZE
* 6V.103 (67789-1.A) AND GW.104 (67=	189.3.A) HAD TIME	OWITTED FROM LABEL
21. Laboratory labeling verified by (initials):	Date:	9/15/10

analytics

environmental laboratory LLC