# Maine DEP Petroleum Vapor Triage Report Phase 2A and 2B

Cumberland Farms, Inc. 801 Washington Avenue Portland, Maine

April, 2011

Prepared for:

Maine Department of Environmental Protection

Prepared by:



1034 Broadway South Portland, Maine

John S. Marchewka, C.G., P.G. MAI Environmental

### **TABLE OF CONTENTS**

| SECTIO | N 1.    | INTRODUCTION AND OBJECTIVES            | 1   |
|--------|---------|----------------------------------------|-----|
| SECTIO | N 2.    | SITE BACKGROUND                        | 1   |
| SECTIO | N 3.    | SCOPE OF WORK                          | 5   |
| SECTIO | N 4.    | METHODOLOGY                            | 6   |
| 4.1    | Genera  | al Methodology                         | . 6 |
| 4.2    |         | e Collection and Testing Methodologies |     |
| SECTIO | N 5.    | RESULTS                                | 9   |
| 5.1    | Quality | y Assurance                            | . 9 |
| 5.2    | Soil Sa | amples                                 | . 9 |
| 5.3    | Groun   | dwater                                 | . 9 |
| 5.4    | Soil G  | as                                     | 10  |
| SECTIO | N 6.    | CONCLUSIONS/RECOMMENDATIONS            | 14  |

#### LIST OF FIGURES

Figure 1: Site Location Map

Figure 2: Site Map with Groundwater Contours

#### LIST OF TABLES

- Table 1: General Methodology
- Table 2: Sample Collection and Testing Methodology
- Table 3: Fixed Gas Data
- Table 4: Soil Analytical Data
- Table 5: Groundwater Elevations
- Table 6:
   Groundwater Analytical Data
- Table 7: Soil Gas Analytical Data

#### LIST OF APPENDICES

- Appendix 1: Figures and Tables
- Appendix 2: Boring Logs and Monitoring Well Construction Details
- Appendix 3: Sampling Field Data Sheets
- Appendix 4: Laboratory Reports

## SECTION 1. INTRODUCTION AND OBJECTIVES

This report summarizes the vapor intrusion (VI) investigation methods and results pertaining to the Cumberland Farms, Inc. (CFI) Washington Ave Site, Portland, Maine. Three (3) Areas of Concern (AOCs) were identified as part of the Phase 1 Environmental Assessment and are discussed in the following sections. The objectives of the Phase 2A and 2B investigations for the Washington Ave Site were as follows:

- Evaluate vapor concentration in or next to utility conduits that connect to potential receptors; CFI building.
- Collect soil, groundwater and soil gas samples from Areas of Concern (AOCs) to compare source concentrations in the three media to concentrations outside the source areas.
- Collect soil gas samples at 2 ft above the water table at the source areas, and 15ft and 30 ft outside the source areas to evaluate horizontal gradients of soil gas concentrations.
- Collect soil gas samples from in or next to preferential pathways and assess the migration potential for elevated soil gas concentrations to move along those pathways to receptors.
- Collect data during two seasonal events; once during the summer (September) and once during the winter (December/January) months to compare concentrations between sampling events.

## **SECTION 2. SITE BACKGROUND**

The Washington Ave. CFI Site is located at 801 Washington Ave in Portland, Maine and is approximately 0.75 acres in size. The lot is occupied by a single story building, constructed on a concrete slab, which is used for CFI's convenience store. Presently there is a four-dispenser fueling pad covered by a canopy located on the south portion of the property next to Washington Ave. Three 8,000 gal gasoline USTs are located in the eastern portion of the property.

The Site is bound to the northeast by a Portland Fire Department Engine 11 Fire Station. The Site is abutted to the southeast by Ocean Ave. beyond which is a barber shop and residential (multifamily) property. The Site is bound to the southwest by commercial property that houses a driving school and smoke shop and residential (multifamily property). To the northwest of the property is a professional office building (law office). Directly South of the property is the intersection of Washington Ave and Ocean Ave. beyond which is a pizza restaurant (Angelones). Directly north of the Site is residential property. See Figure 1 Site Location Map and Figure 2 Site Map, which are located in the back of this report.

The following Recognized Environmental Conditions (RECs) were identified from the previously completed ASTM 1527-05 Phase 1 Environmental Assessment:

- The documented property ownership and property use prior to Cumberland Farms (1947-1983) as a gasoline Service Station is considered a REC.
- Current use of the property (gas station) since 1983 is considered a REC.

- Documented soil removal in 1996 and documented impacted soil remaining on the property following remediation is considered a REC.
- The documented historical abutting property ownership and past use as a filling station along with reported releases and subsequent remediation southwest of CFI (Smoke Shop, formerly Angies) is considered a REC.
- The vapor encroachment screen (VES) resulted in a determination that a vapor encroachment concern (VEC) *Likely Exists*. The determination is based on the Site's historical use, the documented subsurface impacts that reportedly intersect subsurface utility (water, sewer) lines (significant preferential pathway) serving the Site, which would result in a VEC.

The identified RECs have been evaluated with regard to potential source areas for VI at the CFI Site and have resulted in three (3) AOCs, which are described below:

**1.** AOC-1 Area of Existing and Former Dispenser Islands -Records indicate that at least three generations of pump islands have existed at the Site, all located in AOC-1 (see Figure 1). In the 1960s, three dispensers were located in AOC-1, one on the east side of the property, one where the existing dispenser island is now and one just south of the existing dispenser island. In the mid 1980s the property changed hands and CFI replaced the older pump islands with one four dispenser island at the location of the existing island. No records were found related to environmental conditions during the pump island replacement in the mid 1980's. In 1996, CFI replaced (up graded) the piping and dispenser island. During that replacement, petroleum impacted soil was discovered beneath each of the four dispensers. The MEDEP set a clean-up goal of Base Line 2 and a soil removal action level of 500 PPM on a photoionization detector (PID). Excavation of impacted soil was performed and approximately 378 tons of impacted soil was removed in the area of the dispenser-island and piping. An assessment report prepared by Hull & Associates of Gardiner, Maine indicated that impacted soil excavation extended in depth to one foot below the water table. The water table is approximately five feet below ground surface. The area excavated is shown on Figure 2. CFI in cooperation with the MEDEP installed a soil vapor extraction (SVE) system to address residual petroleum impacts related to the release from the dispensers and piping. The location of the soil vapor extraction system in shown on Figure 2. No records were found on the operation or effectiveness of the SVE system. Following installation of the SVE system, a follow-up subsurface investigation was performed to delineate residual impacts to soil and groundwater. A series of test pits, soil borings and piezometers were completed. Three underground utilities that connect to the CFI building cross AOC-1 in the southwest-northeast direction originating in Washington Ave. Two are active (water and sewer) and one is believed to be inactive (underground electric). During the Phase 1 environmental assessment, MAI observed overhead electric entering the northern portion of the CFI building, however historical maps show underground electric crossing from Washington Ave., through AOC-1 and AOC-3 and entering the northeast corner of the CFI building. Previous investigations indicate that construction gravel and old concrete slabs were encountered during test pitting and soil boring work in the AOC-1 area. The old concrete slabs are likely remnant pump islands from the 1960s.

- 2. AOC 2 Area of Existing and Former Gasoline USTs AOC-2 is located in the eastern portion of the Site and is the location of USTs that existed in the 1950s. In addition, AOC-2 is the location of the present USTs that serve CFI. A portion of AOC-2 was included in the excavation that occurred during the piping and dispenser island replacement in 1996. There has been limited investigation in this area, except for soil samples collected from shallow depths during the closure assessment work associated with the piping removal. Investigation of AOC-2 would be limited at this time by the presence of the existing USTs and pad. The former underground electric line and sewer service run close to the western side of AOC-2, between the AOC-2 and the CFI building. The SVE system that was installed in 1996 has a solid PVC suction line that runs through AOC-2 then connects to a perforated intake line that extends south into AOC-1.
- 3. AOC 3 Area of Former Gasoline USTs AOC-3 is located on the eastern side of the Site, north of AOC-2. This area of the Site was the location of six former gasoline USTs in the 1960s. The east side of AOC-3 is adjacent to Ocean Ave. A Fairpoint underground fiber optic utility conduit runs northeast southwest along Ocean Ave. and adjacent to AOC-1, AOC-2, and AOC-3. The sewer service and former underground electric line both cross AOC-3 close to the CFI building.

# **1.3 Underground Utilities as Preferential Pathways**

The Site and surrounding area are served by public water and sewer provided by the Portland Water District. Figure 2 shows the utility information that is known at this time. Underground utilities at the Site consist of:

- <u>Sewer pipeline</u> The CFI building's sewer service is connected to the northeast side of the building and runs from Washington Ave., crossing AOC-1 and AOC-3. Three clean-outs exist along the sewer service between Washington Ave. and where the service pipe enters the building (see Figure 2).
- <u>Water</u> Water service to the building enters the Site from Washington Ave. and connects to the south side of the building. The water service pipe and conduit crosses AOC-1, but its exact location was not determined.
- <u>Natural Gas</u> Natural gas enters the north side of the building and is connected to a main line along Ocean Ave., east of the Site. The gas line does not cross presently known AOCs.
- <u>Telephone</u> A Fairpoint underground fiber optic conduit runs along Washington Ave and Ocean Ave. Telephone service to the CFI building was observed to enter from overhead during the Phase 1 assessment, but might have historically connected to the building underground.
- <u>Underground Electric</u> As indicated previously, electric service was observed to connect to the CFI building overhead during the Phase 1 assessment, however historical maps indicate that an underground electric line enters the property from Washington Ave., crosses AOC-1 and AOC-3 before entering the building's northeast corner next to the sewer line.
- <u>UST Vent Pipes</u> UST vent pipes are located on the southeast side of the building and are connected to the existing USTs.
- <u>Dispenser Electrical Conduits</u> The electrical conduits from the existing dispenser island enter the southeast corner of the building.

• <u>SVE System Piping</u> – The SVE system was installed for the purpose of extracting elevated petroleum vapor for remediation of residually impacted soil and groundwater. This conduit was installed at a depth of four feet (one foot above the water table) and backfilled with pea gravel. The SVE piping extends from the southeast corner of the building through AOC-2 and AOC-3 and extends east-west across AOC-1.

## SECTION 3. SCOPE OF WORK

The scope of work for the Phase 2A and Phase 2B investigations was outlined in two study plans dated August 16, 2010 and December 6, 2010, respectively. The combined scope of work for Phase 2A and Phase 2B included the following:

- Completion of 15 direct-push borings. Soils were logged and field screened using a PID. Borings were designated B1 B15.
- Installation of seven (7) monitoring wells (MW1 MW7).
- Installation of 18 soil gas implants (SG1 SG3 and SG5 SG19). <u>Note</u>: There is no SG4:
  - 12 soil vapor implants were installed using MAI's Geoprobe drill rig (SG1, SG5, SG6, SG8, and SG12-19).
  - Three (3) soil gas implants were installed into utility conduit backfill using hand installation methods were visual confirmation of the utility line was obtained (SG9, SG10, and SG11).
  - Three (3) soil gas implants were installed into utility conduit backfill using hand installation methods were visual confirmation of the utility line was not obtained; third party locate (SG2, SG3, and SG7).
- Collection and laboratory analysis of three (3) soil samples for VPH (MADEP Method VPH 04 1.1); B1 (5-7'), B3 (5-7') and B5 (5-10').
- Elevation survey of monitoring wells and depth to groundwater measurements. Preparation of a groundwater contour map.
- Collection and laboratory analysis of nine (9) groundwater samples for VPH (MADEP Method VPH 04 1.1): MW1, MW2, and MW3 on 9/7/10, and MW3 and MW7 on 12/30/10 and MW1, MW2, MW4, and MW5 on 1/10/11.
- Collection and laboratory analysis of six (6) groundwater samples for VOCs (EPA Method 8260B chlorinated VOCs only): MW3 and MW7 12/30/10 and MW1, MW2, MW4, and MW5 on 1/10/11. All groundwater VOCs by EPA 8260 were non-detect, therefore not shown in groundwater results table in Appendix 1.
- Collection and laboratory analysis of 17 soil gas samples from the above soil gas sampling points for:
  - Targeted chlorinated VOCs by EPA method TO-15,
  - Air petroleum hydrocarbons in air (APH) by Massachusetts DEP's Air-Phase Petroleum Hydrocarbons (APH) method, Rev1 December 2009, and
  - o fixed gases oxygen, carbon dioxide and methane (O<sub>2</sub>, CO<sub>2</sub> and CH<sub>4</sub>)

<u>Note</u>: 7 soil gas samples were collected in September 2010 and 10 were collected in December 2010/January 2011.

## **SECTION 4. METHODOLOGY**

The general methodological approach and specific sampling and testing methodologies are presented in **Tables 1 and 2 in Appendix 1**.

## 4.1 General Methodology

The Washington Ave Site has three source areas that were addressed as part of the investigation. AOC-1 represents the area of the existing dispenser island, AOC-2 represents the area of the former USTs removed in 1957 and existing USTs, and AOC-3 represents the area of former USTs removed in 1967. The general approach was to collect co-located soil, groundwater, and soil gas samples from as close to the known or suspected source areas as possible given the required set-back distances. From there, lateral migration was assessed by stepping out approximately 8, 15, 22 and 30 ft (depending on the location) with additional co-located samples for soil, groundwater and soil gas. Vertical soil gas gradients were not assessed, because the depth to groundwater is only 5 ft bgs.

Four underground utilities, or preferential pathways of concern were investigated; the sewer line where it enters the Site from Washington Ave, the water line where it enters the Site from Washington Ave, the Fairpoint fiber optic conduit along Washington Ave, and the sewer service line close to where it enters the CFI building.

The Fairpoint fiber optic conduit was addressed at three soil gas implants (SG9, SG10, and SG11) along the edge of Washington Ave. Based on discussions with Fairpoint personnel, the conduit was installed by laying the fiber optic cables along an excavated trench approximately 4 ft deep. Forms were set along the edges of the trench, then concrete was poured into the forms to protect the cables from damage. The top of the concrete is approximately two feet below grade. The concrete encasement was backfilled with sand and road base gravel. Three (3) soil gas implants were installed at a depth of 3.5 ft directly next to (in contact with) the protective concrete encasement based on visual confirmation of the concrete encasement. Visual confirmation means that hand coring and vacuuming were performed at each implant location to the extent that the conduit became visible. Due to heavy precipitation during the prior two days before the implants were installed, the augered hole quickly became saturated with water half way up the concrete encasement (within 2.5 ft of ground surface). MAI installed the soil vapor implants recognizing that the implants would be below the water, but based on nearby water level depths, it appeared that the water around the conduit was perched and would likely recede over time, equilibrating to the surrounding water table depth (5 ft bgs).

The sewer line that enters the Site from Washington Ave was addressed with one soil gas implant (SG2). The sewer line was located based on a third party locate and SG2 was hand augered to a depth of 4 ft bgs on top of where the sewer line was marked. Visual confirmation of the actual sewer pipe was not made.

The water line that enters the Site from Washington Ave was addressed with one soil gas implant (SG3). The location of the water line was located based on a third party locate and SG3 was hand augered to a depth of 4.5 ft bgs on top of where the water line was marked. Visual confirmation of the actual water pipe was not made.

The sewer service line where it enters the east side of the CFI building was addressed with one soil gas implant (SG7). The sewer line was located based on a third party locate and SG7 was hand augered to a depth of 3.5 ft bgs on top of where the sewer service line was marked. Visual confirmation of the actual sewer pipe was not made. Utility depth by a third party estimated the utility at 9-11 ft below grade in the area of SG2.

One near slab soil gas implant (SG6) was installed next to the east side of the building between AOC-3 and the building.

**Table 1, General Methodology, Appendix 1**, describes the samples collected and the rationale for each sample.

## 4.2 Sample Collection and Testing Methodologies

The sample collection and testing methodologies are described in Table 2, Sample Collection and Testing Methodologies, Appendix 1.

Soil boring logs are in Appendix 2, Boring Logs and Monitoring Well Construction Details.

Soil and groundwater samples were submitted to Analytics Environmental Laboratory LLC, via Maine Environmental Laboratory in Yarmouth, Maine, for analysis of VPH and targeted VOCs (GW only). A trip blank accompanied all groundwater samples.

Soil gas samples were submitted to Alpha Analytical, Mansfield, Massachusetts for analysis of chlorinated organic compounds (targeted VOCs by TO-15), petroleum hydrocarbons (APH) and fixed gases. Field data sheets for soil gas sampling are in **Appendix 3, Sampling Field Data Sheets**.

Soil analytical results were compared to Table 5, Tier 2 Risk-Based Soil Remediation Guidelines for Petroleum Target Compounds and Hydrocarbon Fractions, in *Remediation Guidelines for Petroleum Contaminated Sites in Maine*, effective December 1, 2009 (referred to hereafter as OCW Guidelines).

Groundwater analytical results were compared to the following standards and guidelines:

- Maine Centers for Disease Control, Maximum Exposure Guidelines for drinking water, December 5, 2008, (MEGs),
- Massachusetts Contingency Plan Method 1 Groundwater Standards, Table 1, GW-2 Standards (310 CMR 40.0974(2), which apply to groundwater that is considered a potential source of indoor air contamination, and
- <u>Note:</u> MEDEP Draft Groundwater Vapor Intrusion Screening Levels for the Chronic Commercial Scenario are presented in the groundwater results table (Table 6) in Appendix 1, however for this report, MAI has not used the MEDEP Draft Screening Levels for discussion or comparison, as we understand the screening levels are under review at the MEDEP.

Soil gas analytical results were compared to MEDEP's Soil Gas Target concentrations (SGT), which are calculated by applying a 50 times factor to the MEDEP Indoor Air Target (IAT) concentrations in Table B6, Indoor Air Targets for Chronic Commercial Scenario (ug/m3) –

1/14/2010 Interim Final for Multi-Contaminant Sites, in *MEDEP Vapor Intrusion Evaluation Guidance, January 13, 2010.* 

Complete laboratory reports are in **Appendix 4**, **Laboratory Reports**. Laboratory data is summarized in **Tables in Appendix 1**, **Figures and Tables**.

## SECTION 5. RESULTS

## 5.1 Quality Assurance

Samples were collected in a consistent manner that represented the contaminant concentrations in the media sampled. Field monitoring of  $O_2$ ,  $CO_2$ , and methane was performed on soil gas samples to compare to the laboratory fixed gases concentrations of  $O_2$ ,  $CO_2$ , and methane. In addition, ambient air  $O_2$  and  $CO_2$  were collected to compare to soil gas  $O_2$  and  $CO_2$  to assist in determining whether or not short-circuiting occurred between the subsurface soil gas and the above ground air during soil gas purging and sampling. The field and laboratory fixed gases data are presented in **Table 3**, **Fixed Gas Data**, **Appendix 1**.

There were no duplicate samples collected at the Washington Ave Site for quality assurance purposes.

The difference between the ambient O2 and CO2 concentrations and the soil gas O2 and CO2 concentrations varied across all the sample locations. The soil gas O2 concentrations were in each case lower than the ambient O2 concentrations and the CO2 soil concentration were in each case higher than the ambient CO2 concentrations. These data are consistent with what would be expected from comparing ambient air and soil gas from petroleum contamination in the subsurface. Methane (CH4) was detected in field analyses of soil gas samples at 11 locations; ranging from 2% of the LEL at SG6 to 100% of the LEL at SG1, SG2, SG3, SG4, and SG11. Where CH4 was detected with the field instrument, the laboratory fix gas concentration for CH4 was 30 to 70% lower. In all cases where field CH4 was detected, the laboratory confirmation of CH4 was lower.

## 5.2 Soil Samples

Three (3) source area soil samples were collected and tested for VPH; B1 (5-7'), B3 (5-7') and B5 (5-10'). The three samples were collected during the August 2010 field work and none of the samples revealed petroleum concentrations that exceed DEP remediation guidelines for Outdoor Commercial Worker (OCW) scenario. In addition, no RLs exceeded the remediation guidelines. Soil testing results are included in **Table 4**, **Soil Analytical Results**, **Appendix 1**.

## 5.3 Groundwater

Groundwater elevations were measured in eight (8) monitoring wells (MW1 – MW7 and P7) on 12/15/10. Depth to groundwater ranges from 3.51 ft bgs at MW6 to a 5.90 ft bgs at MW3. The maximum ground water elevation change across the Site is 1.76 ft. Using the groundwater elevation data collected, groundwater flow direction is southerly towards the intersection of Washington Ave and Ocean Street. See Table 5, Groundwater Elevations, and Figure 2, Site Map showing Groundwater Contours, Appendix 1.

MEDEP Draft Groundwater Vapor Intrusion Screening Levels for the Chronic Commercial Scenario are presented in the groundwater results table (Table 6) in Appendix 1, however for this report, MAI has not used the MEDEP Draft Screening Levels for discussion or comparison, as we understand the screening levels are under review at the MEDEP.

A total of nine (9) groundwater samples from six (6) monitoring wells were collected for laboratory testing during the September 2010 and December 2010/January 2011 sampling

events. MW1, MW2, and MW3 were collected in September 2010. MW3 and MW7 were collected in December 2010 and MW1, MW2, and MW4 were collected in January 2011. The analytical results, along with regulatory guidelines are shown in **Table 6, Groundwater Analytical Results, Appendix 1**.

Of the six (6) monitoring wells sampled, four (4) had petroleum concentrations that exceeded the Maine Exposure Guidelines (MEGs) for drinking water: MW1 and MW2 for both the September 2010 and January 2011 sampling events, MW3 for both the September and December 2010 sampling events, and MW4 for the January 2011 sampling event. Only one well (MW3 – September 2010, only) showed petroleum concentrations exceeding the MA GW2 standards for groundwater that is considered a potential source of indoor air contamination. C5-C8 aliphatics in MW3 (3,100 ug/l) exceeded the MA GW2 standard of 3,000 ug/l. MW1, MW3 and MW4 are located inside the known source areas and MW4 is located downgradient of AOC-2.

## 5.4 Soil Gas

Seventeen (17) soil vapor samples were collected during the Phase 2A and Phase 2B field investigations and submitted for laboratory analysis of APH, a list of chlorinated organic compounds by EPA Method TO-15, and fixed gases. The soil gas analytical results are summarized in **Table 7, Soil Gas Analytical Data**, **Appendix 1**. The results are compared to MEDEP Soil Gas Target (SGT) concentrations in Table 7.

As shown in Table 7, seven (7) locations that were planned for sampling during the January 2011 sampling event were not collected. There was insufficient air flow during the January 2011 sampling event.

Targeted VOCs by TO-15 analysis showed low level concentrations of PCE in four (4) of the 17 samples tested. Trichloroethene was also detected at a low concentrations in one (1) sample, SG15. The PCE and trichloroethene concentrations were all well below the SGTs. <u>Note</u>: Due to the high levels of APH compounds and fractions detected in five (5) of the soil gas samples (SG1, SG2, SG3, SG5, and SG8), the laboratory reporting limits (RLs) for those samples were greater than the SGTs for the chlorinated VOCs and some of the APH compounds. Therefore, it is possible that chlorinated VOCs and some APH compounds were present in the sample at levels less than the RLs. VOCs were not detected in any of the groundwater samples.

APH compounds were detected in all 12 of the soil gas implants sampled on at least one of the sampling dates. Of the 12 soil gas implants sampled, seven (7) locations had one or more APH compound or fraction exceeding the SGTs. The highest APH concentrations were in source area samples, SG1, SG2, and SG3 located in AOC-1 and SG5 located in AOC-3. For AOC-1, total APH fractions ranged from 27 million ug/m3 in SG1 on 9/7/10 to 5.2 million ug/m3 in SG3 on 1/10/11. For AOC-3, SG5 showed a total APH fractions concentration of 31 million on 9/7/10. A significant drop in concentrations can be seen at the above locations from the summer sampling event to the winter sampling event. For example, total APH fractions concentration in

SG1 dropped from 27 million ug/m3 in September to 5 million ug/m3 in January, SG3 dropped from 24.7 million ug/m3 in September to 5.2 million in January, and SG5 had the most significant drop. SG5 dropped from 31 million ug/m3 in September to just 28 ug/m3 in January. No sample was collected from SG2 in the winter sampling event. The same pattern was observed in SG8, which is located just downgradient of AOC-2. Total APH fractions concentration in SG8 dropped from 1.2 million ug/m3 in September to non-detect in January. These seasonal changes in APH soil gas concentrations are significant in magnitude and consistency and suggest the possibility of Site specific variations to petroleum migration in soil gas related to variables such as temperature, air viscosity, frozen ground, ground water level in relation to impacted soil, and groundwater dilution. For each of the above locations, MAI reviewed depth of impacted soil, depth to water in relation to the impacted soil zone, and purge data collected during the sampling events. A summary of the data reviewed is provided below:

| Co-located Sample    | Sample   | Depth of  | Implant   | Depth to  | Purge Data      | Total APH     |
|----------------------|----------|-----------|-----------|-----------|-----------------|---------------|
| Points               | Date     | Impacted  | Depth     | Water     | Flow (ml/min)/  | Fractions     |
|                      |          | Soil (ft, | (ft, bgs) | (ft, bgs) | Vac (inches     | Concentration |
|                      |          | bgs)      |           |           | H2O)            | (ug/m3)       |
| SG1/B1/MW1           | 9/7/10   | 2-7       | 4-4.5     | 6.41      | 200/-0.5 (O.R.) | 26,900,000    |
|                      | 1/10/11  | 2-7       | 4-4.5     | 5.92      | 200/-0.30       | 4,929,300     |
|                      |          |           |           |           |                 |               |
| SG3/B3/MW1           | 9/7/10   | 2-6.5     | 4-4.5     | 6.41      | 200/-0.80       | 24,710,000    |
| (no co-located well) |          |           |           |           |                 |               |
|                      | 1/10/11  | 2-6.5     | 4-4.5     | 5.92      | 200/-0.10 w/    | 5,258,100     |
|                      |          |           |           |           | spikes to -0.50 |               |
|                      |          |           |           |           |                 |               |
| SG5/B5/MW3           | 9/7/10   | 5-10      | 4-4.5     | 7.58      | 200/-0.10       | 31,076,000    |
|                      | 12/30/10 | 5-10      | 4-4.5     | 6.05      | 200/-0.05       | 28            |
|                      |          |           |           |           |                 |               |
| SG8/B4/MW2           | 9/7/10   | 5-12      | 3.5-4     | 6.38      | 200/-0.5 (O.R.) | 1,200,000     |
|                      | 1/10/11  | 5-12      | 3.5-4     | 5.67      | 200/-0.14       | ND            |

Purge data including flow and vacuum levels do not show a pattern of change from September to December/January that would suggest a reason for the concentration drops. Although the water levels were <sup>1</sup>/<sub>2</sub> to 1 ft higher in the December/January sampling event, the top of the water table remained below the top of the impacted soil identified during the boring program. The data reviewed provides no compelling evidence for the decrease in concentration from September to December/January. Additional investigation would be needed to better understand the significance of these findings.

Horizontal migration or horizontal concentration gradients can only be analyzed from a limited data set, because a number of soil gas implants could not be sampled due to lack of air flow in December and January. The following source and step-out soil gas implants in AOC-3 have been reviewed with regard to horizontal migration:

SG5 Source Location
SG13 7.5 ft Step-out
SG12 15 ft Step-out
SG15 22.5 ft Step-out
SG14 40 ft Step-out (sample not obtained, due to insufficient air flow)

SG5 was installed in September 2010 and sampled in September and December. SG13, 12, 15, and 14 were all installed in December 2010, therefore were only sampled December 2010, with the exception of SG14, which could not be sampled (see above).

For the December 2010 sampling event there is little change in APH concentrations between the source (SG5) point to the step-out points further away. Review of total APH fractions concentration for each soil gas point indicates the following concentrations:

| SG5  | Source Location               | Total APH Fractions Concentration = $28 \text{ ug/m}3$ |
|------|-------------------------------|--------------------------------------------------------|
| SG13 | 7.5 ft Step-out               | Total APH Fractions Concentration = 308 ug/m3          |
| SG12 | 15 ft Step-out                | Total APH Fractions Concentration = 154 ug/m3          |
| SG15 | 22.5 ft Step-out              | Total APH Fractions Concentration = 162 ug/m3          |
| SG14 | 40 ft Step-out (sample not ob | tained, due to insufficient air flow)                  |

Due to the relatively low APH concentrations from the December 2010 sampling event, no definitive conclusions can be drawn from the data on horizontal migration of soil gas contaminants. It should be noted that the total APH fractions concentration of SG5 (source location) was 31,076,000 ug/m3 in September 2010.

Comparing SG5's September 2010 high concentration to SG6 (15 ft away) and SG7 (30 ft away) indicates a sharp drop of in concentrations. The total APH fractions concentration for SG6 in September 2010 was 84 ug/m3 and for SG7, the concentration was 64 ug/m3. However, the sewer service line runs between SG5 and SG6. SG7 was installed into the sewer service line backfill as a preferential pathway implant. Therefore, utilizing SG6 and SG7 may be of limited use as step-out locations to SG5 (source area location).

Additional soil gas implants were installed around AOC-1 along Washington Ave, which were targeted for horizontal migration analysis, however, due to the problems with collecting samples in that area during the December/January sampling event, insufficient data exists at this time to analyze the data for soil gas migration.

There were no sub-slab implants or soil gas samples collected from beneath the CFI building.

One near slab implant was installed (SG6) on the east side of the building at AOC-3. A soil gas sample was collected from SG6 on 9/7/10 and the results showed that APH compounds and fractions and targeted VOCs by TO-15 were below the SGTs.

Six (6) implants were installed to assess utility conduits at the Site.

SG7 was installed in the sewer service line backfill on the east side of the building and the APH and VOCs by TO-15 results showed that SGTs were not exceeded. SG7 was installed by hand auger, based on a third party locate (visual confirmation of pipe not obtained).

SG3 targeted the water service line entering from Washington Ave, which is also in a source area (AOC-1). The implant was installed by hand auger based on a third party locate (visual confirmation of pipe not obtained). High levels of APH compounds and fractions were detected in SG3 for both the September 2010 and January 2011 sampling events. Total APH fractions were 24.7 million ug/m3 in September 2010 and 5.2 million ug/m3 in January 2011, well over the SGTs. The co-located soil sample (B3, 5-7') to SG3 showed concentrations for VPH compounds and fractions, but the concentrations did not exceed the MEDEP remediation guideline for Outdoor/Commercial Worker category. There was no co-located monitoring well to SG3, however MW1, located approximately 40 ft to the west of SG3 showed elevated VPH. The elevated soil gas concentrations in SG3 appear to be most impacted by the contaminated groundwater at that location.

SG2 targeted the sewer line where it enters the Site from Washington Ave, and as is the case with SG3, SG2 is within a source area (AOC-1). SG2 was installed by hand auger based on a third party locate (visual confirmation of pipe not obtained) and sampled on 9/7/10 only. The total APH fractions concentration for SG2 was 8 million ug/m3 and well over the SGTs. There was no co-located soil or groundwater sample analyzed at the location of SG2. A third party estimated the depth of the sewer line at 9-11 ft below grade, so at best SG2 represents soil vapor in the backfill over the sewer line.

Three (3) soil gas implants (SG9, SG10, and SG11) were installed along the Fairpoint fiber optics cable conduit along the edge of Washington Ave by hand auger methods. SG11 was the only implant that was able to be sampled during December/January sampling event. The fiber optic cables are encased in concrete and the implants were installed directly next to (in contact with) the concrete encasement at a depth of 3.5 feet. SG17 was co-located to SG11 and SG19 was co-located to SG10 to compare soil gas concentrations in the conduit backfill vs. 2 ft away from the conduit. Soil gas samples were not able to be collected from all the "in contact with" conduit implants and co-located implants during the December/January sampling event, such that a comparison of concentrations could be made. The only "in contact with" conduit sample collected was SG11 and the APH results showed benzene (2,900 ug/m3) and C5 – C8 aliphatics (41,000 ug/m3) exceeding the SGTs. SG19 was the only co-located to the "in contact with" conduit sample SG10, which was not sampled. The results of the APH testing for SG19 showed C5 – C8 aliphatics (52,000 ug/m3) exceeding the SGTs. SG19 is approximately 20 ft from the "in contact with" conduit sample SG11 that was sampled.

## SECTION 6. CONCLUSIONS/RECOMMENDATIONS

#### Soil

• The results of the VPH analysis on soil samples from B1 (5-7'), B3 (5-7') and B5 (5-7') did not exceed the Outdoor Commercial Worker remediation guidelines (*Remediation Guidelines for Petroleum Contaminated Sites in Maine, December 2009*), according to laboratory analytical data.

### Groundwater

- Groundwater elevations were measured in eight (8) monitoring wells (MW1 MW7 and P7) on 12/15/10. Depth to groundwater ranges from 3.51 ft bgs at MW6 to a 5.90 ft bgs at MW3. The maximum ground water elevation change across the Site is 1.76 ft. Using the groundwater elevation data collected, groundwater flow direction is southerly towards the intersection of Washington Ave and Ocean Street.
- Of the six (6) monitoring wells sampled and tested for VPH, four (4) had petroleum concentrations that exceeded the Maine Exposure Guidelines (MEGs) for drinking water: MW1 and MW2 for both the September 2010 and January 2011 sampling events, MW3 for both the September and December 2010 sampling events, and MW4 for the January 2011 sampling event. Only one well (MW3 September 2010, only) showed petroleum concentrations exceeding the MA GW2 standards. MW3 is located in AOC-3 near the east side of the CFI building.
- No VOCs by EPA Method 8260B (chlorinated compounds only) were reported for the groundwater samples.

#### Soil Gas

As shown in Table 7, seven (7) locations that were planned for sampling during the December 2010/January 2011 sampling event were not collected. There was insufficient air flow for sample collection.

#### Comparison of Soil Gas Concentrations to SGTs

- Chlorinated volatile organics, PCE and trichloroethene were detected in laboratory analyses of soil gas samples, but the concentrations were all below the SGTs. Due to the high levels of APH compounds and fractions detected in five (5) of the soil gas samples (SG1, SG2, SG3, SG5, and SG8), the laboratory reporting limits (RLs) for those samples were greater than the SGTs for the chlorinated VOCs and some APH compounds. Therefore, it is possible that chlorinated VOCs and APH compounds were present in the sample at levels less than the RLs, but greater than the SGTs.
- APH compounds were detected in all 12 of the soil gas implants sampled on at least one of the sampling dates. Of the 12 soil gas implants sampled, seven (7) locations had one or more APH compound or fraction exceeding the SGTs. The highest APH concentrations were in source area samples, SG1, SG2, and SG3 located in AOC-1 and SG5 located in AOC-3. For these source area locations total APH fractions ranged from approximately 25 million ug/m3 in SG1 and SG3 to 31 million ug/m3 in SG5 for the September sampling event.
- No targeted VOCs (TO-15), or APH compounds or fractions exceeded the SGTs in the near slab soil gas sample (SG6). Considering that SGTs were exceeded at SG5 (25 ft

from building) and impacted source area soil and groundwater were detected in the vicinity of SG5, the results of SG6 (and SG7) indicate that vapors attenuate before they reach the building. These results indicate that AOC-3 does not pose an unacceptable risk for soil mad migration to the CFI building.

Seasonal Change in APH Concentrations

• A significant drop in APH concentrations in soil gas samples from the source areas (SG1, SG3 and SG5) occurred in the December/January sampling event. Comparing the December/January concentrations to the September concentrations indicates a percent drop in concentrations of 81% for SG1, 78% for SG3, and 99.99% for SG5. These seasonal changes in APH soil gas concentrations are significant in magnitude and consistency and suggest the possibility of site specific variations to petroleum migration in soil gas related to variables, such as temperature, air and water viscosity, frozen ground, and ground water level in relation to impacted soil. Additional investigation would be needed to better understand the significance of these findings.

## Conclusions Related to Fix Gases - Field and Laboratory

- The soil gas O2 concentrations were in each sample lower than the ambient O2 concentrations and the CO2 soil gas concentrations were in each sample higher than the ambient CO2 concentrations. These data are consistent with what would be expected from comparing ambient air and soil gas from petroleum contamination in the subsurface. The fix gas data indicates that short circuiting, or seal breaching during purging and sample collection was not a significant factor in the data results.
- Methane (CH4) was detected in field analyses of soil gas samples at 11 locations; ranging from 2% of the LEL at SG6 to 100% of the LEL at SG1, SG2, SG3, SG4, and SG11. Where CH4 was detected with the field instrument, the laboratory fix gas concentration for CH4 was 30% to 70% lower. In all cases where field CH4 was detected, the laboratory confirmation of CH4 was lower.

# Horizontal Gradients

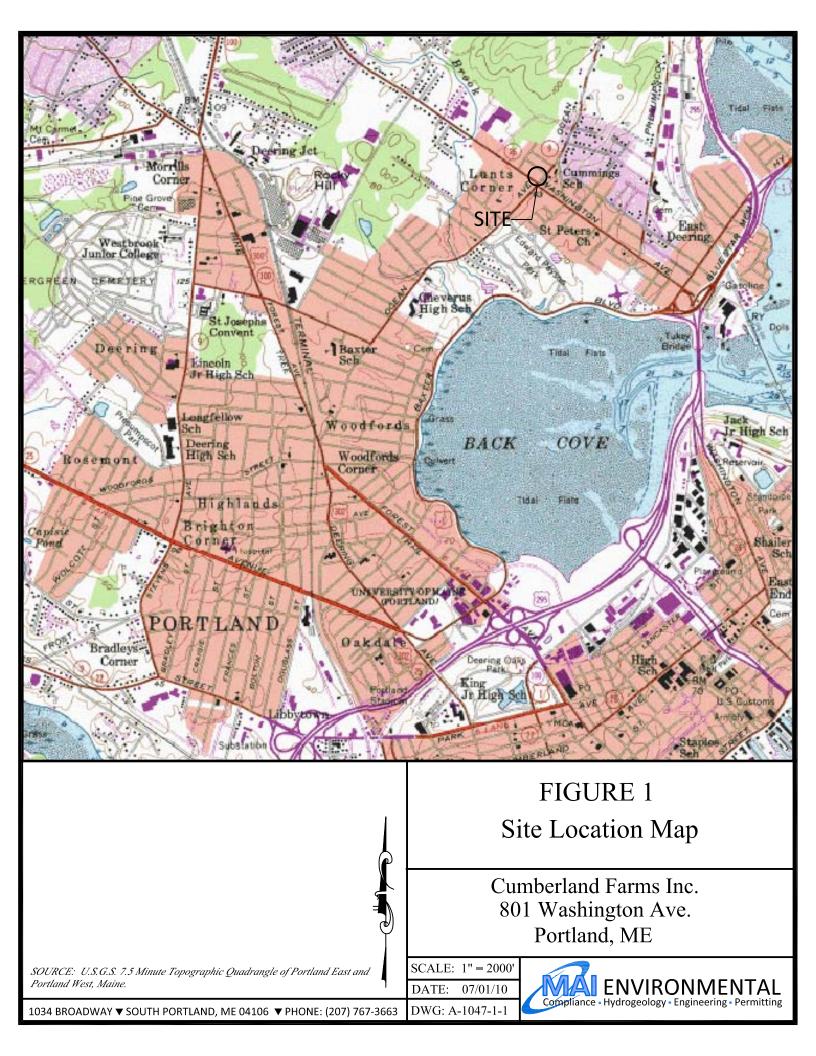
• Horizontal migration or horizontal concentration gradients were only analyzed from a limited data set, because a number of soil gas sampling locations could not be sampled due to lack of air flow in December/January sampling event. In AOC-3, soil gas samples SG5 (source area), SG13 (7.5 ft offset), SG12 (15 ft offset), SG15 (22.5 ft offset) were analyzed for horizontal migration. Due to the low APH concentrations from the December/January sampling event (SG5 source area APH concentration 28 ug/m3), no definitive conclusions can be drawn from the data on horizontal migration of soil gas contaminants. *MAI recommends re-sampling in late July early August, 2011 to evaluate lateral attenuation from this area of known soil and groundwater impacts.* 

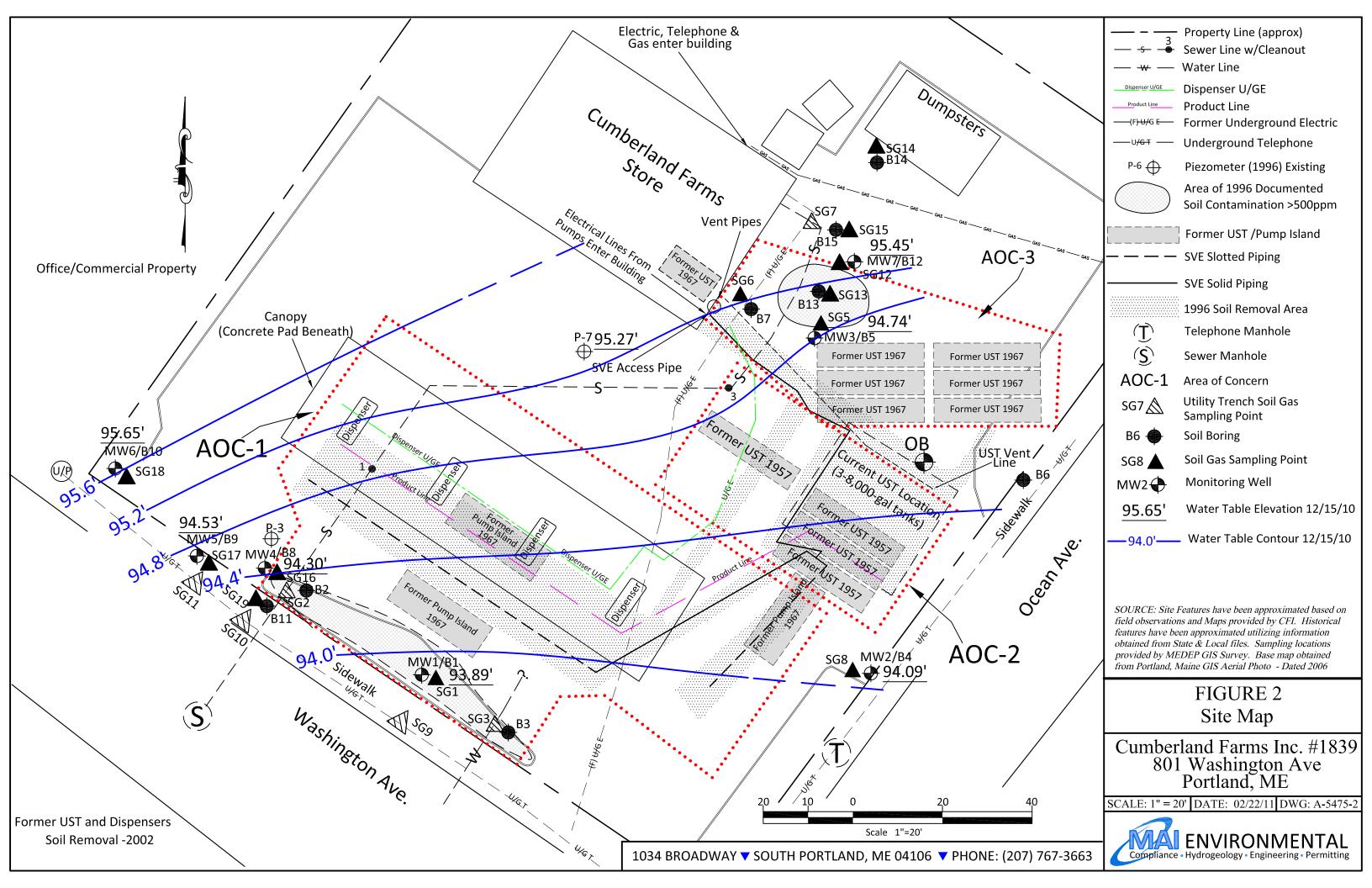
## Near Slab

• One near slab implant was installed (SG6) on the east side of the building at AOC-3. A soil gas sample was collected from SG6 on 9/7/10 and the results showed that APH compounds and fractions and VOCs by TO-15 were below the SGTs.

## Preferential Pathways

• Six (6) implants were installed to assess utility conduits at the Site.


- SG7 was installed in the sewer service line backfill on the east side of the building. APH and VOCs by TO-15 results showed that SGTs were not exceeded.
- SG3 targeted the water service line entering from Washington Ave, which is also in a source area (AOC-1). High levels of APH compounds and fractions were detected in SG3 for both the September 2010 and January 2011 sampling events. Total APH fractions were 24.7 million ug/m3 in September 2010 and 5.2 million ug/m3 in January 2011, well over the SGTs. The soil gas data from SG2 indicates the possibility of impacted soil gas migration in both directions along the water line conduit beyond the source area, towards Washington Ave and north further into the Site.
- SG2 targeted the sewer line where it enters the Site from Washington Ave, and as is the case with SG3, SG2 is within a source area (AOC-1). The total APH fractions concentration for SG2 was 8 million ug/m3 and well over the SGTs. The soil gas data from SG2 indicates the possibility of impacted soil gas migration in both directions along the sewer line conduit beyond the source area, towards Washington Ave and north further into the Site.
- Three soil gas implants (SG9, SG10, and SG11) were installed directly next to and in contact with the Fairpoint fiber optics cable conduit along Washington Ave. Only one (SG11) of the implants was able to be sampled, due to insufficient air flow in the other two at the time of sampling. APH results for SG11 showed benzene (2,900 ug/m3) and C5 C8 aliphatics (41,000 ug/m3) exceeding the SGTs. The data from SG11 indicates that impacted soil gas is likely present along most of the conduit in front of the AOC-1 (source area).


## Comparison within Utility to Near Utility

• Inconclusive as co-located implants could not be sampled due to lack of adequate air flow in December January. *MAI recommends re-sampling co-located implants in late July early August, 2011 to evaluate concentration differences of samples collected in the utility bedding vs. samples collected next to the utility bedding.* 

# **APPENDIX 1**

# **Tables and Figures**





# Table 1 General Methodology CFI – Washington Ave Portland, Maine

| Category  | Sample ID/Media                        | Rationale                                                                                                                                                                                                              |
|-----------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source Ar | ea (Former USTs 19                     | 067)                                                                                                                                                                                                                   |
|           | SG-5/Soil Gas                          | Assess contaminant concentrations in soil gas in known source area adjacent to former 1967 USTs and compare soil gas to co-located soil (B5) and GW (MW3) concentrations.                                              |
|           | SG-13/Soil Gas                         | Assess contaminant concentrations in soil gas in known source area adjacent to former 1967 USTs and compare soil gas to co-located soil (B13) concentrations.                                                          |
|           | B-5 and B13/Soil                       | Assess soil concentration in known source area adjacent to former 1967 USTs.                                                                                                                                           |
|           | MW-3/Groundwater                       | Assess GW concentration in known source area adjacent to former 1967 USTs.                                                                                                                                             |
| Migration | (Former USTs 1967                      | 7)                                                                                                                                                                                                                     |
|           | SG-12/Soil Gas                         | Assess contaminant concentrations in soil gas approximately 8' from known source area (B13, SG13).                                                                                                                     |
|           | SG-15/Soil Gas                         | Assess contaminant concentrations in soil gas approximately 15' from known source area (B13, SG13).                                                                                                                    |
|           | SG-14/Soil Gas                         | Assess contaminant concentrations in soil gas approximately 30' from known source area (B13, SG13).                                                                                                                    |
|           | MW-7/Groundwater                       | Assess GW concentrations approximately 8' from known source area adjacent to 1967 USTs, and compare GW to co-<br>located soil (B12) and soil gas (SG12) concentrations.                                                |
| Migration | (Former USTs 1957                      | 7)                                                                                                                                                                                                                     |
|           | SG-8/Soil Gas                          | Assess contaminant concentrations in soil gas approximately 30' from known source area adjacent to 1957 USTs, and compare soil gas to co-located soil (B4) and GW (MW2) concentrations.                                |
|           | MW-2/Groundwater                       | Assess GW concentrations approximately 30' from known source area adjacent to 1957 USTs, and compare GW to co-<br>located soil (B4) and soil gas (SG8) concentrations.                                                 |
| Source Ar | ea (Current/Historic                   | e Dispenser Area)                                                                                                                                                                                                      |
|           | SG-1/Soil Gas                          | Assess contaminant concentrations in soil gas in known source area adjacent to dispenser island and compare soil gas to co-located soil (B1) and GW (MW1) concentrations.                                              |
|           | SG-2/Soil Gas                          | Assess contaminant concentrations in soil gas in known source area adjacent to dispenser island and compare soil gas to co-located soil (B2) concentrations.                                                           |
|           | SG-3/Soil Gas and preferential pathway | Assess contaminant concentrations in soil gas in known source area adjacent to dispenser island and compare soil gas to co-located soil (B3) concentrations. Also installed next to water line (preferential pathway). |
|           | B1, B2, B3/Soil                        | Assess soil concentration in known source area adjacent to former dispenser islands.                                                                                                                                   |
|           | MW-1/Groundwater                       | Assess GW concentration in known source area adjacent to dispenser islands.                                                                                                                                            |

# Table 1 General Methodology CFI – Washington Ave Portland, Maine

| Category    | Sample ID/Media       | Rationale                                                                                                                                                                                                                                                                                                                    |
|-------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Migration   | Pathways (Current/    | Historic Dispenser Area)                                                                                                                                                                                                                                                                                                     |
|             | SG16/Soil Gas         | Assess contaminant concentrations in soil gas approximately 8' from known source area adjacent to dispenser islands, and compare soil gas to co-located soil (B8) and GW (MW4) concentrations.                                                                                                                               |
|             | SG17/Soil Gas         | Assess contaminant concentrations in soil gas approximately 15' from known source area adjacent to dispenser islands, and compare soil gas to co-located soil (B9) and GW (MW5) concentrations. Additionally to compare soil gas concentrations outside of utility bed to the concentrations inside the utility bed (SG-11). |
|             | SG18/Soil Gas         | Assess contaminant concentrations in soil gas approximately 40' from known source area adjacent to dispenser islands, and compare soil gas to co-located soil (B10) and GW (MW6) concentrations.                                                                                                                             |
|             | SG19/Soil Gas         | Assess contaminant concentrations in soil gas approximately 8' from known source area adjacent to dispenser islands, and compare soil gas to co-located soil (B11). Additionally to compare soil gas concentrations outside of utility bed to the concentrations inside the utility bed (SG-10).                             |
|             | MW4/Groundwater       | Assess GW concentrations approximately 8' from known source area adjacent to dispenser islands, and compare GW to co-located soil (B8) and soil gas (SG16) concentrations.                                                                                                                                                   |
|             | MW5/Groundwater       | Assess GW concentrations approximately 15' from known source area adjacent to dispenser islands, and compare GW to co-located soil (B9) and soil gas (SG17) concentrations.                                                                                                                                                  |
|             | MW6/Groundwater       | Assess GW concentrations approximately 40' from known source area adjacent to dispenser islands, and compare GW to co-located soil (B10) and soil gas (SG18) concentrations.                                                                                                                                                 |
|             |                       |                                                                                                                                                                                                                                                                                                                              |
| Preferentie | al Pathways           |                                                                                                                                                                                                                                                                                                                              |
|             | SG-9, 10, 11/Soil Gas | Assess soil gas concentration in backfill of former underground electric and current telephone utility conduit. Current telephone conduit encased in concrete. Vapor points are contact with concrete encasement based on visual confirmation during installation.                                                           |
|             | SG-3/Soil Gas         | Assess soil gas concentration along water line conduit. Third party locate of line. Visual conformation of water line not obtained.                                                                                                                                                                                          |
|             | SG-6/Soil Gas         | Assess soil gas concentration next to underground electric service line that enters building. Third party locate of line. Visual conformation of service line not obtained.                                                                                                                                                  |
|             | SG-7/Soil Gas         | Assess soil gas concentration in backfill of building sewer service line. Third party locate of line. Visual conformation of service line not obtained.                                                                                                                                                                      |

**Notes:** SG-4 was not completed.

| Table 2                                     |
|---------------------------------------------|
| Sample Collection and Testing Methodologies |
| CFI Washington Ave Portland, Maine          |

| Media       | Sample                                                                                                                                                                                   | Points                                                               | 5                                                                            | Collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Field                                                                                                                                                                                                                                                                                                 | Laboratory                                                                                                                                                                                                                         |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | (Dept                                                                                                                                                                                    | th ft)                                                               |                                                                              | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Testing                                                                                                                                                                                                                                                                                               | Testing                                                                                                                                                                                                                            |
| Soil        | B1 (5-7')<br>B3 (5-7')<br>B5 (5-10')                                                                                                                                                     |                                                                      |                                                                              | Soil borings were completed using MAI's Geoprobe 6620<br>DT direct-push drilling rig. Samples were collected in a 5'<br>long disposable acetate liner at continuous depth intervals.                                                                                                                                                                                                                                                                                                                                                   | Thermo 580 B<br>photoionization detector<br>(PID). Calibrated using a<br>100 ppm isobutylene<br>standard with a response<br>factor of 1.0. MEDEP Poly-<br>bag Headspace technique,<br>MEDEP SOP DR #011                                                                                               | MADEP Hydrocarbon<br>Fractions Analytical<br>Methods.<br>VPH - Volatile Petroleum<br>Hydrocarbons.                                                                                                                                 |
| Groundwater | MW1, MW2, M<br>MW5, MW7<br>(Samples collect<br>WT surface)                                                                                                                               |                                                                      |                                                                              | Monitoring wells were installed using MAI's Geoprobe<br>6620 DT direct-push drilling rig. Wells were made of 10'<br>long, 1" dia. PVC well screen (10-slot) and solid riser pipe.<br>The screens were placed across the observed water table<br>such that 2' of screen extended above the water table and<br>8' below. The well screen sections were back filled with<br>filter sand to 6" above top of screen and sealed with<br>hydrated bentonite clay.<br>Groundwater samples were collected using "Low flow"<br>sampling methods. | Turbidity, DO, water<br>level, field screen GW<br>with PID.                                                                                                                                                                                                                                           | MADEP Hydrocarbon<br>Fractions Analytical<br>Methods.<br>VPH - Volatile Petroleum<br>Hydrocarbons.<br>VOCs - (Halocarbons only)                                                                                                    |
| Soil Gas    | SG2         (4')           SG3         (4.5')           SG5         (5')           SG6         (5')           SG7         (3.5')           SG8         (4')           SG9         (3.5') | SG11<br>SG12<br>SG13<br>SG14<br>SG15<br>SG16<br>SG17<br>SG18<br>SG19 | (3.5')<br>(4')<br>(4')<br>(4')<br>(3.5')<br>(4')<br>(3.5')<br>(4')<br>(3.5') | Soil gas implants (6" long) were installed using MAI's<br>Geoprobe 6620 DT direct-push drilling rig. The implants<br>were installed through the drill casing, backfilled with filter<br>sand and sealed with bentonite clay. Soil gas implants in<br>utility trenches were installed using a hand auger and soil<br>vacuum.<br>Soil gas was collected using laboratory provided Summa<br>Canisters with flow regulators set to collect sample at<br>200ml/min.                                                                         | RKI Eagle, or MSA Orion<br>Plus IR detector, Multi-Gas<br>Meter (O2, CO2, CH4).<br>Rotameter - model P single<br>flow tube meter. PID.<br>Dwyer instruments<br>magnehelic gauge (Model<br>2000-00 has a range of 0-<br>0.50" w.c., minor divisions<br>.01, calibrated for vertical<br>scale position) | MADEP - Air Phase<br>Petroleum Hydrocarbons<br>MA-APH (Air Phase<br>Petroleum Hydrocarbons)<br>with<br>• limited TO-15 (TCA/PCE<br>and breakdown products)<br>• EDB (ethylene dibromide)<br>• fixed gases (Methane, O2<br>and CO2) |

#### Table 3 Field and Laboratory Fixed Gasses CFI-Washington Ave Portland, ME

| Sample Point I.D.:            | so     | G-1     | S      | G-2                    | SC     | <b>Э-</b> 3 | S      | 9-5      | SG-6   | S      | G-7      |
|-------------------------------|--------|---------|--------|------------------------|--------|-------------|--------|----------|--------|--------|----------|
| Date:                         | 9/7/10 | 1/10/11 | 9/7/10 | 1/10/11                | 9/7/10 | 1/10/11     | 9/7/10 | 12/30/10 | 9/7/10 | 9/7/10 | 12/30/10 |
| Sample Depth:                 | 4.5    | 4.5     | 4      | 4                      | 4.5    | 4.5         | 5      | 5        | 5      | 3.5    | 3.5      |
| Depth to Water:               | 6.41   | 5.92    | Unk    | Unk                    | Unk    | Unk         | 7.58   | 6.28     | Unk    | Unk    | Unk      |
| O2 (Units %)                  |        |         |        |                        |        |             |        |          |        |        |          |
| Ambient O2:                   | 20.9   | 20.9    | 20.9   | No                     | 20.9   | 20.9        | 20.9   | 20.9     | 20.9   | 20.9   | 20.9     |
| Pre-sample O <sub>2</sub> :   | 0.5    | 0       | 0.5    | Sample                 | 0.6    | 0           | 0.5    | 20.9     | 8      | 12     | 17.5     |
| Post Sample O <sub>2</sub> :  | 0.5    | 0       | 0.5    | Collected              | 0.6    | 0           | 0.5    | 11.2     | 8      | 12     | 17.5     |
| Lab O <sub>2</sub> :          | ND     | ND      | ND     | Flow rate<br>less than | ND     | ND          | ND     | 7.27     | 5.56   | 10.3   | 14.8     |
| CO2 (Units %)                 |        |         |        | 10 ml/min              |        |             |        |          |        |        |          |
| Ambient CO2:                  | 0.3    | 0       | 0.3    |                        | 0.3    | 0           | 0.9    | 0        | 0.3    | 0.3    | 0        |
| Pre-sample CO <sub>2</sub> :  | OR     | 3.1     | OR     |                        | OR     | 3.1         | OR     | 8.1      | OR     | OR     | 2.8      |
| Post Sample CO <sub>2</sub> : | OR     | 2.3     | OR     |                        | OR     | 3           | OR     | 8.1      | OR     | OR     | 2.8      |
| Lab CO <sub>2</sub> :         | 9.76   | 3.71    | 8.89   |                        | 15     | 5.23        | 18.1   | 7.89     | 10.6   | 8.33   | 2.93     |
| CH4 (Units % LEL)             |        |         |        | 1                      |        |             |        |          |        |        |          |
| Pre-sample CH4:               | 100    | 100     | 100    |                        | 100    | 100         | 12     | 0        | 2      | 19     | 0        |
| Lab CH4:                      | 60.7   | 59.0    | 64.5   |                        | 43.3   | 34.3        | 0.51   | ND       | ND     | ND     | ND       |

NA = Not Analyzed

OR = Over Meter Range (5%)

Unk = Unkown Water Level (no adjacent well)

LEL = Lower Explosive Limit

#### Table 3 Field and Laboratory Fixed Gasses CFI-Washington Ave Portland, ME

| Sample Point I.D.:            | so     | G-8     | SG-9    | SG-10                  | SG11    | SG-12    | SG-13    | SG-14                  | SG-15    | SG-16                         | SG-17     | SG-18   | SG19    |
|-------------------------------|--------|---------|---------|------------------------|---------|----------|----------|------------------------|----------|-------------------------------|-----------|---------|---------|
| Date:                         | 9/7/10 | 1/10/11 | 1/10/11 | 1/10/11                | 1/10/10 | 12/30/10 | 12/30/10 | 12/30/10               | 12/30/10 | 1/10/11                       | 1/10/11   | 1/10/11 | 1/10/10 |
| Sample Depth:                 | 4      | 4       | 3.5     | 3.5                    | 3.5     | 4        | 4        | 4                      | 3.5      | 4                             | 3.5       | 4       | 3.5     |
| Depth to Water:               | 6.38   | 5.67    | Unk     | Unk                    | 4.9     | 6.01     | 6.15+/-  | Unk                    | 6 +/-    | 5.48                          | 4.90      | 2.85    | 5 +/-   |
| O2 (Units %)                  |        |         |         |                        |         |          |          |                        |          |                               |           |         |         |
| Ambient O2:                   | 20.9   | 20.9    | No      | No                     | 20.9    | 20.9     | 20.9     | No                     | 20.9     | No                            | No        | No      | 20.9    |
| Pre-sample O <sub>2</sub> :   | 0.5    | 5.5     | Sample  | Sample                 | 2.7     | 12.3     | 10.3     | Sample                 | 19.9     | Sample                        | Sample    | Sample  | 0       |
| Post Sample O <sub>2</sub> :  | 0.5    | 3.6     |         | ected Collected        | 4.4     | 12.6     | 10.2     | Collected              | 19.9     | Collected Collected Flow rate |           |         | 0       |
| Lab O <sub>2</sub> :          | ND     | 4.94    |         | Flow rate<br>less than | 2.80    | 8.26     | 5.31     | Flow rate<br>less than | 17.1     |                               | less than |         | ND      |
| CO2 (Units %)                 |        |         |         | 10 ml/min              |         |          |          | 10 ml/min              |          |                               | 10 ml/min |         |         |
| Ambient CO2:                  | 0.3    | 0       |         |                        | 0       | 0        | 0        |                        | 0        |                               |           |         | 0       |
| Pre-sample CO <sub>2</sub> :  | OR     | NA      |         |                        | 0.4     | 6.9      | 8.6      |                        | 1.3      |                               |           |         | 1.1     |
| Post Sample CO <sub>2</sub> : | OR     | NA      |         |                        | 0.7     | 6.6      | 8.7      |                        | 1.2      |                               |           |         | 1.1     |
| Lab CO <sub>2</sub> :         | 21.5   | 9.01    |         |                        | 1.05    | 6.27     | 5.74     |                        | 1.17     |                               |           |         | 2.03    |
| CH4 (Units % LEL)             |        |         | 1       |                        |         |          |          |                        |          |                               |           |         |         |
| Pre-sample CH4:               | 10     | NA      |         |                        | 100     | 0        | 0        |                        | 0        |                               |           |         | 100     |
| Lab CH4:                      | ND     | ND      | 1       |                        | 73.0    | ND       | ND       |                        | ND       |                               |           |         | 87.6    |

NA = Not Analyzed

OR = Over Meter Range (5%)

Unk = Unkown Water Level (no adjacent well)

LEL = Lower Explosive Limit

Table 4Soil Analytical Data, Volatile Petroleum Hydrocarbon (VPH)CFI - Washington Ave,Portland, Maine

| Sample ID               | B1<br>(5-7') | B3<br>(5-7') | B5<br>(5-10') | OCW Soil<br>Guideline [1] |
|-------------------------|--------------|--------------|---------------|---------------------------|
| Sample Date             | 08/31/10     | 08/31/10     | 08/31/10      |                           |
| VOCs by PID, ppmv       | 90           | 82           | 358           |                           |
| VPH Analytes, mg/kg     |              |              |               |                           |
| Benzene                 | ND (0.12)    | ND (0.15)    | ND (0.11)     | 86                        |
| Ethylbenzene            | ND (0.12)    | 0.516        | 0.401         | 420                       |
| Methyl-tert-butyl ether | ND (0.12)    | 0.14J        | 0.155         | 2600                      |
| Naphthalene             | ND (0.12)    | 0.3          | 0.751         | 200                       |
| Toluene                 | ND (0.12)    | ND (0.15)    | ND (0.11)     | 10000                     |
| m- & p-Xylenes          | ND (0.24)    | 0.24J        | 0.727         |                           |
| o-Xylene                | ND (0.12)    | 0.151J       | 0.106J        |                           |
| Total Xylenes           | ND           | 0.391J       | 0.833J        | 10000                     |
| C5-C8 Aliphatics        | ND (3.05)    | 45.3         | 51.2          | 10000                     |
| C9-C12 Aliphatics       | ND (3.05)    | 44.1         | 31.7          | 10000                     |
| C9-C10 Aromatics        | ND (0.61)    | 16.4         | 20.6          | 5100                      |

NOTES - [1] Outdoor Commercial Worker (OCW) scenario, Table 5, Tier 2 Cumulative Risk-Based Soil Remediation Guidelines for Petroleum Target Compounds and Hydrocarbon Fractions, Remediation Guidelines for Petroleum Contaminated Sites in Maine, effective December 1, 2009

-- = No guideline for this compound

ND = Not detected above the laboratory reporting limit (Reporting Limit – RL)

J = Compound detected below calibrated range, concentration estimated

mg/kg = milligrams per kilogram

ppmv = parts per million by volume

PID = photoionization detector

#### Table 5 Groundwater Elevations CFI Washington Ave Portland, ME

|      |             | Survey Completed of | n 12/15/10      |               |                |                |
|------|-------------|---------------------|-----------------|---------------|----------------|----------------|
|      |             | Water Levels Measu  | red on 12/15/10 |               |                |                |
|      |             | H of I =            | BM elev         | Rod Reading   |                |                |
|      |             | 104.10              | 100.00          | 4.10          |                |                |
|      |             |                     |                 |               | Depth to Water | Water Table    |
|      | Rod Reading | Ground Elevation    | Rod Reading     | PVC Elevation | (ft bgs)       | Elevation (ft) |
| MW-1 | 4.25        | 99.85               | 4.40            | 99.70         | 5.81           | 93.89          |
| MW-2 | 4.73        | 99.37               | 4.95            | 99.15         | 5.06           | 94.09          |
| MW-3 | 3.26        | 100.84              | 3.46            | 100.64        | 5.90           | 94.74          |
| MW-4 | 4.45        | 99.65               | 4.88            | 99.22         | 4.92           | 94.30          |
| MW-5 | 5.14        | 98.96               | 5.42            | 98.68         | 4.15           | 94.53          |
| MW-6 | 4.62        | 99.48               | 4.94            | 99.16         | 3.51           | 95.65          |
| MW-7 | 3.18        | 100.92              | 3.44            | 100.66        | 5.21           | 95.45          |
| P-7  | 3.26        | 100.84              | 3.58            | 100.52        | 5.25           | 95.27          |

#### Table 6 Groundwater Analysis - VPH CFI - Washington Ave Portland, ME

|                                       |         |              |        |             | VPH .   | Analytes, ug/l |          |                  |                    |                      |                    |
|---------------------------------------|---------|--------------|--------|-------------|---------|----------------|----------|------------------|--------------------|----------------------|--------------------|
|                                       | Benzene | Ethylbenzene | MtBE   | Naphthalene | Toluene | m/p- Xylenes   | o-Xylene | Total<br>Xylenes | C5-C8<br>Aliphatic | C9-C12<br>Aliphatics | C9-C10<br>Aromatic |
| MA GW2 Standard [1]                   | 2000    | 20000        | 50000  | 1000        | 50000   |                |          | 9000             | 3000               | 5000                 | 7000               |
| Draft VI Screening-<br>Commercial [2] | 6.9     | 15           | 2000   | 20          | 16000   |                |          | 410              | 3.2                | 2.7                  | 130                |
| ME MEGs 2010 [3]                      | 4       | 30           | 35     | 10          | 600     |                |          | 1000             | 300                | 700                  | 200                |
| Sample ID                             |         |              |        |             |         |                |          |                  |                    |                      |                    |
| MW-1                                  | -       |              |        |             | -       |                |          | -                |                    |                      |                    |
| 9/7/10                                | 1550    | 1150         | 1550   | 135         | 160     | 1280           | 207      | 1487             | 1080               | 2210                 | 1560               |
| 1/10/11                               | 1510    | 1520         | 1790   | 330         | 97      | 1090           | 161      | 1251             | 1260               | 3090                 | 2640               |
| MW-2                                  |         |              |        |             |         |                |          |                  |                    |                      |                    |
| 9/7/10                                | 105     | 3            | 15     | 3           | 2J      | 4              | ND (2)   | 4                | 545                | 89                   | 96                 |
| 1/10/11                               | 44      | ND (2)       | 15     | ND (2)      | ND (2)  | ND (4)         | ND (2)   | ND               | 355                | 74                   | 74                 |
| MW-3                                  |         |              |        |             |         |                |          |                  |                    |                      |                    |
| 9/7/10                                | 14J     | 101          | 29     | 51          | ND (20) | 355            | 25       | 380              | 3100               | 1720                 | 2400               |
| 12/30/10                              | ND (2)  | 5            | 7      | ND (2)      | 1J      | 11             | ND (2)   | 11               | 833                | 251                  | 323                |
| MW-4                                  |         |              |        |             |         |                |          |                  |                    |                      |                    |
| 1/10/11                               | 6       | 13           | 4      | 4           | ND (2)  | 10             | 1J       | 11J              | 27J                | 30J                  | 26                 |
| MW-5                                  |         |              |        |             |         |                |          |                  |                    |                      |                    |
| 1/10/11                               | ND (2)  | ND (2)       | ND (2) | ND (2)      | ND (2)  | ND (4)         | ND (2)   | ND               | ND (50)            | ND (50)              | ND (10)            |
| MW-7                                  |         |              |        |             |         |                |          |                  |                    |                      |                    |
| 12/30/10                              | ND (2)  | ND (2)       | ND (2) | ND (2)      | ND (2)  | ND (4)         | ND (2)   | ND               | ND (50)            | ND (50)              | ND (10)            |

Notes: The 12/30/10 and 1/10/11 sampling events included analysis for 8260 - cholirnated compounds only at each sampling location. No compounds were detected at any of the sampling locations and as a result the analysis has not been included on the Table.

[1] Massachusetts Contingency Plan Method 1 Groundwater Standards, Table1, GW-2 Standards, (310 CMR 40.0974(2))

[2] Draft (11/23/2010) Table B11, MEDEP Groundwater Vapor Intrusion Screening Levels for Chronic Residential and Commercial Scenarios (ug/l)

[3] Maine Department of Human Services, Centers for Disease Control, Maximum Exposure Guidelines (MEGs) for drinking water, December 14, 2010.

VPH = Volatile Petroleum Hydrocarbons, MA DEP Method

-- = No standard or guideline for this compound

ND = Not detected above the laboratory reporting limit (Reporting Limit - RL)

#### Table 6 Groundwater Analysis - VPH CFI - Washington Ave Portland, ME

J = Compound detected below calibrated range, concentration estimated

#### Table 7 Soil Vapor Analysis - MA-APH and TO-15 CFI - Washington Ave Portland, ME

|                             |         | Soil Vapor Analytes - ug/m <sup>3</sup> |           |           |                        |            |           |            |           |           |           |           |  |
|-----------------------------|---------|-----------------------------------------|-----------|-----------|------------------------|------------|-----------|------------|-----------|-----------|-----------|-----------|--|
|                             |         | SG-1                                    |           | SG-2      |                        | SG-3       |           | SG-5       |           | SG-6      | SC        | 6-7       |  |
|                             | SGT [1] | 9/7/10                                  | 1/10/11   | 9/7/10    | 1/10/11                | 9/7/10     | 1/10/11   | 9/7/10     | 12/30/10  | 9/7/10    | 9/7/10    | 12/30/10  |  |
| TO-15 Analysis - (Limited)  |         |                                         |           |           |                        |            |           |            |           |           |           |           |  |
| Vinyl chloride              |         | ND (1150)                               | ND (159)  | ND (1040) |                        | ND (1200)  | ND (162)  | ND (1100)  | ND (0.51) | ND (0.51) | ND (0.51) | ND (0.51) |  |
| 1,1-Dichloroethene          |         | ND (1790)                               | ND (246)  | ND (1610) |                        | ND (1860)  | ND (250)  | ND (1700)  | ND (0.79) | ND (0.79) | ND (0.79) | ND (0.79) |  |
| trans-1,2-Dichloroethene    |         | ND (1790)                               | ND (246)  | ND (1610) | Collected              | ND (1860)  | ND (250)  | ND (1700)  | ND (0.79) | ND (0.79) | ND (0.79) | ND (0.79) |  |
| 1,1-Dichloroethane          |         | ND (1820)                               | ND (251)  | ND (1640) | Flow rate              | ND (1900)  | ND (256)  | ND (1730)  | ND (0.81) | ND (0.81) | ND (0.81) | ND (0.81) |  |
| cis-1,2-Dichloroethene      |         | ND (1790)                               | ND (246)  | ND (1610) | less than 10           | ND (1860)  | ND (250)  | ND (1700)  | ND (0.79) | ND (0.79) | ND (0.79) | ND (0.79) |  |
| 1,2-Dichloroethane          |         | ND (1820)                               | ND (251)  | ND (1640) | ml/min                 | ND (1900)  | ND (256)  | ND (1730)  | ND (0.81) | ND (0.81) | ND (0.81) | ND (0.81) |  |
| 1,1,1-Trichloroethane       |         | ND (2460)                               | ND (339)  | ND (2220) |                        | ND (2550)  | ND (345)  | ND (2340)  | ND (1.09) | ND (1.09) | ND (1.09) | ND (1.09) |  |
| Trichloroethene             | 305     | ND (2420)                               | ND (334)  | ND (2180) |                        | ND (2520)  | ND (340)  | ND (2300)  | ND (1.07) | ND (1.07) | ND (1.07) | ND (1.07) |  |
| 1,2-Dibromoethane           |         | ND (3460)                               | ND (447)  | ND (3120) |                        | ND (3600)  | ND (486)  | ND (3290)  | ND (1.54) | ND (1.54) | ND (1.54) | ND (1.54) |  |
| Tetrachloroethene           | 100     | ND (3060)                               | ND (421)  | ND (2760) |                        | ND (3180)  | ND (428)  | ND (2900)  | 10.2      | 9.07      | 2.75      | ND (1.36) |  |
| MA-APH Analysis             | _       | _                                       |           | _         |                        | _          |           | _          |           | _         | _         |           |  |
| 1,3-Butadiene               | 20.5    | ND (4400)                               | ND (620)  | ND (4000) |                        | ND (4600)  | ND (640)  | ND (4200)  | ND (4.6)  | ND (2)    | ND (2)    | ND (3.8)  |  |
| Methyl tert butyl ether     | 23.5    | ND (4400)                               | ND (620)  | ND (4000) |                        | ND (4600)  | ND (640)  | ND (4200)  | ND (4.6)  | ND (2)    | ND (2)    | ND (3.8)  |  |
| Benzene                     | 80      | 70000                                   | 20000     | 5600      | Collected              | 18000      | 6100      | 6700       | ND (4.6)  | ND (2)    | ND (2)    | ND (3.8)  |  |
| Toluene                     | 220000  | ND (4400)                               | ND (620)  | ND (4000) | Flow rate              | ND (4600)  | ND (640)  | ND (4200)  | ND (4.6)  | ND (2)    | ND (2)    | ND (3.8)  |  |
| C5-C8 Aliphatics, Adjusted  | 9000    | 24000000                                | 4500000   | 7700000   | less than 10<br>ml/min | 2400000    | 500000    | 31000000   | 28        | 60        | 32        | ND (23)   |  |
| Ethylbenzene                | 245     | 25000                                   | 3800      | ND (4000) | 1111/11111             | ND (4600)  | ND (640)  | ND (4200)  | ND (4.6)  | ND (2)    | ND (2)    | ND (3.8)  |  |
| p/m-Xylene                  |         | ND (8800)                               | ND (1200) | ND (8000) |                        | ND (9200)  | ND (1300) | ND (8400)  | ND (9.2)  | ND (4)    | ND (4)    | ND (7.6)  |  |
| o-Xylene                    |         | ND (4400)                               | ND (620)  | ND (4000) |                        | ND (4600)  | ND (640)  | ND (4200)  | ND (4.6)  | ND (2)    | ND (2)    | ND (3.8)  |  |
| TOTAL XYLENES               | 4400    | ND                                      | ND        | ND        |                        | ND         | ND        | ND         | ND        | ND        | ND        | ND        |  |
| Naphthalene                 | 18      | ND (4400)                               | ND (620)  | ND (4000) |                        | ND (4600)  | ND (640)  | ND (4200)  | ND (4.6)  | ND (2)    | ND (2)    | ND (3.8)  |  |
| C9-C12 Aliphatics, Adjusted | 9000    | 2800000                                 | 420000    | 310000    |                        | 710000     | 250000    | 76000      | ND (32)   | 24        | 32        | ND (27)   |  |
| C9-C10 Aromatics Total      | 2200    | 100000                                  | 9300      | 30000     |                        | ND (23000) | 8100      | ND (21000) | ND (23)   | ND (10)   | ND (10)   | ND (19)   |  |

NOTES -

[1] Soil Gas Target (SGT) = 50 times the MEDEP Indoor Air Target for Chronic Commercial-Multi Contaminant Scenario, Table B6 – 01/14/10

[2] Chlorinated volatile organic compounds by EPA Method TO-15. See laboratory reports for Analyte List

ND = Not detected above the laboratory reporting limit (Reporting Limit - RL)

#### Table 7 Soil Vapor Analysis - MA-APH and TO-15 CFI - Washington Ave Portland, ME

|                             |                           | Soil Vapor Analytes - ug/m <sup>3</sup> |           |                        |                        |           |           |           |                        |           |                        |                        |                        |           |
|-----------------------------|---------------------------|-----------------------------------------|-----------|------------------------|------------------------|-----------|-----------|-----------|------------------------|-----------|------------------------|------------------------|------------------------|-----------|
|                             |                           | SG-8                                    |           | SG-9                   | SG-10                  | SG-11     | SG-12     | SG-13     | SG-14                  | SG-15     | SG-16                  | SG-17                  | SG-18                  | SG-19     |
|                             | SGT [1]                   | 9/7/10                                  | 1/10/11   | 1/10/11                | 1/10/11                | 1/10/11   | 12/30/10  | 12/30/10  | 1/10/11                | 12/30/10  | 1/10/11                | 1/10/11                | 1/10/11                | 1/10/11   |
| TO-15 Analysis - (Limited)  | O-15 Analysis - (Limited) |                                         |           |                        |                        |           |           |           |                        |           |                        |                        |                        |           |
| Vinyl chloride              |                           | ND (1130)                               | ND (1.02) |                        |                        | ND (5.11) | ND (1.02) | ND (1.02) |                        | ND (0.51) |                        |                        |                        | ND (5.11) |
| 1,1-Dichloroethene          |                           | ND (1750)                               | ND (1.58) | No Sample              | No Sample              | ND (7.92) | ND (1.58) | ND (1.58) | No Sample              | ND (0.79) | No Sample              |                        |                        | ND (7.92) |
| trans-1,2-Dichloroethene    |                           | ND (1750)                               | ND (1.58) | Collected<br>Flow rate | Collected<br>Flow rate | ND (7.92) | ND (1.58) | ND (1.58) | Collected<br>Flow rate | ND (0.79) | Collected<br>Flow rate | Collected<br>Flow rate | Collected<br>Flow rate | ND (7.92) |
| 1,1-Dichloroethane          |                           | ND (1790)                               | ND (1.62) | less than 10           | less than 10           | ND (8.09) | ND (1.62) | ND (1.62) | less than 10           | ND (0.81) |                        |                        | less than 10           | ND (8.09) |
| cis-1,2-Dichloroethene      |                           | ND (1750)                               | ND (1.58) | ml/min                 | ml/min                 | ND (7.92) | ND (1.58) | ND (1.58) | ml/min                 | ND (0.79) | ml/min                 | ml/min                 | ml/min                 | ND (7.92) |
| 1,2-Dichloroethane          |                           | ND (1790)                               | ND (1.62) |                        |                        | ND (8.09) | ND (1.62) | ND (1.62) |                        | ND (0.81) |                        |                        |                        | ND (8.09) |
| 1,1,1-Trichloroethane       |                           | ND (2410)                               | ND (2.18) |                        |                        | ND (10.9) | ND (2.18) | ND (2.18) |                        | ND (1.09) |                        |                        |                        | ND (10.9) |
| Trichloroethene             | 305                       | ND (2380)                               | ND (2.15) |                        |                        | ND (10.7) | ND (2.15) | ND (2.15) |                        | 2.24      |                        |                        |                        | ND (10.7) |
| 1,2-Dibromoethane           |                           | ND (3400)                               | ND (3.07) |                        |                        | ND (15.4) | ND (3.07) | ND (3.07) |                        | ND (1.54) |                        |                        |                        | ND (15.4) |
| Tetrachloroethene           | 100                       | ND (3000)                               | ND (2.71) |                        |                        | ND (13.6) | ND (2.71) | ND (2.71) |                        | 1.9       |                        |                        |                        | ND (13.6) |
| MA-APH Analysis             | _                         | -                                       |           | _                      | _                      | _         | _         | _         | _                      | _         | _                      | _                      | _                      | _         |
| 1,3-Butadiene               | 20.5                      | ND (4400)                               | ND (4)    |                        |                        | ND (20)   | ND (5.2)  | ND (2.8)  |                        | ND (3.6)  |                        |                        |                        | ND (20)   |
| Methyl tert butyl ether     | 23.5                      | ND (4400)                               | ND (4)    | No Sample              |                        | ND (20)   | ND (5.2)  | ND (2.8)  |                        | ND (3.6)  | No Sample              | No Sample              | No Sample              | ND (20)   |
| Benzene                     | 80                        | ND (4400)                               | ND (4)    | Collected              |                        | 2900      | ND (5.2)  | ND (2.8)  | Collected              | 6.3       | Collected<br>Flow rate | Collected<br>Flow rate | Collected<br>Flow rate | 43        |
| Toluene                     | 220000                    | ND (4400)                               | ND (4)    | Flow rate              | Flow rate              | 23        | ND (5.2)  | 26        | Flow rate              | 58        | less than 10           |                        | less than 10           | ND (20)   |
| C5-C8 Aliphatics, Adjusted  | 9000                      | 1200000                                 | ND (24)   | less than<br>10 ml/min | less than<br>10 ml/min | 41000     | 110       | 70        | less than<br>10 ml/min | 110       | ml/min                 | ml/min                 | ml/min                 | 52000     |
| Ethylbenzene                | 245                       | ND (4400)                               | ND (4)    | 10 111/11111           | 10 111/11111           | ND (20)   | ND (5.2)  | 10        | 10 111/1111            | ND (3.6)  |                        |                        |                        | ND (20)   |
| p/m-Xylene                  |                           | ND (8800)                               | ND (8)    |                        |                        | 62        | ND (10)   | 46        |                        | ND (7.2)  |                        |                        |                        | ND (40)   |
| o-Xylene                    |                           | ND (4400)                               | ND (4)    |                        |                        | 52        | ND (5.2)  | 23        |                        | ND (3.6)  |                        |                        |                        | ND (20)   |
| TOTAL XYLENES               | 4400                      | ND                                      | ND        |                        |                        | 114       | ND        | 69        |                        | ND        |                        |                        |                        | ND        |
| Naphthalene                 | 18                        | ND (4400)                               | ND (4)    |                        |                        | ND (20)   | ND (5.2)  | ND (2.8)  |                        | ND (3.6)  |                        |                        |                        | ND (20)   |
| C9-C12 Aliphatics, Adjusted | 9000                      | ND (31000)                              | ND (28)   |                        |                        | 6700      | 44        | 28        |                        | 52        |                        |                        |                        | 3700      |
| C9-C10 Aromatics Total      | 2200                      | ND (22000)                              | ND (20)   |                        |                        | 290       | ND (26)   | 210       |                        | ND (18)   |                        |                        |                        | 420       |

NOTES -

[1] Soil Gas Target (SGT) = 50 times the MEDEP Indoor Air Target for Chronic Commercial-Multi Contaminant Scenario, Table B6 - 01/14/10

[2] Chlorinated volatile organic compounds by EPA Method TO-15. See laboratory reports for Analyte List

ND = Not detected above the laboratory reporting limit (Reporting Limit - RL)

2 of 2

# **APPENDIX 2**

**Boring Logs and Well Construction Details** 

| MA         | IE                       | nvironmen                                   | tal             |           |              |            |                      |                  |                                                         |                    |
|------------|--------------------------|---------------------------------------------|-----------------|-----------|--------------|------------|----------------------|------------------|---------------------------------------------------------|--------------------|
| Cumberl    | and Farn                 | ns Inc Washington Ave                       | Portland, Ma    | aine      | BORING D     | ESIC       | GNATI                | ON B             | 1 MW1/SG1                                               |                    |
| Project N  | lumber:                  | 1047-1-2                                    |                 |           | Drilling Rig |            |                      | Geopr            | obe 6620DT                                              |                    |
|            | Geologist: Paul Prescott |                                             |                 |           | Sampling M   |            |                      |                  | Tube Sampler                                            |                    |
| Date Dri   |                          | 8/31/10                                     |                 |           | Total Depth  | of Bo      | orehole:             | 15 Fe            | et                                                      |                    |
| Drilling I | Method:                  | Direct Push Bor<br>Sand Silt                | Silty Sand      | Asphal    | lt Benton    | nite       | Filter               | Sand             | Screen                                                  | Riser              |
|            | $\mathbb{Z}$             |                                             | 0,,0            |           |              |            |                      |                  |                                                         |                    |
| Sample ID  | Lithology                | Descr                                       | iption          |           | Depth (ft)   |            | PID Reading<br>(ppm) | No               | tes                                                     | Well<br>Completion |
| S1         |                          | Organics (bark mulch                        |                 |           | _            | _          | 134                  |                  |                                                         |                    |
| S1         |                          | Grey SAND & GRAV                            |                 |           | 5            | _          | 269                  | sand<br>bentonit | called at 4.5',<br>3.5'-4.5',<br>te to ground<br>urface |                    |
| S2         |                          | Grey Fine SAND, Lit                         | tle Medium Sai  | nd        | _            | _          | 90                   |                  | Wet                                                     |                    |
| S2         |                          | Olive Brown SILT &                          | CLAY            |           | _            | _          | 45                   |                  |                                                         |                    |
| S3         |                          | Olive Brown SILT &<br>lenses                |                 |           | _            |            | 32                   |                  |                                                         |                    |
| S3         |                          | Grey SILT & CLAY                            | w/ iew fine Sar | na iense: | ,<br>        | _          | 9                    |                  |                                                         |                    |
|            | · · · · · ·              | Grey Fine to medium<br>Bottom of Boring 15' |                 |           | 15           | i —  <br>- |                      |                  |                                                         |                    |
| 1034 B     | roadwa                   | ıy                                          | South Portle    | and, M    | laine        | 1          | I                    | (207             | ) 767-3663                                              | Page <u>1</u>      |

| MA                                                                       | IE                       | nvir   | onmen               | ital                        |                 |                               |                      |         |                |                                                            |               |  |  |
|--------------------------------------------------------------------------|--------------------------|--------|---------------------|-----------------------------|-----------------|-------------------------------|----------------------|---------|----------------|------------------------------------------------------------|---------------|--|--|
| Cumberl                                                                  | and Farn                 | ns Inc | Washington Ave      | e Portland, M               | Iaine           | BORING DESIGNATION B2 SG2     |                      |         |                |                                                            |               |  |  |
| Project N                                                                |                          |        | 1047-1-2            |                             |                 | Drilling Rig: Geoprobe 6620DT |                      |         |                |                                                            |               |  |  |
|                                                                          | Geologist: Paul Prescott |        |                     |                             |                 |                               | ing Meth             |         |                | Tube Sampler                                               |               |  |  |
| Date Dri                                                                 |                          |        | 8/31/10             |                             |                 | Total                         | Depth of I           | Borehol | e: 15 F        | eet                                                        |               |  |  |
| Drilling Method:Direct Push BoringClaySandSiltSilty SandAsphaltBentonite |                          |        |                     |                             |                 |                               |                      |         | er Sand        | Screen                                                     | Riser         |  |  |
|                                                                          |                          |        |                     | P:::::                      |                 |                               |                      |         |                |                                                            |               |  |  |
| Sample ID                                                                | Lithology                |        | Desci               |                             |                 | Depth (ft)                    | PID Reading<br>(ppm) | N       | otes           | Well<br>Completion                                         |               |  |  |
| S1                                                                       |                          |        | D, Gravel, silt , o |                             |                 |                               |                      | 29      |                |                                                            |               |  |  |
| S1                                                                       |                          | Grey   | SAND w/ Dark        | Silt                        |                 |                               |                      | 20      | sand<br>benton | nstalled at 4',<br>from 3'-4',<br>ite to ground<br>surface |               |  |  |
| S2                                                                       |                          | Grey   | Fine SAND, tra      | ce SILT                     |                 |                               | — 5 —                | 2       |                |                                                            |               |  |  |
| S2                                                                       |                          |        | e Brown SILT an     |                             |                 |                               | <br>                 | 88      |                |                                                            |               |  |  |
| S3                                                                       |                          | Olive  | e Brown SILT an     | d CLAY                      |                 |                               |                      | 4       |                |                                                            |               |  |  |
| <b>S</b> 3                                                               |                          |        | CLAY - Wet          |                             |                 |                               |                      | 1       |                |                                                            |               |  |  |
| S3                                                                       |                          | -      | SAND and GRA        |                             | enses           |                               |                      | 1       |                |                                                            |               |  |  |
| 1034 B                                                                   |                          |        | om of Boring 15'    | (no refusal)<br>South Portl | land M          | aire                          |                      |         | (20)           | 7) 767 2662                                                |               |  |  |
| 1034 D                                                                   |                          | л у    | 1                   | soun r orll                 | unu, 1 <b>V</b> | uille                         |                      |         | (20)           | 7) 767-3663                                                | Page <u>1</u> |  |  |

| MA        | IE                       | nvi    | ronmen                  | ıtal                        |          |                                    |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |                    |  |
|-----------|--------------------------|--------|-------------------------|-----------------------------|----------|------------------------------------|--------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------|--|
| Cumberl   | and Farr                 | ns Inc | Washington Av           | e Portland, M               | laine    | BOR                                | ING D              | ESIG                 | NATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N B3 SG                                                            | 3                  |  |
| Project N | lumber:                  |        | 1047-1-2                |                             |          | Drillin                            | g Rig:             |                      | Geop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | robe 6620DT                                                        |                    |  |
|           | Geologist: Paul Prescott |        |                         |                             |          | Sampling Method: Dual Tube Sampler |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |                    |  |
| Date Dri  |                          |        | 8/31/10                 |                             |          | Total I                            | Depth of           | Borehol              | e: 15 Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eet                                                                |                    |  |
| Drilling  |                          |        | Direct Push Bor<br>Silt | ing<br>Silty Sand           | Aanh     | -14 D                              | antonito           | Eile                 | er Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Screen                                                             | Riser              |  |
| Clay Sand |                          |        |                         |                             | Aspha    |                                    | entonite           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |                    |  |
| Sample ID | Lithology                |        | Desci                   | ription                     |          |                                    | Depth (ft)         | PID Reading<br>(ppm) | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | otes                                                               | Well<br>Completion |  |
| S1        |                          |        | vn Organics SAN         |                             |          |                                    |                    | 12.5                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |                    |  |
| S1        |                          | Grey   | 7 SAND, Silt, Gra       | avel, few clay,             | Asphalt  |                                    | <br>               | 33                   | sand from the stand from the stand from the standard stand<br>Standard standard stand | talled at 4.5',<br>om 3.5'-4.5',<br>ite to ground<br>- Petrol Odor |                    |  |
| S2        |                          | stair  | -                       |                             | ack      |                                    | — 5 —<br>–     –   | 82                   | Pet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rol Odor                                                           |                    |  |
| S2        |                          |        | e Brown SILT ar         |                             |          | -                                  | <br>               | 12                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |                    |  |
| S3        |                          | Ōliv   | e Brown SILT ar         | d CLAY                      |          | -                                  |                    | 9                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |                    |  |
| S3        |                          | Grey   | SILT and CLA            | Y w/ Fine sand              | l lenses |                                    |                    | 2                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |                    |  |
| 1034 B    | roadw                    |        | om of Boring 15'        | (no refusal)<br>South Portl | land M   | Iaine                              | — 15—<br>-       – |                      | (207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7) 767-3663                                                        | Page <u>1</u>      |  |
|           |                          |        |                         |                             |          |                                    |                    |                      | (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                                                  | 1 ago <u>1</u>     |  |

| MA         | IE                         | nvironmental                                     |                |                      |                                                                  |                    |
|------------|----------------------------|--------------------------------------------------|----------------|----------------------|------------------------------------------------------------------|--------------------|
| Cumberl    | and Farn                   | ns Inc Washington Ave Portland, Maine            | BORING DES     | SIGNA                | TION B4 MW2/SG8                                                  |                    |
| Project N  | Number:                    | 1047-1-2                                         | Drilling Rig:  |                      | Geoprobe 6620DT                                                  |                    |
| Geologis   |                            | Paul Prescott                                    | Sampling Meth  |                      | Dual Tube Sampler                                                |                    |
| Date Dri   |                            | 8/31/2010                                        | Total Depth of | Boreho               | ole: 12 Feet                                                     |                    |
| Drilling   | Method:<br>Clay            | Direct Push Boring<br>Sand Silt Silty Sand Aspha | alt Bentonite  | E:14                 | ter Sand Screen                                                  | Riser              |
|            |                            |                                                  |                |                      |                                                                  |                    |
| Sample ID  | Lithology                  | Description                                      | Depth (ft)     | PID Reading<br>(ppm) | Notes                                                            | Well<br>Completion |
|            |                            | Asphalt<br>Brown SAND                            |                |                      |                                                                  |                    |
| S1         | · · · · · ·                | SILTY CLAY w/ Sand                               |                | 1                    |                                                                  | * • •              |
| S1         |                            | Brown to Dark Brown SAND and Organics            |                | 1                    |                                                                  |                    |
| <b>S</b> 1 |                            |                                                  |                | 1                    |                                                                  |                    |
|            | 9.7.7                      | Grey SILTY SAND                                  |                | -                    | SG8 installed at 4',                                             |                    |
| <b>S</b> 1 | , .0 .,                    |                                                  |                | 1                    | sand from 3'-4',<br>bentonite to ground<br>surface - Petrol Odor |                    |
| <b>S</b> 1 |                            | Grey SILT and CLAY w/ fine Sand lenses           | 5_             | 1                    | surface - I cubi Odor                                            |                    |
|            |                            | Grey SILT and CLAY w/ fine Sand lenses           | 3_             |                      |                                                                  |                    |
|            |                            |                                                  |                |                      |                                                                  |                    |
| S2         |                            |                                                  |                | 8                    |                                                                  |                    |
|            |                            |                                                  |                | -                    |                                                                  |                    |
|            | ///                        | Grey SILT and CLAY w/ fine Sand lenses           |                |                      |                                                                  |                    |
| <b>S</b> 2 |                            |                                                  |                | 2                    |                                                                  |                    |
|            | <u> </u>                   | Fine SAND and trace Gravel                       |                |                      |                                                                  |                    |
| S2         | · · · · · ·<br>· · · · · · |                                                  | 10             | 2                    |                                                                  |                    |
|            | · · · · · ·<br>· · · · · · | Grey SAND and GRAVEL few silt                    | 10             |                      |                                                                  |                    |
| <b>S</b> 3 | · · · · · ·<br>· · · · · · |                                                  |                | 2                    | Petrol Odor                                                      |                    |
|            | · · · · · ·<br>· · · · · · |                                                  |                |                      |                                                                  |                    |
|            |                            | Bottom on Boring 12' (assumed bedrock)           |                | -                    |                                                                  |                    |
|            |                            | Dottom on Doring 12 (assumed obarook)            |                |                      |                                                                  |                    |
|            |                            |                                                  |                | -                    |                                                                  |                    |
|            |                            |                                                  |                |                      |                                                                  |                    |
|            |                            |                                                  |                |                      |                                                                  |                    |
|            |                            |                                                  | - 15-          | -                    |                                                                  |                    |
|            |                            |                                                  |                |                      |                                                                  |                    |
|            |                            |                                                  |                | -                    |                                                                  |                    |
|            |                            |                                                  |                |                      |                                                                  |                    |
| 1034 B     | roadwa                     | ay South Portland, M                             | Iaine          |                      | (207) 767-3663                                                   | Page <u>1</u>      |

| MAI E                      | Environmental                                                                                                                                                                    |                      |                       |                    |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|--------------------|
| Cumberland Far             | ms Inc Washington Ave Portland, Maine                                                                                                                                            | BORING DESIGN        | ATION B5 MW3/SG5      |                    |
| Project Number:            | 1047-1-2                                                                                                                                                                         | Drilling Rig:        | Geoprobe 6620DT       |                    |
| Geologist:                 | Paul Prescott                                                                                                                                                                    | Sampling Method:     | Dual Tube Sampler     |                    |
| Date Drilled:              | 8/31/10                                                                                                                                                                          | Total Depth of Borel | nole: 12 Feet         |                    |
| Drilling Method<br>Clay    | : Direct Push Boring<br>Sand Silt Silty Sand Aspha                                                                                                                               | alt Bentonite F      | ilter Sand Screen     | Riser              |
|                            |                                                                                                                                                                                  |                      |                       |                    |
| Sample ID<br>Lithology     | Description                                                                                                                                                                      | Depth (ft)           | Notes                 | Well<br>Completion |
| S1<br>S1<br>S2<br>S3<br>S3 | Asphalt<br>Light Brown SAND and GRAVEL, Fill<br>Brown/Grey SAND, Few Gravel, silt, Tires<br>CONCRETE<br>Grey SAND and GRAVEL, Few Silt<br>Bottom of Boring 12' (assumed bedrock) | 4                    | surface - Petrol Odor |                    |
| 1034 Broadw                | yay South Portland, N                                                                                                                                                            | <i>Iaine</i>         | (207) 767-3663        | Page <u>1</u>      |

| MA         | IE                                               | Invii        | ronmen                    | tal              |       |            |                      |                   |                    |
|------------|--------------------------------------------------|--------------|---------------------------|------------------|-------|------------|----------------------|-------------------|--------------------|
| Cumberl    | and Farr                                         | ns Inc       | Washington Ave            | Portland, Maine  | BO    | RING D     | ESIG                 | NATION B6         |                    |
| Project N  | Number:                                          |              | 1047-1-2                  |                  |       | ing Rig:   |                      | Geoprobe 6620DT   |                    |
| Geologis   |                                                  |              | Paul Prescott             |                  |       | oling Meth |                      | Dual Tube Sampler |                    |
| Date Dri   |                                                  |              | 8/31/10                   |                  | Tota  | l Depth of | Borehol              | e: 13 Feet        |                    |
| Drilling   | Method:<br>Clay                                  | Sand         | Direct Push Borin<br>Silt |                  | halt  | Bentonite  | Filte                | er Sand Screen    | Riser              |
|            |                                                  |              |                           |                  |       |            |                      |                   |                    |
| Sample ID  | Lithology                                        |              | Descri                    | ption            |       | Depth (ft) | PID Reading<br>(ppm) | Notes             | Well<br>Completion |
| S1         |                                                  |              | x MULCH<br>wn SAND and GR | AVEL             |       |            | 1                    |                   |                    |
| <b>S</b> 1 |                                                  | Grey         | / Brown SILT w/ S         | Sand Lenses      |       |            | - 1                  |                   |                    |
| <b>S</b> 2 |                                                  | Oliv<br>Lens | e Brown SILT and<br>ses   | CLAY w/ Sand     |       | 5<br>      | 1                    |                   |                    |
| S2         | / / /<br>· · · · · ·<br>· · · · · ·<br>· · · · · |              | / Fine SAND, few          |                  |       |            | 1                    |                   |                    |
| \$3        |                                                  | Grey         | SAND and GRA              | VEL, Few Silt    |       |            | 2                    | Dense             |                    |
|            |                                                  | Bott         | om of Boring 13' (        | assumed bedrock) |       |            |                      |                   |                    |
| 1034 B     | Broadw                                           | ay           | S                         | outh Portland,   | Maine | ,<br>,     |                      | (207) 767-3663    | Page <u>1</u>      |

| <b>MAI Environmental</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Cumberland Farms Inc Washington Ave Portland, Maine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BORING DESIGNATION B7 SG6                                                       |
| Project Number: 1047-1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drilling Rig: Geoprobe 6620DT                                                   |
| Geologist: Paul Prescott                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sampling Method: Dual Tube                                                      |
| Date Drilled: 8/31/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Depth of Borehole: 11.5 Feet                                              |
| Drilling Method:         Direct Push Boring           Clay         Sand         Silt         Silty Sand         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Asphalt Bentonite Filter Sand Screen Riser                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 |
| Sample ID       Lithology       Lithology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Well     Well       Well     Well       Well     Completion                     |
| S1       ASPHALT         Brown SAND and GRAVEL         S1         Olive Brown SILT and CLAY few fine lenses         S2         Olive Brown SILT and CLAY few fine lenses         S2         Olive Brown SILT and CLAY few fine lenses         S2         Olive Brown SILT and CLAY few fine lenses         S2         Olive Brown SILT and CLAY few fine lenses         S2         Brown SILT and CLAY few fine lenses         S3         Bottom of Boring 11.5' (assumed bedrown for the form of Boring 11.5' (assumed bedrown | SG6 installed at 5',<br>sand from 4'-5',<br>bentonite to ground<br>surface<br>5 |
| 1034 Broadway South Portland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I, Maine (207) 767-3663 Page <u>1</u>                                           |

| MA         | IE                                                   | nvironmental                                                                                                        |                  |                   |                                                                              |                    |
|------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------|-------------------|------------------------------------------------------------------------------|--------------------|
| Cumberla   | and Farm                                             | ns Inc Washington Ave Portland, Maine                                                                               | BORING DESI      | IGNATIC           | ON B8 MW4/SG16                                                               | 5                  |
| Project N  | lumber:                                              | 1047-1-2                                                                                                            | Drilling Rig:    |                   | Geoprobe 6620DT                                                              |                    |
| Geologis   | t:                                                   | John Marchewka                                                                                                      | Sampling Metho   | od:               | Dual Tube Sampler                                                            |                    |
| Date Dril  |                                                      | 12/9/2010                                                                                                           | Total Depth of I | Borehole:         | 15 Feet                                                                      |                    |
| Drilling I |                                                      | Direct Push Boring                                                                                                  |                  |                   | ~ . ~                                                                        |                    |
|            | lay                                                  | Sand   Silt   Silty Sand   Asphal     Image: Silty Sand   Image: Silty Sand   Image: Silty Sand   Image: Silty Sand |                  | Filter S          | Sand Screen                                                                  | Riser              |
| Sample ID  | Lithology                                            | Description                                                                                                         | Depth (ft)       | PID Reading (ppm) | Notes                                                                        | Well<br>Completion |
| S1         |                                                      | Dark Brown fine to coarse SAND, some Silt<br>and gravel                                                             |                  | 5.1               | SG16 installed at 4',                                                        |                    |
| <b>S</b> 1 | · · · · · ·<br>· · · · · ·<br>· · · · · ·<br>/ / / / | Dark Brown fine to coarse SAND and Silt,<br>little gravel<br>Grey SILT & CLAY                                       | 5 —              | 17                | solito installed at 4,<br>sand from 3'-4',<br>bentonite to ground<br>surface |                    |
| S2         |                                                      |                                                                                                                     |                  | ND                |                                                                              |                    |
| S2         | 0                                                    | Brown Grey SILT and fine Sand, trace grave<br>Brown SILTY fine SAND, trace Gravel                                   | el 10-           | 0.8               |                                                                              |                    |
| S3         |                                                      |                                                                                                                     |                  | ND                |                                                                              |                    |
| S3         | · · · · · · · · · · · · · · · · · · ·                | Light Brown fine to medium SAND, little Si                                                                          | lt               | ND                |                                                                              |                    |
| 1034 B     | roadwa                                               | Bottom on Boring 15' (no refusal)<br>ay South Portland, M                                                           |                  |                   | (207) 767-3663                                                               | Page <u>1</u>      |

| MA         | IE                                    | nvironme                                             | ntal               |            |         |            |                      |                    |                                     |                    |
|------------|---------------------------------------|------------------------------------------------------|--------------------|------------|---------|------------|----------------------|--------------------|-------------------------------------|--------------------|
| Cumberl    | and Farn                              | ns Inc Washington Av                                 | ve Portland, M     | laine      | BORI    | NG DES     | IGNAT                | ION B              | 9 MW5/SG17                          |                    |
| Project N  | Number:                               | 1047-1-2                                             |                    |            | Drillin | g Rig:     |                      | Geopro             | obe 6620DT                          |                    |
| Geologis   |                                       | John Marchewl                                        | ka                 |            |         | ing Metho  |                      |                    | ube Sampler                         |                    |
| Date Dri   |                                       | 12/9/2010                                            |                    |            | Total I | Depth of I | Borehole             | e: 12.5 F          | eet                                 |                    |
| Drilling   | Method:<br>Clay                       | Direct Push Bo<br>Sand Silt                          | ring<br>Silty Sand | Aspha      | alt F   | Bentonite  | Filte                | er Sand            | Screen                              | Riser              |
|            |                                       |                                                      |                    |            |         |            |                      |                    |                                     |                    |
| Sample ID  | Lithology                             | Desc                                                 | ription            |            |         | Depth (ft) | PID Reading<br>(ppm) | No                 | tes                                 | Well<br>Completion |
| S1         |                                       | Grey fine to medium<br>gravel                        | SAND, some S       | Silt, trac | e       |            | ND                   | SG17 in            | stalled at 3',                      |                    |
| S1         |                                       | Grey SILT & CLAY                                     |                    |            |         | 5          | ND                   | sand f<br>bentonit | rom 2'-3',<br>e to ground<br>urface |                    |
| S2         |                                       |                                                      |                    |            |         | <br>       | ND                   |                    |                                     |                    |
| <b>S</b> 3 |                                       | Grey SILT & CLAY                                     |                    |            |         |            | ND                   |                    |                                     |                    |
| S3         | · · · · · · · · · · · · · · · · · · · | Brown fine to mediu<br>Gravel<br>Bottom on Boring 12 | ·                  |            | d       |            | ND                   |                    |                                     |                    |
| 1034 B     | roadwa                                | ıy                                                   | South Portl        | land, M    | Iaine   |            |                      | (207)              | ) 767-3663                          | Page <u>1</u>      |

| MAI E                  | nvironmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                      |                                                    |                    |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|----------------------------------------------------|--------------------|
| Cumberland Farn        | ns Inc Washington Ave Portland, Maine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BORING DES       | IGNATI               | ON B10 MW6/SG1                                     | .8                 |
| Project Number:        | 1047-1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Drilling Rig:    |                      | Geoprobe 6620DT                                    |                    |
| Geologist:             | John Marchewka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sampling Metho   | od:                  | Dual Tube Sampler                                  |                    |
| Date Drilled:          | 12/9/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Depth of I | Borehole:            | 10.5 Feet                                          |                    |
| Drilling Method:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                      |                                                    |                    |
| Clay                   | Sand   Silt   Silty Sand   Aspha     Image: Silt state stat |                  | Filter               | Sand Screen                                        | Riser              |
| Sample ID<br>Lithology | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Depth (ft)       | PID Reading<br>(ppm) | Notes                                              | Well<br>Completion |
| S1                     | Dark Brown fine to coarse SAND, some Sil<br>little gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lt,              | ND                   | SG18 installed at 4',                              |                    |
| S1                     | Grey SILT & CLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                | ND                   | sand from 3'-4',<br>bentonite to ground<br>surface |                    |
| S2                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | ND                   |                                                    |                    |
| S2                     | Brown fine SAND and Silt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | ND                   |                                                    |                    |
| S3                     | Brown fine SAND and Silt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10               | ND                   |                                                    |                    |
|                        | Bottom on Boring 10.5' (assumed bedrock)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                      |                                                    |                    |
| 1034 Broadwa           | ay South Portland, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maine            |                      | (207) 767-3663                                     | Page <u>1</u>      |

| MA             | IE             | nviro                              | onmen                   | tal              |        |               |            |                      |                     |                                                             |                    |
|----------------|----------------|------------------------------------|-------------------------|------------------|--------|---------------|------------|----------------------|---------------------|-------------------------------------------------------------|--------------------|
| Cumberla       | and Farr       | ns Inc W                           | ashington Ave           | Portland, Ma     | aine   | BOR           | ING D      | ESIG                 | NATIO               | N B11 SC                                                    | G19                |
| Project N      | lumber:        | 10                                 | 47-1-2                  |                  |        | Drillin       | g Rig:     |                      | Geop                | robe 6620DT                                                 |                    |
| Geologis       |                |                                    | hn Marchewka            |                  |        |               | ing Meth   |                      |                     | Tube Sampler                                                |                    |
| Date Dril      |                |                                    | /9/2010                 |                  |        | Total I       | Depth of   | Borehol              | e: 10 F             | eet                                                         |                    |
| Drilling I     | Method:<br>lay | Di<br>Sand                         | rect Push Borin<br>Silt | ng<br>Silty Sand | Asph   | alt F         | Bentonite  | Filt                 | er Sand             | Screen                                                      | Riser              |
|                |                |                                    |                         |                  |        |               |            |                      |                     |                                                             |                    |
| Sample ID      | Lithology      |                                    | Descri                  | ption            |        |               | Depth (ft) | PID Reading<br>(ppm) | N                   | otes                                                        | Well<br>Completion |
| S1<br>S1<br>S2 |                | little gra<br>Grey SI<br>— Grey SI | Town fine to convel     |                  |        | t,            |            | ND                   | 3.5', sa<br>3.5', l | installed at<br>nd from 2.5'-<br>pentonite to<br>nd surface |                    |
| 1034 B         | roadw          | ay                                 | S                       | outh Portle      | and, M | <b>l</b> aine |            | -                    | (20                 | 7) 767-3663                                                 | Page <u>1</u>      |

| MA        | IE                                            | nviro                   | nmer                 | ital          |         |         |            |                      |                |                                                            |                    |
|-----------|-----------------------------------------------|-------------------------|----------------------|---------------|---------|---------|------------|----------------------|----------------|------------------------------------------------------------|--------------------|
| Cumberl   | and Farn                                      | ns Inc Wa               | shington Ave         | e Portland, M | aine    | BORI    | NG DES     | IGNAT                | TION I         | B12 MW7/SG1                                                | 2                  |
| Project N | lumber:                                       | 104                     | 47-1-2               |               |         | Drillir | ng Rig:    |                      | Geop           | robe 6620DT                                                |                    |
| Geologis  |                                               |                         | n Marchewk           | a             |         |         | ing Meth   |                      |                | Tube Sampler                                               |                    |
| Date Dri  |                                               |                         | 9/2010               |               |         | Total   | Depth of I | Borehol              | e: 10 Fe       | eet                                                        |                    |
| Drilling  | Method:                                       | Dir<br>Sand             | ect Push Bor<br>Silt | Silty Sand    | Aspha   | alt I   | Bentonite  | Filte                | er Sand        | Screen                                                     | Riser              |
|           |                                               |                         |                      | 9             |         |         |            |                      |                |                                                            |                    |
| Sample ID | Lithology                                     |                         | Descr                | iption        |         |         | Depth (ft) | PID Reading<br>(ppm) | N              | otes                                                       | Well<br>Completion |
| S1        |                                               | Brown fi<br>little silt |                      | SAND, some (  | Gravel, |         |            | ND                   |                |                                                            |                    |
| S1        |                                               | -                       | LT & CLAY            |               |         |         |            | ND                   | sand<br>benton | nstalled at 4',<br>from 3'-4',<br>ite to ground<br>surface |                    |
| S2        |                                               |                         |                      |               |         |         |            | ND                   |                |                                                            |                    |
| S2        | 9.7.9<br>7.0<br>0.7.7<br>0<br>7.7<br>7.7<br>7 | ·                       | LT & SAND,           | some Silt     |         |         |            | ND                   |                |                                                            |                    |
| S2        |                                               | Silt and g              | gravel               |               |         |         |            | ND                   |                |                                                            |                    |
|           |                                               | Bottom o                | n Boring 10'         | (assumed bed  | lrock)  |         |            |                      |                |                                                            |                    |
|           |                                               |                         |                      |               |         |         |            |                      |                |                                                            |                    |
|           |                                               |                         |                      |               |         |         |            |                      |                |                                                            |                    |
|           |                                               |                         |                      |               |         |         | 15         |                      |                |                                                            |                    |
|           |                                               |                         |                      |               |         |         |            |                      |                |                                                            |                    |
| 1034 B    | roadwa                                        | ıy                      | ,                    | South Portl   | land, M | Iaine   | <u> </u>   |                      | (20)           | 7) 767-3663                                                | Page <u>1</u>      |

| MA                | IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nvironmental                                                                                                  |                     |                   |                                                                             |                    |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------|-------------------|-----------------------------------------------------------------------------|--------------------|
| Cumberl           | and Farr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns Inc Washington Ave Portland, Maine                                                                         | BORING D            | ESIG              | NATION B13 SC                                                               | G13                |
| Project N         | lumber:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1047-1-2                                                                                                      | Drilling Rig:       |                   | Geoprobe 6620DT                                                             |                    |
| Geologis          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | John Marchewka                                                                                                | Sampling Meth       |                   | Dual Tube Sampler                                                           |                    |
| Date Dri          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12/9/2010                                                                                                     | Total Depth of      | Boreho            | le: 11.5 Feet                                                               |                    |
| Drilling Drilling | Method:<br>lay                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Direct Push Boring Sand Silt Silty Sand Asph                                                                  | alt Bentonite       | Filt              | er Sand Screen                                                              | Riser              |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                     |                   |                                                                             |                    |
| Sample ID         | Lithology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Description                                                                                                   | Depth (ft)          | PID Reading (ppm) | Notes                                                                       | Well<br>Completion |
| S1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Brown fine to coarse SAND, some Gravel,<br>trace silt<br>Brown fine to medium SAND, little Silt and<br>gravel | <br><br><br>1 - 5 - | 0.8               | SG13 installed at 4',<br>sand from 3'-4',<br>bentonite to ground<br>surface |                    |
| S2                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Grey fine to medium SAND, some Silt, little                                                                   | e                   | 0.4               |                                                                             |                    |
| S2                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gravel                                                                                                        | 10                  | 0.4               |                                                                             |                    |
| <b>S</b> 3        | ·         ·         ·         ·         ·           ·         ·         ·         ·         ·         ·           ·         ·         ·         ·         ·         ·           ·         ·         ·         ·         ·         ·           ·         ·         ·         ·         ·         ·           ·         ·         ·         ·         ·         ·           ·         ·         ·         ·         ·         ·           ·         ·         ·         ·         ·         · | Grey fine to medium SAND, some Silt, little<br>gravel                                                         | e                   | ND                |                                                                             |                    |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bottom on Boring 11.5' (no refusal)                                                                           |                     |                   |                                                                             |                    |
| 1034 B            | roadw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ay South Portland, M                                                                                          | <i>laine</i>        |                   | (207) 767-3663                                                              | Page <u>1</u>      |

| MA                | IE                                                | <b>Invironmental</b>                                                                          |                |                      |                                                                             |                    |
|-------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------|----------------------|-----------------------------------------------------------------------------|--------------------|
| Cumberl           | and Farr                                          | ns Inc Washington Ave Portland, Maine                                                         | BORING D       | ESIG                 | NATION B14 SC                                                               | G14                |
| Project N         | lumber:                                           | 1047-1-2                                                                                      | Drilling Rig:  |                      | Geoprobe 6620DT                                                             |                    |
| Geologis          |                                                   | John Marchewka                                                                                | Sampling Meth  |                      | Dual Tube Sampler                                                           |                    |
| Date Dri          |                                                   | 12/9/2010                                                                                     | Total Depth of | Boreho               | le: 10 Feet                                                                 |                    |
| Drilling Drilling | Method:<br>lay                                    | Direct Push Boring<br>Sand Silt Silty Sand Asph                                               | alt Bentonite  | Filt                 | er Sand Screen                                                              | Riser              |
|                   |                                                   |                                                                                               |                |                      |                                                                             |                    |
| Sample ID         | Lithology                                         | Description                                                                                   | Depth (ft)     | PID Reading<br>(ppm) | Notes                                                                       | Well<br>Completion |
| S1                |                                                   | Brown fine to coarse SAND, some Gravel,<br>little silt - bricks                               |                | ND                   | SG14 installed at 4',<br>sand from 3'-4',<br>bentonite to ground<br>surface |                    |
| S1                |                                                   | Grey SILT & CLAY, some fine sand, trace<br>gravel<br>Grey SILT & Sand, some gravel            | 5 -            | 12                   |                                                                             |                    |
| S2                |                                                   |                                                                                               |                | - ND                 | Hole Dry No Well<br>Installed                                               |                    |
| S2                | <u>, , , , , ,</u><br>, , , , , , , , , , , , , , | Light Brown SAND & GRAVEL, little Silt<br>Bottom on Boring 10.0' (assumed bedrock<br>refusal) | 10-            | ND                   |                                                                             |                    |
|                   |                                                   |                                                                                               | <br><br>_ 15 _ | -                    |                                                                             |                    |
| 1034 B            | roadw                                             | ay South Portland, N                                                                          | Iaine          |                      | (207) 767-3663                                                              | Page <u>1</u>      |

| MA                | IE             | Environmental                                                                                 |                 |                   |                                                                             |                    |
|-------------------|----------------|-----------------------------------------------------------------------------------------------|-----------------|-------------------|-----------------------------------------------------------------------------|--------------------|
| Cumberl           | and Farı       | ms Inc Washington Ave Portland, Maine                                                         | <b>BORING D</b> | ESIG              | NATION B15 S                                                                | G15                |
| Project N         | lumber:        | 1047-1-2                                                                                      | Drilling Rig:   |                   | Geoprobe 6620DT                                                             |                    |
| Geologis          |                | John Marchewka                                                                                | Sampling Meth   |                   | Dual Tube Sampler                                                           |                    |
| Date Dri          |                | 12/9/2010                                                                                     | Total Depth of  | Borehol           | le: 9 Feet                                                                  |                    |
| Drilling Drilling | Method:<br>lay | : Direct Push Boring<br>Sand Silt Silty Sand Asph                                             | alt Bentonite   | Filt              | er Sand Screen                                                              | Riser              |
|                   |                |                                                                                               |                 |                   |                                                                             |                    |
| Sample ID         | Lithology      | Description                                                                                   | Depth (ft)      | PID Reading (ppm) | Notes                                                                       | Well<br>Completion |
| S1                |                | Brown fine to medium SAND, some Gravel<br>little silt                                         | I,              | ND                | SG15 installed at 4',<br>sand from 3'-4',<br>bentonite to ground<br>surface |                    |
| S1                |                | Dark Brown SILT and fine Sand, trace grav                                                     | rel 5           | ND                |                                                                             |                    |
| S2                |                |                                                                                               |                 | ND                |                                                                             |                    |
| S2                |                | Brown fine to coarse SAND, little Silt and<br>gravel<br>Bottom on Boring 9' (assumed bedrock) | 10<br>10        | ND                |                                                                             |                    |
|                   |                |                                                                                               |                 | -                 |                                                                             |                    |
| 1034 B            | roadw          | ay South Portland, N                                                                          |                 |                   | (207) 767-3663                                                              | Page <u>1</u>      |

| MA         | IE           | nvii   | ronmen                          | tal             |       |            |                      |                                       |                                                                                                           |                    |
|------------|--------------|--------|---------------------------------|-----------------|-------|------------|----------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------|
| Cumberla   | and Farr     | ns Inc | Washington Ave                  | Portland, Maine | BO    | RING E     | DESIG                | NATIO                                 | N SG9                                                                                                     |                    |
| Project N  |              |        | 1047-1-2                        |                 |       | ing Rig:   |                      |                                       | robe 6620DT                                                                                               |                    |
| Geologis   |              |        | John Marchewka                  |                 |       | oling Meth |                      |                                       | Tube Sampler                                                                                              |                    |
| Date Dril  |              |        | 12/13/2010<br>Direct Push Borir |                 | Tota  | Depth of   | Boreho               | le: 3.5 F                             | eet                                                                                                       |                    |
| Drilling M | lay          | Sand   | Silt                            |                 | halt  | Bentonite  | e Filt               | er Sand                               | Screen                                                                                                    | Riser              |
|            | $\mathbb{Z}$ |        |                                 |                 |       |            | · _                  |                                       |                                                                                                           |                    |
| Sample ID  | Lithology    |        | Descri                          | ption           |       | Depth (ft) | PID Reading<br>(ppm) | No                                    | otes                                                                                                      | Well<br>Completion |
|            |              | No S   | Samples Collected               |                 |       |            |                      | sand fr<br>benton<br>backfill<br>with | stalled at 3.3',<br>om 2.3'-3.3',<br>ite to 1' then<br>and finished<br>a concrete<br>seal and road<br>box |                    |
| 1034 Bi    | roadw        | ay     | S                               | outh Portland,  | Maine |            |                      | (207                                  | 7) 767-3663                                                                                               | Page <u>1</u>      |

| MA         | IE                      | nvi    | ronmen                    | tal             |        |            |                      |                                                      |                                                                                                            |                    |
|------------|-------------------------|--------|---------------------------|-----------------|--------|------------|----------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------|
| Cumberla   | and Farr                | ns Inc | Washington Ave            | Portland, Maine | BOI    | RING D     | ESIG                 | NATIO                                                | N SG10                                                                                                     |                    |
| Project N  | umber:                  |        | 1047-1-2                  |                 | Drilli | ng Rig:    |                      | Geopi                                                | robe 6620DT                                                                                                |                    |
| Geologist  |                         |        | John Marchewka            |                 |        | ling Meth  |                      |                                                      | Tube Sampler                                                                                               |                    |
| Date Dril  |                         |        | 12/13/2010                |                 | Total  | Depth of   | Boreho               | le: 3.5 F                                            | eet                                                                                                        |                    |
| Drilling N | lay                     | Sand   | Direct Push Borin<br>Silt |                 | halt   | Bentonite  | Filt                 | er Sand                                              | Screen                                                                                                     | Riser              |
|            | $\overline{\mathbb{Z}}$ |        |                           |                 |        |            | 2                    |                                                      |                                                                                                            |                    |
| Sample ID  | Lithology               |        | Descri                    | ption           |        | Depth (ft) | PID Reading<br>(ppm) | No                                                   | otes                                                                                                       | Well<br>Completion |
|            |                         | No S   | Samples Collected         |                 |        |            |                      | 3.5', sar<br>3.5', be<br>then b<br>finis<br>concrete | installed at<br>nd from 2.5'-<br>intonite to 1'<br>packfill and<br>shed with<br>e surface seal<br>road box |                    |
| 1034 Bi    | roadw                   | ay     | S                         | outh Portland,  | Maine  |            |                      | (207                                                 | 7) 767-3663                                                                                                | Page <u>1</u>      |

| MA         | IE                      | nvi    | ronmen                    | tal             |       |            |                      |                                                      |                                                                                                            |                    |
|------------|-------------------------|--------|---------------------------|-----------------|-------|------------|----------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------|
| Cumberla   | and Farr                | ns Inc | Washington Ave            | Portland, Maine | BOI   | RING D     | ESIG                 | NATIO                                                | N SG11                                                                                                     |                    |
| Project N  |                         |        | 1047-1-2                  |                 |       | ng Rig:    |                      |                                                      | robe 6620DT                                                                                                |                    |
| Geologist  |                         |        | John Marchewka            |                 |       | ling Meth  |                      |                                                      | Tube Sampler                                                                                               |                    |
| Date Dril  |                         |        | 12/13/2010                |                 | Total | Depth of   | Borehol              | le: 3.5 F                                            | eet                                                                                                        |                    |
| Drilling N | lay                     | Sand   | Direct Push Borin<br>Silt |                 | halt  | Bentonite  | Filt                 | er Sand                                              | Screen                                                                                                     | Riser              |
|            | $\overline{\mathbb{Z}}$ |        |                           |                 |       |            |                      |                                                      |                                                                                                            |                    |
| Sample ID  | Lithology               |        | Descri                    | ption           |       | Depth (ft) | PID Reading<br>(ppm) | No                                                   | otes                                                                                                       | Well<br>Completion |
|            |                         | No S   | Samples Collected         |                 |       |            |                      | 3.5', san<br>3.5', be<br>then b<br>finis<br>concrete | installed at<br>nd from 2.5'-<br>entonite to 1'<br>backfill and<br>shed with<br>e surface seal<br>road box |                    |
| 1034 Bi    | roadw                   | ay     | S                         | outh Portland,  | Maine |            |                      | (207                                                 | 7) 767-3663                                                                                                | Page <u>1</u>      |

## **APPENDIX 3**

Sampling Field Data Sheets



#### **CFI Washington Phase 2B**

#### Soil Vapor Point Flow Tests

#### **Flow Information**

| Vapor Points | 12/22/2010 (1) | 12/30/2010 (2) |   | 1/7/2011 (1) |   | 1/10/2011 (2) |
|--------------|----------------|----------------|---|--------------|---|---------------|
| SG 1         | 291            | OK             |   | 300          |   | Sampled       |
| SG 2         | >1000          | OK             |   | 0            |   | No Sample     |
| SG 3         | 0              | OK             |   | 0            |   | Sampled       |
| SG 5         | >1000          | Sampled        |   |              |   |               |
| SG 7         | >1000          | Sampled        |   |              |   |               |
| SG 8         | 170            | OK             |   | 840          | 1 | Sampled       |
| SG 9         | 0              | Water          |   | 0            | 1 | No Smaple     |
| SG 10        | 0              | Water          |   | 0            | 1 | No Sample     |
| SG 11        | >1000          | OK             |   | 150          |   | Sampled       |
| SG 12        | 140            | Sampled        |   |              | 1 |               |
| SG 13        | >1000          | Sampled        |   |              | 1 |               |
| SG 14        | 0              | No Sample      |   |              | 1 |               |
| SG 15        | 135            | Sampled        |   |              | 1 |               |
| SG 16        | 0              | Water          |   | 0            | 1 | No Sample     |
| SG 17        | 0              | No Flow        |   | 0            |   | No Sample     |
| SG 18        | 0              | Water          | ] | 0            | ] | No Sample     |
| SG 19        | 0              | OK             |   | 880          | ] | Sampled       |

(1) Flow Rates through a peristaltic pump placing -.5"H20 Vacuum on the Vapor Point

(2) No Flow Readings Taken. The following Notes are used :

 $OK\ /\ Sampled\ :\ Flow\ estimated\ to\ be\ at\ least\ 200\ ml/\ min,\ sample\ taken$ 

Water : Water Pumped from Vapor Point

No Flow  $\,/\,$  No Sample  $\,:\,$  No flow from vapor point, no sample taken

Bold indicates no flow from vapor point

#### Water Levels

Measured from TOC

|             | 12/22/2010 | 12/30/2010 | 1/7/2011 |
|-------------|------------|------------|----------|
| MW 1        | 5.79       | 5.94       | 6.10     |
| MW 2        | 5.46       | 5.70       | 5.56     |
| MW 3        | 6.05       | 6.28       | 6.27     |
| <b>MW 4</b> | 5.22       | 5.41       | 5.45     |
| MW 5        | 4.51       | 4.74       | 4.68     |
| MW 6        | 1.47       | 3.08       | 3.05     |
| MW 7        | 5.65       | 6.01       | 5.87     |
| P7          | 5.57       | 5.85       | 5.80     |
|             |            |            |          |

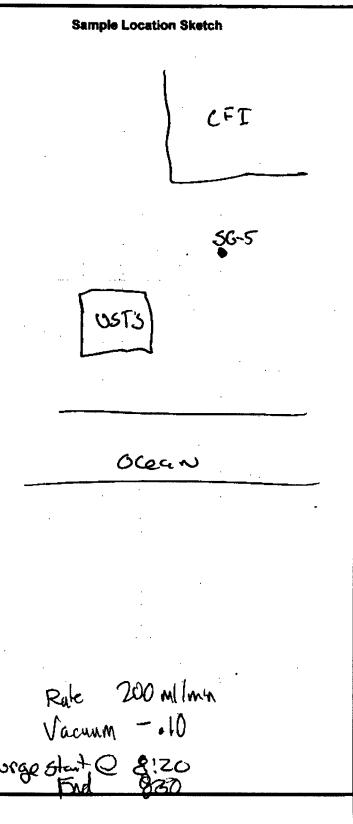
| MAI ENVIRONMENTAL                                                                                                                                                                                        | (Them              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Compliance ▼ Hydrogeology ▼ Engineering ▼ Permit                                                                                                                                                         | ting               |
| MONITORING WELL WATER SAMPLING DATA RECORD                                                                                                                                                               |                    |
| Project:       CFI       UAshing tow       Well I.D. :       M         Date:       917110       Sampler(s):       free         Sampler Signature:       1/1/1/10       Sampler Signature:       1/1/1/10 | IW-1<br>escott.    |
| WELL DATA         Water Depth [from Top of Casing]:         Well Diameter:         Integrity:         Good                                                                                               |                    |
|                                                                                                                                                                                                          | •                  |
| Method: Geotech Peristaltic Pump W/ Flow Through Cell<br>Tubing Intake Depth: Stonled at 7.5 had to doop intake to 9.8<br>Nechange<br>Start Time: 10:30                                                  | 5 due to poor      |
| Flow Rate: $\pm 100 \text{ m}^{1}/\text{m}^{1}\text{N}$                                                                                                                                                  |                    |
| End Time(Sample Start): ))、ひつ                                                                                                                                                                            |                    |
| Final Readings<br>DO: 2、1 mg11<br>Turbidity: 1フィム んもい                                                                                                                                                    | . }                |
| Purge Water Observations (Color, Odor, Sheen): Petrol Odor, Sheen                                                                                                                                        |                    |
| <u>Comments:</u><br>P P - 7 7.10' (9/7/10)                                                                                                                                                               |                    |
| 1034 Broadway ▼ South Portland, ME 04106 ▼ Phone: (207) 767-3663 ▼ Fax: (207) 767-7110 ▼ MA                                                                                                              | Ienvironmental.com |

| MAI ENVIRONMENTAL                                                                             | The                                                    |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Compliance V Hydrogeology                                                                     | ▼ Engineering ▼ Permitting                             |
| MONITORING WELL WATER SAMPLI                                                                  | NG DATA RECORD                                         |
| Project: CFI Washington<br>Date: 9/2/10                                                       | Well I.D. : <u>Mw Z</u><br>Sampler(s): <u>Prescost</u> |
| Sa                                                                                            | Impler Signature:                                      |
| WELL DATA         Water Depth [from Top of Casing]:         Well Diameter:         Integrity: |                                                        |
| PURGE                                                                                         |                                                        |
| Method: _ Geotech Peristaltic Pump w/ Flow Through                                            | n Cell                                                 |
| Tubing Intake Depth: 7.5                                                                      |                                                        |
| Start Time: 800                                                                               |                                                        |
| Flow Rate: $100 \text{ m}/\text{m}, \infty$                                                   |                                                        |
| End Time(Sample Start): <i>£50</i>                                                            |                                                        |
| Final Readings<br>DO: 3.0 mg//<br>Turbidity: 12.1 NTU                                         |                                                        |
| Purge Water Observations (Color, Odor, Sheen):                                                | oder, Sleen                                            |
| <u>Comments:</u>                                                                              |                                                        |

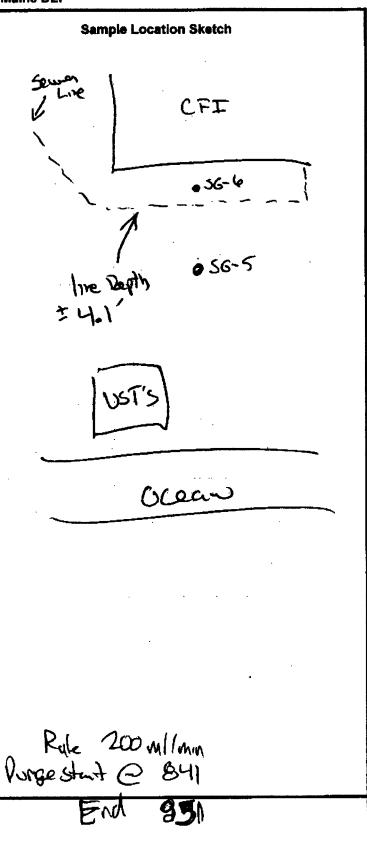
1034 Broadway V South Portland, ME 04106 V Phone: (207) 767-3663 V Fax: (207) 767-7110 V MAIenvironmental.com

| MAI ENVIRONMENTAL                                                                                                   | Them                 |
|---------------------------------------------------------------------------------------------------------------------|----------------------|
| Compliance ▼ Hydrogeology ▼ Engineering ▼ P                                                                         | ermitting            |
| MONITORING WELL WATER SAMPLING DATA RECORD                                                                          |                      |
| Project: <u>CFT VAshington Are</u> Well I.D. :<br>Date: <u>GITIO</u> Sampler(s):                                    |                      |
| Sampler Signature:                                                                                                  | htph                 |
| WELL DATA         Water Depth [from Top of Casing]:         738         Well Diameter:         1         Integrity: | •                    |
| PURGE                                                                                                               |                      |
| Method: _ Geotech Peristaltic Pump w/ Flow Through Cell                                                             | •                    |
| Tubing Intake Depth: 9.0 - dropped tubing 15 due to                                                                 | poor rechange        |
| Start Time: 916                                                                                                     |                      |
| Flow Rate: 80 m/min                                                                                                 |                      |
| End Time(Sample Start): 9:40                                                                                        |                      |
| Final Readings<br>DO: 4,1 mg11<br>Turbidity: 74 NTU                                                                 |                      |
| Purge Water Observations (Color, Odor, Sheen): Retal Odor, Cheen                                                    |                      |
| <u>Comments:</u>                                                                                                    |                      |
| 1034 Broadway ▼ South Portland, ME 04106 ▼ Phone: (207) 767-3663 ▼ Fax: (207) 767-7110 ▼                            | MAIenvironmental.com |

Soll Gas Sampling Field Sheet 56-1 Maine DEP Site Name: Washinton Ave CFI Sample Location Sketch Town: ortland Date: Sample I.D.: Sampling (Source) (Utility) (Mitigation) Purpose (Receptor) (Other) Sampling bown Personnel: Project Prescott Manager ((Summa Can) (Tedlar Bag) Ulash 2 56-1 S Collection Device: FI Sample Penetration (Ashphalt) (Concrete) ((Soil) Location: (Fill) (Till) (Sand & Gravel) Soil Type: (Glacial Marine) Sample Depth: Depth to Water: 41 Suspected COCs: Petroleum) (Solvents) Cannister I.D.: **4**0 Flow Control I.D.: 468 Flow control rate: <u>00 mll</u> MIN O<sub>2</sub> Ambient CO<sub>2</sub> Ambient subsurface (+)- inches of water colu pressure/vacuum Pre-Sample: O<sub>2</sub> Pre-Sample CO<sub>2</sub>: 5.00 OR Pre-Sample PID: 48 Pre-Sample CH4: (% VOLUME SILEL) PPW 100 Sample Initiation 1050 Time: Initial Vacuum: 30 Purge Stent 1033 Purge Vacuum .50 OR Fulge Rate 200 ml/mm Sample End Time: 00 Final Vaccum: Post Sample O<sub>2</sub>: OR 1043 Post Sample CO2: 00


| Site Name:                      | WAShimbu Ave CFI                                      | Sample Location Sketch                                                   |
|---------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------|
| Town:                           | Portland                                              |                                                                          |
| Date:                           | 917/10                                                |                                                                          |
| Sample I.D.:                    | 56-2_                                                 |                                                                          |
| Sampling<br>Purpose             | (Source) (Utility) (Mitigation)<br>(Receptor) (Other) |                                                                          |
| Sampling<br>Personnel:          | 5,8000                                                | ( See                                                                    |
| Project<br>Manager              | P. Prescott                                           | Y                                                                        |
| Collection Device:              | (Summa Cap) (Tedlar Bag)                              |                                                                          |
| Sample Penetration<br>Location: | (Ashphalt) (Concrete) (Soil)                          |                                                                          |
| Soil Type:                      | (Fill) (Till) (Sand & Gravel)<br>(Glacial Marine)     | 3 0.561<br>20<br>20                                                      |
| Sample Depth:                   | 4'                                                    |                                                                          |
| Depth to Water:                 | UNK                                                   |                                                                          |
| Suspected COCs:                 | (Petroleum) (Solvents)                                | 363                                                                      |
| Cannister I.D.:                 | 366                                                   | ·                                                                        |
| Flow Control I.D.:              | 0377                                                  |                                                                          |
| Flow control rate:              | 200                                                   |                                                                          |
| O <sub>2</sub> Ambient          | 20,9                                                  | · · · ·                                                                  |
| CO <sub>2</sub> Ambient         | . 0.3                                                 | •                                                                        |
| subsurface<br>pressure/vacuum   | -Net Cetter Mer- inches of water column               |                                                                          |
| Pre-Sample: O <sub>2</sub>      | 0.5                                                   |                                                                          |
| Pre-Sample CO <sub>2</sub> :    | 5.00 GR                                               |                                                                          |
| Pre-Sample PID:                 | 8.                                                    |                                                                          |
| Pre-Sample CH4:                 | 180 (% Volume ALE) PPM                                |                                                                          |
| Sample Initiation<br>Time:      | 102 %                                                 |                                                                          |
| Initial Vacuum:                 | -30                                                   | D DI arrillion                                                           |
| Sample End Time:                | 1039                                                  | Purge Rak 200 millinn<br>Purge Vacuum 7.05<br>Porge Start @ 1013<br>1023 |
| Final Vaccum:                   | -5                                                    | Prive Vacuum -, OS                                                       |
| Post Sample O <sub>2</sub> :    | 0.5                                                   | Pice Stat Q 1013                                                         |
| Post Sample CO <sub>2</sub> :   | 5.00 OR                                               | ruise End LAZZ                                                           |
| Notes:                          | Server Line                                           | @ 1 9' B6S                                                               |

|                                 | •                                                     |    |
|---------------------------------|-------------------------------------------------------|----|
| Site Name:                      | Washington the CFI                                    |    |
| Town:                           | Portland                                              |    |
| Date:                           | 9/1/10                                                |    |
| Sample I.D.:                    | 51-2                                                  |    |
| Sampling<br>Purpose             | (Source) (Utility) (Mitigation)<br>(Receptor) (Other) |    |
| Sampling<br>Personnel:          | S.BOWN                                                |    |
| Project<br>Manager              | P.Prescott                                            |    |
| Collection Device:              | Summa Can) (Tediar Bag)                               | ١  |
| Sample Penetration<br>Location: | (Ashphalt) (Concrete) (Soil)                          | ł  |
| Soil Type:                      | (Fil) (Till) (Sand & Gravel)<br>(Glacial Marine)      |    |
| Sample Depth:                   | 4.5                                                   |    |
| Depth to Water:                 | Unk                                                   |    |
| Suspected COCs:                 | (Petroleum) (Solvents)                                |    |
| Cannister I.D.:                 | 1734                                                  |    |
| Flow Control I.D.:              | 0301                                                  |    |
| Flow control rate:              | 200 milmin                                            |    |
| O <sub>2</sub> Ambient          | 20.9                                                  |    |
| CO <sub>2</sub> Ambient         | . 0,3                                                 |    |
| subsurface<br>pressure/vacuum   | NG ASET (CCTA) inches of water column                 |    |
| Pre-Sample: O <sub>2</sub>      | 0.1                                                   |    |
| Pre-Sample CO2:                 | 5.0 OR                                                |    |
| Pre-Sample PID:                 | 46                                                    |    |
| Pre-Sample CH <sub>4</sub> :    | 100 (% Volume (KE) OPM                                |    |
| Sample Initiation<br>Time:      | 1008                                                  |    |
| Initial Vacuum:                 | IO -30                                                |    |
| Sample End Time:                | 1018                                                  |    |
| Final Vaccum:                   | 5                                                     |    |
| Post Sample O <sub>2</sub> :    | 0.6                                                   |    |
| Post Sample CO2:                | 5.0 02                                                |    |
|                                 |                                                       |    |
|                                 | the time                                              | n. |


Sample Location Sketch 9 56-2 NAShingbau 56-1 CFI Rule 200 million Vacuum -.8 Start Runge Q 9:52 End 1002 1002 Depth estimated ±51

56-3

| Site Name:                      | Unohington the CFI                                    |   |
|---------------------------------|-------------------------------------------------------|---|
| Town:                           | Portland                                              |   |
| Date:                           | Ghlio                                                 |   |
| Sample I.D.:                    | 56-5                                                  |   |
| Sampling<br>Purpose             | (Source) (Utility) (Mitigation)<br>(Receptor) (Other) |   |
| Sampling<br>Personnel:          | S. BOWN                                               |   |
| Project<br>Manager              | P. Prescott                                           |   |
| Collection Device:              | (Summa Car) (Tedlar Bag)                              |   |
| Sample Penetration<br>Location: | (Ashphalt) (Concrete) (Soil)                          |   |
| Soil Typ <del>e</del> :         | (Fill) (Till) (Sand & Gravel)<br>(Glacial Marine)     |   |
| Sample Depth:                   | 5.0-                                                  |   |
| Depth to Water:                 | 7.58                                                  |   |
| Suspected COCs:                 | (Petroleum) (Solvents)                                |   |
| Cannister I.D.:                 | 55%                                                   |   |
| Flow Control I.D.:              | 0116                                                  |   |
| Flow control rate:              | 200                                                   |   |
| O <sub>2</sub> Ambient          | 20.9                                                  |   |
| CO <sub>2</sub> Ambient         | 0.9                                                   |   |
| subsurface<br>pressure/vacuum   | VQUE SC TAL Victors of water column                   |   |
| Pre-Sample: O <sub>2</sub>      | 0.4                                                   |   |
| Pre-Sample CO <sub>2</sub> :    | 5.00 GR                                               |   |
| Pre-Sample PID:                 | 270                                                   |   |
| Pre-Sample CH <sub>4</sub> :    | 1212 (N Volume SLE) PPM                               |   |
| Sample Initiation<br>Time:      | 834                                                   |   |
| Initial Vacuum:                 | ~30                                                   |   |
| Sample End Time:                | 844                                                   |   |
| Final Vaccum:                   | -5                                                    |   |
| Post Sample O <sub>2</sub> :    | 0,5                                                   | R |
| Post Sample CO <sub>2</sub> ;   | 5.00 02                                               |   |
|                                 |                                                       |   |



| Site Name:                      | Whishmaton Ave CFI                                   |
|---------------------------------|------------------------------------------------------|
| Town:                           | Portland                                             |
| Date:                           | 9/2/10                                               |
| Sample I.D.:                    | 56-6                                                 |
| Sampling<br>Purpose             | (Source) (Utility) (Mitigation)<br>(Receptor)(Other) |
| Sampling<br>Personnel:          | Sibown                                               |
| Project<br>Manager              | P. Prescott                                          |
| Collection Device:              | Summa Can) (Tediar Bag)                              |
| Sample Penetration<br>Location: | Ashphait (Concrete) (Soil)                           |
| Soil Type:                      | (EII) (Till) (Sand & Gravel)<br>(Glacial Marine)     |
| Sample Depth:                   | 5                                                    |
| Depth to Water:                 | UNK                                                  |
| Suspected COCs:                 | (Petroleum) (Solvents)                               |
| Cannister I.D.:                 | 190                                                  |
| Flow Control I.D.:              | 0369                                                 |
| Flow control rate:              | 200                                                  |
| O <sub>2</sub> Ambient          | 20.9                                                 |
| CO <sub>2</sub> Ambient         | 0.3                                                  |
| subsurface<br>pressure/vacuum   | NA (+/- inches of water column)                      |
| Pre-Sample: O <sub>2</sub>      | 8.0                                                  |
| Pre-Sample CO <sub>2</sub> :    | 5.00 02                                              |
| Pre-Sample PID:                 | 0                                                    |
| Pre-Sample CH <sub>4</sub> :    | 2. g. ('N Volume WLEI) PPM                           |
| Sample Initiation<br>Time:      | 900                                                  |
| Initial Vacuum:                 | ~30                                                  |
| Sample End Time:                | 912                                                  |
| Final Vaccum:                   | -5                                                   |
| Post Sample O <sub>2</sub> :    | 8,00                                                 |
| Post Sample CO <sub>2</sub> :   | 5.0 OR                                               |
|                                 |                                                      |



| Site Name:                      | $ 1\rangle$ $ 1\rangle$ $ 1\rangle$ $ 1\rangle$ $ 1\rangle$ $ 1\rangle$ |                                      |
|---------------------------------|-------------------------------------------------------------------------|--------------------------------------|
| Town:                           | Washington the CFI                                                      | Sample Location Sketch               |
| Date:                           | Vortland                                                                | ·                                    |
| Sample 1.D.:                    | 9/1/10                                                                  |                                      |
| Sample I.D.                     | SG-7<br>(Source) (Utility) (Mitigation)                                 |                                      |
| Purpose                         | (Receptor) (Other)                                                      | CFI                                  |
| Sampling<br>Personnel:          | 5,8000                                                                  |                                      |
| Pro <del>je</del> ct<br>Manager | P. Prescott                                                             | 56-le 56-                            |
| Collection Device:              | (Summa Can) (Tedlar Bag)                                                | • 56-                                |
| Sample Penetration<br>Location: | Ashphalt) (Concrete) (Soil)                                             |                                      |
| Soil Type:                      | (Fill) Till) (Sand & Gravel)<br>(Glacial Marine)                        |                                      |
| Sample Depth:                   | 42-                                                                     | 56-5                                 |
| Depth to Water:                 | UNK                                                                     |                                      |
| Suspected COCs:                 | (Petroleum) (Solvents)                                                  |                                      |
| Cannister I.D.:                 | 207                                                                     |                                      |
| Flow Control I.D.:              | 0059                                                                    |                                      |
| Flow control rate:              | 200                                                                     |                                      |
| O <sub>2</sub> Ambient          | 20.9                                                                    | UST3                                 |
| CO <sub>2</sub> Ambient         | 0:3                                                                     |                                      |
| subsurface<br>pressure/vacuum   | +/- inches of water column)                                             | \I                                   |
| Pre-Sample: O <sub>2</sub>      | 12.0                                                                    |                                      |
| Pre-Sample CO <sub>2</sub> :    | 150 OR                                                                  |                                      |
| Pre-Sample PID:                 | U                                                                       |                                      |
| Pre-Sample CH <sub>4</sub> :    | 19 (% Volume, ALEL PPM)                                                 | Blean                                |
| Sample Initiation<br>Time:      | 920                                                                     |                                      |
| Initial Vacuum:                 | -30                                                                     | · ·                                  |
| Sample End Time:                | 932                                                                     | Flow Rule 200 millimin<br>Vacyum -12 |
| Final Vaccum:                   | -5                                                                      | Vacuum -17                           |
| Post Sample O <sub>2</sub> :    | 12.0                                                                    |                                      |
| Post Sample CO <sub>2</sub> :   | 5.0 or                                                                  | Purge start @ 9:05                   |
| Notes:                          | Sever Line -                                                            | End als<br>Line depth 3.7            |

|                                 |                                                                        | Maine DEP              |
|---------------------------------|------------------------------------------------------------------------|------------------------|
| Site Name:                      | Washington Ave CFI                                                     | Semula Landt           |
| Town:                           | Portland                                                               | Sample Location Sketch |
| Date:                           | 9/1/10                                                                 | 1 1                    |
| Sample I.D.:                    |                                                                        |                        |
| Sampling                        | ((Source) (Utility) (Mitigation)                                       |                        |
| Purpose<br>Sampling             | (Receptor) (Other)                                                     |                        |
| Personnel:                      | 5, BROWN                                                               |                        |
| Project                         |                                                                        |                        |
| Manager<br>Collection Device:   | P. Prescot                                                             |                        |
|                                 | (Tedial Bag)                                                           |                        |
| Sample Penetration<br>Location: | (Ashphait) (Concrete) (Soil)                                           |                        |
| Soil Type:                      | (FM) (Till) (Sand & Gravel)<br>(Glacial Marine)                        |                        |
| Sample Depth:                   | 4                                                                      |                        |
| Depth to Water:                 | 6.38                                                                   | USTS                   |
| Suspected COCa:                 | (Petroleum) (Solvents)                                                 | 0512                   |
| Cannister I.D.:                 | 337                                                                    |                        |
| Flow Control I.D.:              | 0426                                                                   | 56-8                   |
| Flow control rate:              | 200                                                                    |                        |
| O <sub>2</sub> Ambient          | 20,9                                                                   | OCean ST               |
| CO <sub>2</sub> Ambient         | 0.3                                                                    | · · ·                  |
| subsurface<br>pressure/vacuum   | 250 OR (+/- inches of water column)                                    | -                      |
| Pre-Sample: O <sub>2</sub>      | 0.5                                                                    |                        |
| Pre-Sample CO <sub>2</sub> :    | 5.00 08                                                                |                        |
| Pre-Sample PID:                 | 1413                                                                   |                        |
| Pre-Sample CH4:                 | 101 (N VOLUME (NLE) PPM                                                |                        |
| Sample Initiation<br>Time:      | 946                                                                    |                        |
| Initial Vacuum:                 | -30                                                                    |                        |
| Sample End Time:                | 959                                                                    | 1                      |
| Final Vaccum:                   | -5                                                                     |                        |
| Post Sample O <sub>2</sub> :    | 0.5                                                                    |                        |
| Post Sample CO2:                | F AG AD                                                                |                        |
| Notes:                          | S.00012<br>Vige Start @ 132<br>Pale ZUOMI/M.M<br>Vacuum50 0<br>ENU 942 | R                      |
|                                 | <u> </u>                                                               |                        |

# MAI ENVIRONMENTAL

|                                                                                                                                  | (Planna) |
|----------------------------------------------------------------------------------------------------------------------------------|----------|
| Compliance ▼ Hydrogeology ▼ Engineering ▼ Permitting                                                                             |          |
| MONITORING WELL WATER SAMPLING DATA RECORD                                                                                       |          |
| Project:     CFf. Washington     Well I.D. :     MW I       Date:     1/10/11     Sampler(s):     Self Brown                     | <u> </u> |
| Sampler Signature: <u>2007</u>                                                                                                   |          |
| WELL DATA         Water Depth [from Top of Casing]:       5092         Well Diameter:       1" PyC         Integrity:       Cood |          |
| PURGE                                                                                                                            |          |
| Method: _ Geotech Peristaltic Pump w/ Flow Through Cell                                                                          |          |
| Tubing Intake Depth : 71                                                                                                         |          |
| Start Time: 1350                                                                                                                 |          |
| Flow Rate: 150 ml/m.M                                                                                                            |          |
| End Time(Sample Start): ) (0)                                                                                                    |          |
| Final Readings                                                                                                                   |          |
| DO: 107 mg/1                                                                                                                     |          |

Turbidity: 10,1 mm

Purge Water Observations (Color, Odor, Sheen):

Petrol Odor

| MAI                                                         | ENVIRONMENTAL            |                                                                              | C. F.    |
|-------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------|----------|
|                                                             | Compliance ▼ Hydro       | ogeology ▼ Engineering ▼ Permitting                                          |          |
|                                                             | MONITORING WELL WATER SA | AMPLING DATA RECORD                                                          |          |
| Project:<br>Date:                                           | CFT Washington<br>1/10/1 | Well I.D. : MW 2<br>Sampler(s): <u>Seth Brown</u><br>Sampler Signature: SIMP | <u> </u> |
| WELL DATA<br>Water Depth (f<br>Well Diameter:<br>Integrity: | rom Top of Casing]: 5.67 | ,                                                                            |          |
|                                                             | PURGE                    |                                                                              |          |

Method: \_ Geotech Peristaltic Pump w/ Flow Through Cell

Tubing Intake Depth : 6.5'

Start Time: 1320

Flow Rate: 150 mllmin

End Time(Sample Start) : 1330

**Final Readings** 

DO: 4.0 mg// Turbidity: 15.2 ntn

Purge Water Observations (Color, Odor, Sheen):

Petrol Oder

5

| MAI ENVIRONMENTAL                                                                 | - Color                                                 |
|-----------------------------------------------------------------------------------|---------------------------------------------------------|
| Compliance ▼ Hydr                                                                 | rogeology ▼ Engineering ▼ Permitting                    |
| MONITORING WELL WATER S                                                           | AMPLING DATA RECORD                                     |
| Project: <u>CFL</u> Washington<br>Date: <u>12/30/10</u>                           | Well I.D. : <u>MW 3</u><br>Sampler(s): <u>Sch Brunn</u> |
| WELL DATA                                                                         | Sampler Signature: <u>Start</u>                         |
| Water Depth [from Top of Casing]: 6.28<br>Well Diameter: 1"PVC<br>Integrity: 6.00 | •                                                       |

٤

## PURGE

Method: \_ Geotech Peristaltic Pump w/ Flow Through Cell

Tubing Intake Depth : 7,25

Start Time: 1320

Flow Rate: 150 ml/mm

End Time(Sample Start): 1360

**Final Readings** 

DO: 8.4 Turbidity: Slightly Silty

#### Purge Water Observations (Color, Odor, Sheen):

| MAI                                                      | ENVIRONMENTAL              |                                                         | Floren |
|----------------------------------------------------------|----------------------------|---------------------------------------------------------|--------|
| · · · · · · · · · · · · · · · · · · ·                    | Compliance V Hydrog        | geology ▼ Engineering ▼ Permitting                      | E      |
|                                                          | MONITORING WELL WATER SA   | MPLING DATA RECORD                                      |        |
| Project:<br>Date:                                        | CFI Washinden<br>1/10/11   | Well I.D. : <u>MW M</u><br>Sampler(s): <u>Sch Brunn</u> |        |
|                                                          |                            | Sampler Signature: 2/1/2                                | ·      |
| WELL DAT<br>Water Depth  <br>Well Diameter<br>Integrity: | [from Top of Casing]: 5.48 |                                                         |        |
|                                                          | PURGE                      | ,<br>,                                                  |        |

٢

| Method: | Geotech Peris | taltic Pump w/ Flo | w Through Cell |
|---------|---------------|--------------------|----------------|
|---------|---------------|--------------------|----------------|

Tubing Intake Depth : 6.5'

Start Time: 14(0)

Flow Rate: 150 m/m

End Time(Sample Start): 1445

**Final Readings** 

DO: 4.1 mg/l Turbidity: 180 ntu

## Purge Water Observations (Color, Odor, Sheen):

| MAI ENVIRONMENTAL                                                                              | 5 |
|------------------------------------------------------------------------------------------------|---|
| Compliance ▼ Hydrogeology ▼ Engineering ▼ Permitting                                           |   |
| MONITORING WELL WATER SAMPLING DATA RECORD                                                     |   |
| Project: CFI Washington Well I.D. : MW 5<br>Date: 1/10/11 Sampler(s): 5th Brown                |   |
| Sampler Signature: <u>2111</u>                                                                 |   |
| WELL DATAWater Depth [from Top of Casing]: $4, 90$ Well Diameter: $11$ PVC w/ CasingIntegrity: |   |
| PURGE                                                                                          |   |
| Method: _ Geotech Peristaltic Pump w/ Flow Through Cell                                        |   |
| Tubing Intake Depth : 6                                                                        |   |
| Start Time: 1520                                                                               |   |
| Flow Rate: 150 ml/mm                                                                           |   |
| End Time(Sample Start): $1600$                                                                 |   |

Final Readings

## DO: G.O mg/l Turbidity: 3BS ntu

Purge Water Observations (Color, Odor, Sheen):

## MAI ENVIRONMENTAL

|                                                                | (                   | Compliance 🔻 Hyd | drogeology <b>v</b> Engineerin        | ing <b>v</b> Permitting |             |
|----------------------------------------------------------------|---------------------|------------------|---------------------------------------|-------------------------|-------------|
|                                                                | MONITORING          | WELL WATER       | SAMPLING DATA RE                      | ECORD                   |             |
| Project:<br>Date:                                              | CFL Was<br>12/30/10 | shiveten         | Well I.<br>Sampler(<br>Sampler Signat | (s): <u>Scth B</u>      | <u>venn</u> |
| WELL DATA<br>Water Depth [from<br>Well Diameter:<br>Integrity: | Top of Casing]:     | 6.01             |                                       |                         |             |

5

## PURGE

| Method: | Geotech Peristaltic Pump w/ Flow Through Cell |
|---------|-----------------------------------------------|
|---------|-----------------------------------------------|

Tubing Intake Depth : 7'

Start Time: 1245

Flow Rate : 15() m ( /m.n

End Time(Sample Start) : 1315

**Final Readings** 

DO: 7.7 Turbidity: Clear

## Purge Water Observations (Color, Odor, Sheen):

| Site Name:                      | (FI Washington                                       | Sample Location Sketch                           |
|---------------------------------|------------------------------------------------------|--------------------------------------------------|
| Town:                           | Pailland                                             |                                                  |
| Date:                           | 1/10/11                                              | $-\mathbf{p}$ , $\mathbf{c}$ + 10.2 $\mathbf{c}$ |
| Sample I.D.:                    | 56-                                                  | - FN1ge JR491 1023                               |
| Sampling<br>Purpose             | Source) (Utility) (Mitigation)<br>(Receptor) (Other) | Phyge Start 1025<br>Flew Rake 200 millionin      |
| Sampling<br>Personnel:          | Bionn                                                | Vacuum -, 30 m HzC                               |
| Project<br>Manager              |                                                      | End Purge 1030                                   |
| Collection Device:              | (Summa Cas) (Tedlar Bag)                             |                                                  |
| Sample Penetration<br>Location: | (Ashphalt) (Concrete)                                |                                                  |
| Soil Type:                      | (Till) (Sand & Gravel)<br>(Glacial Marine)           |                                                  |
| Sample Depth:                   | 4.51                                                 |                                                  |
| Depth to Water:                 | 5.92' (MW))                                          |                                                  |
| Suspected COCs:                 | (Petroleum) (Solvents)                               |                                                  |
| Cannister I.D.:                 | 474                                                  |                                                  |
| Flow Control I.D.:              | 0263                                                 |                                                  |
| Flow control rate:              | 200 ml/min                                           |                                                  |
| O <sub>2</sub> Ambient          | 20.9 %v                                              |                                                  |
| CO <sub>2</sub> Ambient         | 0.0 %                                                |                                                  |
| subsurface<br>pressure/vacuum   | No Veflection+/- inches of water column)             |                                                  |
| Pre-Sample: O <sub>2</sub>      | 0. /0V                                               |                                                  |
| Pre-Sample CO <sub>2</sub> :    | 3.1 %V                                               |                                                  |
| Pre-Sample PID:                 | 13. 7 ppm 100                                        |                                                  |
| Pre-Sample CH <sub>4</sub> :    | Jul of Ravice Contractione (GLED, PPM)               |                                                  |
| Sample Initiation<br>Time:      | 1040                                                 |                                                  |
| Initial Vacuum:                 | -29 "Ha                                              |                                                  |
| Sample End Time:                | 1050                                                 |                                                  |
| Final Vaccum:                   | ~S" H                                                |                                                  |
| Post Sample O <sub>2</sub> :    | 0,0%                                                 |                                                  |
| Post Sample CO <sub>2</sub> :   | 203 6V                                               |                                                  |
|                                 |                                                      |                                                  |

| Site Name:                      | CPT Washington                                       |   |    |        |        | S   | am  | ple | Lo       | cati         | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ske    | etcł | 1       |       |          |    |            |                                       |
|---------------------------------|------------------------------------------------------|---|----|--------|--------|-----|-----|-----|----------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|---------|-------|----------|----|------------|---------------------------------------|
| Town:                           | Partiand                                             |   |    | V PORT | ****** |     |     |     | -        | ****         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1      |      |         | -     |          |    | - 2000 - 4 |                                       |
| Date:                           | 1/10/11                                              |   |    | ļ      | 1      | 1   |     | -   |          | $\mathbf{b}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [      | 0    | ۶1      | 64    | (        | 7  |            |                                       |
| Sample I.D.:                    | <u>G</u> G-2                                         |   |    | 1      | V      | ac  | цh  | ¢~  | -        | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10     | U    |         | Ħ     | 21       | /  |            |                                       |
| Sampling<br>Purpose             | Source) (Utility) (Mitigation)<br>(Receptor) (Other) |   |    |        | F      | Tev | N R | de  | <u> </u> | 4            | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,     | ml   | ľv      | ۷.V   | <u> </u> |    | -          |                                       |
| Sampling<br>Personnel:          | Brown                                                |   |    |        |        |     |     |     | 1        | 10           | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ŧį,    |      | /       |       |          |    |            |                                       |
| Project<br>Manager              |                                                      |   |    |        |        |     | Λ   |     | ļ        |              | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ľ      |      |         |       |          |    |            |                                       |
| Collection Device:              | (Summa Can) (Tedlar Bag)                             |   |    |        | ļ      |     | / \ | 16  | )        | J            | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1    | 10   | $ _{r}$ |       |          |    |            |                                       |
| Sample Penetration<br>Location: | (Ashphalt) (Concrete) (Soil)                         |   |    |        |        |     |     |     | 7        |              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | ¥    |         | -     |          |    |            |                                       |
| Soil Type:                      | (Fill) (Sand & Gravel)<br>(Glacial Marine)           | : |    |        |        |     |     |     |          | 9            | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 'n     |      |         |       |          | -  |            |                                       |
| Sample Depth:                   | 4.0                                                  |   |    |        |        |     |     |     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |         |       |          |    |            |                                       |
| Depth to Water:                 | 5.48' (MW4)                                          |   |    |        |        |     |     |     |          |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1<br>  |      |         |       |          |    |            |                                       |
| Suspected COCs:                 | (Petroleum) (Solvents)                               |   |    |        |        |     |     |     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |         |       | 6        | 1  |            |                                       |
| Cannister I.D.:                 | _                                                    |   |    |        |        |     |     |     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | -    |         |       |          |    |            |                                       |
| Flow Control I.D.:              | ~                                                    |   |    |        |        |     |     |     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |         |       |          |    |            |                                       |
| Flow control rate:              | -                                                    |   |    |        |        |     |     |     |          |              | <b>\$</b> 2000, <b>\$</b> 200 |        |      |         |       |          |    |            |                                       |
| O <sub>2</sub> Ambient          | 20.9 %v                                              |   |    |        |        | -   |     |     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |         |       |          |    |            |                                       |
| CO₂ Ambient                     | 6.6 %v                                               |   |    |        |        |     |     |     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |         | ***** |          |    |            |                                       |
| subsurface<br>pressure/vacuum   | No Deflecture +/- inches of water column)            |   |    |        |        |     |     |     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |         |       |          |    |            |                                       |
| Pre-Sample: O <sub>2</sub>      | <u> </u>                                             |   |    |        |        |     |     |     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |         |       |          |    |            |                                       |
| Pre-Sample CO <sub>2</sub> :    | -                                                    |   |    |        |        |     |     |     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |         |       |          |    |            |                                       |
| Pre-Sample PID:                 | -                                                    |   |    |        |        |     |     |     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |         |       |          |    |            |                                       |
| Pre-Sample CH <sub>4</sub> :    | - (% Volume, %LEL, PPM)                              |   |    |        |        |     |     |     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      | ••••••• |       |          | •  |            |                                       |
| Sample Initiation<br>Time:      | ~                                                    |   |    |        |        |     |     |     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |         |       |          |    |            |                                       |
| Initial Vacuum:                 | ~                                                    |   |    |        |        |     |     | n   |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ****** |      |         |       | •••••    |    |            |                                       |
| Sample End Time:                | -                                                    |   |    |        |        |     |     |     | Ar-      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |         |       |          |    |            | · · · · · · · · · · · · · · · · · · · |
| Final Vaccum:                   | _                                                    |   | £k |        | L      | l   |     |     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |         |       |          | ,ŧ |            | i                                     |
| Post Sample O <sub>2</sub> :    | <u>^</u>                                             |   |    |        |        |     |     |     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |         |       |          |    |            |                                       |
| Post Sample CO <sub>2</sub> :   | /                                                    |   |    |        |        |     |     |     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |         |       |          |    |            |                                       |
|                                 |                                                      |   |    |        |        |     |     |     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |         |       |          |    |            |                                       |

| Site Name:                      | CPI Washington                                        | Sample Location Sketch                 |      |     |      |                 |       |               |                        |              |      |            |     |            |             |            |
|---------------------------------|-------------------------------------------------------|----------------------------------------|------|-----|------|-----------------|-------|---------------|------------------------|--------------|------|------------|-----|------------|-------------|------------|
| Town:                           | Portland                                              | ************************************** |      |     | -    | ALC ALC MICHING |       |               |                        |              |      |            |     |            |             |            |
| Date:                           | 1/10/11                                               |                                        | n kc | . < | itai | 7               | ++    | 7             | ſς                     |              |      |            |     |            |             | - 10-00-00 |
| Sample I.D.:                    | 56-3                                                  |                                        | лy   |     | 44   |                 | + 1 1 |               | $\mathbf{\mathcal{L}}$ |              |      |            |     |            |             |            |
| Sampling<br>Purpose             | (Source) (Utility) (Mitigation)<br>(Receptor) (Other) |                                        |      | P   | cn   | 1 Ra            | k     | -2            | 0                      | <sup>7</sup> | alti | <b>M</b> ( | n   |            |             |            |
| Sampling<br>Personnel:          | Brown                                                 |                                        | 1    | la  |      | 1Mr             |       | 6             | 0                      | 11           | Ҧ    | 0          |     |            |             |            |
| Project<br>Manager              |                                                       |                                        |      |     |      |                 | -\$   |               |                        |              |      |            | ۲   | - 1        | <u>2</u> )( | 1/20       |
| Collection Device:              | (Summa Can) (Tedlar Bag)                              |                                        |      | Ni  | IYV  | <u> </u> 3n     |       |               | Y                      | ľ            | Kr   | ,<br>קיי   |     | •<br>• • • | D<br>Nd4    | '120       |
| Sample Penetration<br>Location: | (Ashphalt) (Concrete) Soil                            |                                        |      |     |      |                 | E-    | <b>]</b> ₽√ . | ſ                      | <i>V</i> -   |      |            | X   | _0         | W,          | )          |
| Soil Type:                      | (Till) (Sand & Gravel)<br>(Glacial Marine)            | :                                      | Đ    | d   | -Þ,  | ΛVOC            |       | f3            | <b>&gt;</b> <          | >            |      |            |     |            |             |            |
| Sample Depth:                   | 4.5'                                                  |                                        |      |     |      | Ť               |       |               |                        |              |      |            |     |            |             |            |
| Depth to Water:                 | S.92' (Mwg)                                           |                                        |      |     |      |                 |       |               |                        |              |      |            | ~   |            |             |            |
| Suspected COCs:                 | (Petroleum) (Solvents)                                |                                        |      |     |      |                 |       |               |                        |              |      |            |     |            |             |            |
| Cannister I.D.:                 | 318                                                   |                                        |      |     |      |                 |       |               |                        |              |      |            |     |            |             |            |
| Flow Control I.D.:              | 6449                                                  |                                        |      |     |      |                 |       |               |                        |              |      |            |     |            |             |            |
| Flow control rate:              | 200 ml/mn                                             |                                        |      |     |      |                 |       |               |                        |              |      |            |     |            |             |            |
| O <sub>2</sub> Ambient          | 20.9%v                                                |                                        |      |     |      |                 |       |               |                        |              |      |            |     |            |             |            |
| CO <sub>2</sub> Ambient         | 6.0 %v                                                |                                        |      |     |      |                 |       |               |                        |              |      |            |     |            |             |            |
| subsurface<br>pressure/vacuum   | No Deflection (+/- inches of water column)            |                                        |      |     |      |                 |       |               |                        |              |      |            |     |            |             |            |
| Pre-Sample: O <sub>2</sub>      | 0.0%                                                  |                                        |      |     |      |                 |       |               |                        |              |      |            |     |            |             |            |
| Pre-Sample CO <sub>2</sub> :    | 301 40V                                               |                                        |      |     |      |                 |       |               |                        |              |      |            |     |            |             |            |
| Pre-Sample PID:                 | 25.0 ppm                                              |                                        |      |     |      |                 |       |               | 6                      |              |      |            |     |            |             |            |
| Pre-Sample CH₄:                 | (% Volume %LEL PPM)                                   |                                        |      |     |      |                 |       |               |                        |              |      |            |     |            |             |            |
| Sample Initiation<br>Time:      | 1137                                                  |                                        |      |     |      |                 |       |               |                        |              |      |            |     |            |             |            |
| Initial Vacuum:                 | -29" Ha                                               |                                        |      |     |      |                 |       |               | a                      |              |      |            |     |            |             | *****      |
| Sample End Time:                | 1147                                                  |                                        | -    |     |      |                 |       |               |                        |              |      |            | · · |            |             |            |
| Final Vaccum:                   | -5" Hg                                                |                                        |      |     |      |                 |       |               |                        |              |      |            |     |            |             |            |
| Post Sample O <sub>2</sub> :    | O.O Tov                                               |                                        |      |     |      |                 |       |               |                        |              |      |            |     |            |             |            |
| Post Sample CO <sub>2</sub> :   | 3.0 %                                                 |                                        |      |     |      | -               |       |               |                        |              |      |            |     |            |             |            |

| Site Name:                      | CFI Washingon                                         |        |                                       | Sa  | amp | le I       | Loca      | ation    | Sk  | etcl     | า            |    |        |                   |   |
|---------------------------------|-------------------------------------------------------|--------|---------------------------------------|-----|-----|------------|-----------|----------|-----|----------|--------------|----|--------|-------------------|---|
| Town:                           | Partiand                                              |        | · · · · · · · · · · · · · · · · · · · |     | -   | 1          | ********* |          | -   |          | 1000 circles |    |        |                   | - |
| Date:                           | 12130/10                                              |        | Đ                                     |     |     | -+         | 4         |          | _   |          |              | ļ  | 4<br>  |                   |   |
| Sample I.D.:                    | 56-5                                                  |        | -P <sub>M</sub>                       | 190 |     | ℋ          | 11        | - 7      | 36  | $\theta$ | -            |    |        |                   | - |
| Sampling<br>Purpose             | (Source) (Utility) (Mitigation)<br>(Receptor) (Other) |        |                                       | 1   | 76  | <b>∧</b> ∦ | R         | te-      | 2   | 0        | ) (          | n1 | r<br>M | <b>n</b>          |   |
| Sampling<br>Personnel:          | Brown                                                 |        |                                       | 1   | a   | `u         | MW        | ·<br>\ - | . 0 | 0S       | 4            | Ħ  | -<br>  | ן<br>ר            |   |
| Project<br>Manager              | ·                                                     |        |                                       | -   | 1   | G          | Ar        |          |     |          |              |    |        |                   |   |
| Collection Device:              | (Summa Car) (Tedlar Bag)                              |        | L                                     | 71/ | Λ   | l          | νL        | )        |     |          |              |    |        |                   |   |
| Sample Penetration<br>Location: | (Ashphalt) (Concrete) (Soil)                          |        |                                       |     |     |            |           |          |     |          |              |    |        |                   |   |
| Soil Type:                      | (Fill) (Till) (Sand & Gravel)<br>(Glacial Marine)     | :      |                                       |     | -   |            |           |          |     | -        |              |    |        |                   |   |
| Sample Depth:                   | 5.0' 44000                                            |        |                                       | ``` |     |            |           |          |     |          |              |    |        | -                 |   |
| Depth to Water:                 | 6.28' (MW 3)                                          |        |                                       |     |     |            |           |          |     | <b>.</b> |              |    |        | · · · · · · · · · |   |
| Suspected COCs:                 | (Petroleum) (Solvents)                                |        |                                       | *** |     |            |           |          |     |          |              |    |        |                   |   |
| Cannister I.D.:                 | 529                                                   |        |                                       |     |     |            | -         |          |     |          |              |    | *      |                   |   |
| Flow Control I.D.:              | 0423                                                  |        |                                       |     |     |            |           |          |     |          |              |    |        |                   |   |
| Flow control rate:              | 200 m//min                                            |        |                                       |     |     |            |           |          |     | -        |              |    |        |                   |   |
| O <sub>2</sub> Ambient          | 20.9 %v                                               |        |                                       | -   |     |            |           |          |     | 1        |              |    |        |                   |   |
| CO <sub>2</sub> Ambient         | O, O Yor                                              |        |                                       |     |     |            |           |          |     |          |              |    |        |                   |   |
| subsurface<br>pressure/vacuum   | No Jeffection (+/- inches of water column)            |        |                                       |     |     |            |           |          |     |          |              |    |        |                   |   |
| Pre-Sample: O <sub>2</sub>      | 11.2 lov                                              |        | ļ                                     |     |     |            |           |          |     |          |              |    |        |                   |   |
| Pre-Sample CO <sub>2</sub> :    | 8. 19. V                                              |        |                                       |     |     |            |           |          |     |          |              |    |        |                   |   |
| Pre-Sample PID:                 | 6                                                     |        |                                       | -   |     |            |           |          |     |          |              |    |        |                   |   |
| Pre-Sample CH <sub>4</sub> :    | (% Volume, %LED PPM)                                  |        |                                       |     |     |            |           |          |     |          |              |    |        |                   |   |
| Sample Initiation<br>Time:      | 903                                                   |        |                                       |     |     |            |           |          |     |          |              |    |        |                   |   |
| Initial Vacuum:                 | -28 "Ha                                               | ****** |                                       |     |     |            |           |          |     |          |              |    |        |                   |   |
| Sample End Time:                | 917                                                   |        | ••••••                                |     |     |            |           |          |     |          |              |    |        |                   |   |
| Final Vaccum:                   | -5" H.                                                | l      |                                       |     |     |            |           | ļ        |     | l        |              |    |        |                   |   |
| Post Sample O <sub>2</sub> :    | [1,2,9,1]                                             |        |                                       |     |     |            |           |          |     |          |              |    |        |                   |   |
| Post Sample CO <sub>2</sub> :   | 8191                                                  |        |                                       |     |     |            |           |          |     |          |              |    |        |                   |   |

Notes:

| Site Name:                      | CFI Washington                                                    |                  |                                         | Ę  | Sam  | ple | Loc | atio | on  | Ske                                    | etcł     | 1      |                 |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|---------------------------------|-------------------------------------------------------------------|------------------|-----------------------------------------|----|------|-----|-----|------|-----|----------------------------------------|----------|--------|-----------------|-----------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Town:                           | Partlynd                                                          |                  | <br>******                              |    |      |     |     |      |     |                                        |          |        | A REAL PROPERTY |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Date:                           | 12130/10                                                          |                  | -                                       |    |      |     |     |      |     | n                                      |          | ļ      |                 | •         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Sample I.D.:                    | 66-7                                                              |                  | $\mathbb{Y}$                            | ИÌ | ue - | 5   | tat | F    |     | Ъ                                      | 3        | Ð      |                 |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Sampling<br>Purpose             | (Source) (Utility)(Mitigation)<br>(Rec <del>eptor</del> ) (Other) |                  |                                         |    |      |     |     |      |     | -                                      | <u>л</u> | a      | 11              | ₩.        | - A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Sampling<br>Personnel:          | Brenn                                                             |                  |                                         |    | Va(  |     |     |      |     |                                        | 0        | ס      | ( ]             | Η.        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Project<br>Manager              |                                                                   |                  |                                         |    | -Ter | N   |     |      |     | Δ                                      | JU       | W      | 17              | M         | η   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Collection Device:              | (Summa Can) (Tedlar Bag)                                          |                  |                                         | 5  | ٨d   |     | Č   | ץ ?  | W   |                                        |          |        |                 |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Sample Penetration<br>Location: | (Ashphalt) (Concrete) (Soil)                                      |                  |                                         |    |      |     |     |      |     |                                        |          |        |                 |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Soil Type:                      | (Till) (Sand & Gravel)<br>(Glacial Marine)                        | ·                |                                         |    |      |     |     |      |     |                                        |          |        |                 |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Sample Depth:                   | 42"                                                               | ********         |                                         |    |      |     |     |      | ••• |                                        |          |        |                 |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Depth to Water:                 | 6.01 (MW7)                                                        |                  | • • • • • • • • • • • • • • • • • • • • |    |      |     |     |      |     |                                        |          |        |                 |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Suspected COCs:                 | (Petroleum) (Solvents)                                            |                  |                                         |    |      |     |     |      |     |                                        |          |        |                 |           |     | and the second se |  |
| Cannister I.D.:                 | 177                                                               |                  |                                         |    |      |     |     |      |     |                                        |          |        |                 |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Flow Control I.D.:              | 0308                                                              |                  |                                         |    |      |     |     |      |     |                                        |          |        |                 |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Flow control rate:              | 200 ml/m.n                                                        |                  | <br>                                    |    |      |     |     |      |     |                                        |          |        |                 |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| O <sub>2</sub> Ambient          | 20.9 Tov                                                          |                  |                                         |    |      | ļ   |     |      |     | •••••••••••••••••••••••••••••••••••••• |          |        |                 | •••••     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| CO <sub>2</sub> Ambient         | 0.0% V                                                            |                  | <br>                                    |    |      |     |     |      |     |                                        |          |        |                 |           | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| subsurface<br>pressure/vacuum   | NG Deflection (+/- inches of water column)                        |                  | <br>                                    |    |      |     |     |      |     |                                        |          |        |                 |           | 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Pre-Sample: O <sub>2</sub>      | 17,5%v                                                            |                  |                                         |    |      |     |     |      |     |                                        |          |        |                 |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Pre-Sample CO <sub>2</sub> :    | 2.8%V                                                             |                  | <br>                                    |    |      |     |     |      |     |                                        |          |        |                 |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Pre-Sample PID:                 | 6                                                                 |                  | <br>                                    |    | 1    |     |     |      |     |                                        |          |        |                 |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Pre-Sample CH₄:                 | (% Volume (%LEL)PPM)                                              |                  |                                         |    |      |     |     |      |     |                                        | ·····    | •••••  |                 |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Sample Initiation<br>Time:      | 845                                                               |                  |                                         |    |      |     |     |      |     |                                        |          |        |                 |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Initial Vacuum:                 | -28"Hg                                                            | <b>*</b> ******* | <br>                                    |    |      |     |     |      |     |                                        |          |        |                 |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Sample End Time:                | 852                                                               |                  | <br>                                    |    |      |     |     |      |     |                                        |          | * **   |                 | • • • • • |     | · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Final Vaccum:                   | -5" Mg                                                            |                  | <br>                                    |    |      |     |     |      |     |                                        |          | ,<br>, |                 |           |     | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Post Sample O <sub>2</sub> :    | 17.590V                                                           |                  |                                         |    |      |     |     |      |     |                                        |          |        |                 |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Post Sample CO <sub>2</sub> :   | 2.3% V                                                            |                  | <br>                                    |    |      |     | _   |      |     |                                        |          |        |                 |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |

Notes:

.

| Site Name:                      | CFI Nashington                                        |         | Sample Location Sketch                                                                                          |                 |
|---------------------------------|-------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|-----------------|
| Town:                           | Partiand,                                             |         |                                                                                                                 | A second second |
| Date:                           | 1/0/11                                                |         |                                                                                                                 |                 |
| Sample I.D.:                    | 56-8                                                  | F       | when shart 1145                                                                                                 |                 |
| Sampling<br>Purpose             | (Source) (Utility) (Mitigation)<br>(Receptor) (Other) |         | Flow Rate 200 ml/ min                                                                                           |                 |
| Sampling<br>Personnel:          | Bienn                                                 |         | Vacuum 14" 11-0                                                                                                 |                 |
| Project<br>Manager              |                                                       | ······· |                                                                                                                 |                 |
| Collection Device:              | Summa Can) (Tedlar Bag)                               |         |                                                                                                                 |                 |
| Sample Penetration<br>Location: | (Ashphait)) (Concrete) (Soli)                         | ······  |                                                                                                                 |                 |
| Soil Type:                      | (Till) (Sand & Gravel)<br>(Glacial Marine)            | :       |                                                                                                                 |                 |
| Sample Depth:                   | 4.0                                                   |         |                                                                                                                 |                 |
| Depth to Water:                 | 5.47' (MW2)                                           |         |                                                                                                                 |                 |
| Suspected COCs:                 | (Petroleum) (Solvents)                                |         |                                                                                                                 |                 |
| Cannister I.D.:                 | 1774                                                  |         |                                                                                                                 |                 |
| Flow Control I.D.:              | 0161                                                  |         |                                                                                                                 |                 |
| Flow control rate:              | 200 ml/min                                            |         |                                                                                                                 |                 |
| O <sub>2</sub> Ambient          | 20.9 %v                                               |         |                                                                                                                 |                 |
| CO <sub>2</sub> Ambient         | 0,0% v                                                |         |                                                                                                                 |                 |
| subsurface<br>pressure/vacuum   | $N_{o}$ left each $M^{+/-}$ inches of water column)   |         |                                                                                                                 |                 |
| Pre-Sample: O <sub>2</sub>      | 5,5% V                                                |         |                                                                                                                 |                 |
| Pre-Sample CO <sub>2</sub> :    | - (Meter Malfuntion)                                  |         |                                                                                                                 |                 |
| Pre-Sample PID:                 | 34                                                    |         |                                                                                                                 |                 |
| Pre-Sample CH <sub>4</sub> :    | - CMCK Malfunticpph,                                  |         |                                                                                                                 |                 |
| Sample Initiation<br>Time:      | 1200                                                  |         |                                                                                                                 |                 |
| Initial Vacuum:                 | -29"Hg                                                |         |                                                                                                                 |                 |
| Sample End Time:                | 1210                                                  | *****   |                                                                                                                 |                 |
| Final Vaccum:                   | -5" Hg                                                |         | a hannan dan san dan san dan san dan san dan san dan san dan sa dan san dan san dan san dan san dan san dan san |                 |
| Post Sample O <sub>2</sub> :    | 5,6 jov                                               |         |                                                                                                                 |                 |
| Post Sample CO <sub>2</sub> :   | - ( Net / Multantin )                                 |         |                                                                                                                 |                 |
|                                 |                                                       |         |                                                                                                                 |                 |

Notes:

.

| Site Name:                      | CFI Washington                                        |                                        |       | Sami                                   | ole Lo     | cation           | Sket  | ch   |    | <br> |    |
|---------------------------------|-------------------------------------------------------|----------------------------------------|-------|----------------------------------------|------------|------------------|-------|------|----|------|----|
| Town:                           | Partiand                                              |                                        | 1.    |                                        |            |                  |       |      | ł  |      |    |
| Date:                           | 1/11/11                                               |                                        | -St   | #P                                     | utor       | 11               | ÕO-   |      |    | <br> |    |
| Sample I.D.:                    | 56-11                                                 |                                        |       | •••••••••••••••••••••••••••••••••••••• |            |                  | +     |      | -  | <br> |    |
| Sampling<br>Purpose             | (Source) (Utility) (Mitigation)<br>(Receptor) (Other) |                                        |       | Fla                                    |            | 200              | · · · |      | -  |      |    |
| Sampling<br>Personnel:          | Blown                                                 |                                        |       | Va                                     | MMV        | n o <sup>c</sup> | 17    | · Mz | 20 |      |    |
| Project<br>Manager              |                                                       |                                        | t     | End                                    |            | Ò                |       |      |    |      |    |
| Collection Device:              | (Summa Can) (Tedlar Bag)                              |                                        |       |                                        |            |                  |       |      |    |      |    |
| Sample Penetration<br>Location: | Ashphatt) (Concrete) (Soil)                           |                                        |       |                                        |            |                  |       |      |    | <br> |    |
| Soil Type:                      | (Till) (Sand & Gravel)<br>(Glacial Marine)            | ······                                 |       |                                        |            |                  |       |      |    |      |    |
| Sample Depth:                   | 3.51                                                  |                                        |       |                                        |            |                  |       |      |    |      |    |
| Depth to Water:                 | 4.90 (MW5)                                            |                                        |       |                                        | n <b>P</b> |                  |       |      |    |      |    |
| Suspected COCs:                 | (Petroleum) (Solvents)                                |                                        |       |                                        |            |                  |       |      |    |      |    |
| Cannister I.D.:                 | 247                                                   |                                        |       |                                        |            |                  |       |      |    |      |    |
| Flow Control I.D.:              | 0330                                                  |                                        |       |                                        |            |                  |       |      |    |      |    |
| Flow control rate:              | 200 ml/m.m                                            |                                        |       |                                        |            |                  |       |      |    | <br> |    |
| O <sub>2</sub> Ambient          | 20.9 %                                                |                                        |       |                                        |            |                  |       |      |    | <br> |    |
| CO <sub>2</sub> Ambient         | 0.0% v                                                | 101010000 1010 1010 1010 1010 1010 101 |       |                                        |            |                  |       |      |    | <br> |    |
| subsurface<br>pressure/vacuum   | No Active them (+/- inches of water column)           |                                        |       |                                        |            |                  |       |      |    | <br> |    |
| Pre-Sample: O <sub>2</sub>      | 2.7 %v                                                |                                        |       |                                        |            |                  |       |      |    |      |    |
| Pre-Sample CO <sub>2</sub> :    | 0.4%v                                                 |                                        |       |                                        |            |                  |       |      |    | <br> |    |
| Pre-Sample PID:                 | 0,0%                                                  |                                        |       |                                        |            |                  |       |      |    | <br> |    |
| Pre-Sample CH₄:                 | OtofRang ("Volume, CLELPPM)                           |                                        |       |                                        |            |                  |       | _    |    | <br> |    |
| Sample Initiation<br>Time:      | (117                                                  |                                        |       |                                        |            |                  |       |      |    |      |    |
| Initial Vacuum:                 | $-24''H_{G}$                                          | *******************************        |       |                                        |            |                  |       |      |    | <br> |    |
| Sample End Time:                | 1127                                                  | ******                                 | ***** |                                        |            | 1                |       | ···· |    |      |    |
| Final Vaccum:                   | -5" Ha                                                |                                        |       | ŝ.                                     |            |                  | i     |      | £; | <br> | .1 |
| Post Sample O <sub>2</sub> :    | 4,4907                                                |                                        |       |                                        |            |                  |       |      |    |      |    |
| Post Sample CO <sub>2</sub> :   | 0,7% V                                                |                                        |       |                                        |            |                  |       |      |    |      |    |
|                                 |                                                       |                                        |       |                                        |            |                  |       |      |    |      |    |

Notes:

,

| Site Name:                      | CFI Nashington                                        |                                       |          |      | Sam   | nple | Loc           | ation | Ske   | etch | )  |    |        |          |                  |                  |
|---------------------------------|-------------------------------------------------------|---------------------------------------|----------|------|-------|------|---------------|-------|-------|------|----|----|--------|----------|------------------|------------------|
| Town:                           | Pertland                                              |                                       | Valuesti |      |       | •    |               |       |       |      |    |    |        |          | . Arrange        |                  |
| Date:                           | 12130110                                              |                                       | -        | Sta. | 74    | 2, 1 | ge            | (     | 13    | À    |    |    |        |          |                  |                  |
| Sample I.D.:                    | 56-12                                                 |                                       |          | يسور |       |      | $\mathcal{F}$ |       |       |      |    |    |        | <b>.</b> |                  |                  |
| Sampling<br>Purpose             | (Source) (Utility) (Mitigation)<br>(Receptor) (Other) |                                       |          | H    | σŴ    | Rq   | k             |       | 0,    |      | Ιw | ųΛ |        | *        | ļ                |                  |
| Sampling<br>Personnel:          | Brown                                                 |                                       |          | V    | ac    | yu   | M             |       | •0    |      | 5  | 0  |        |          |                  |                  |
| Project<br>Manager              |                                                       |                                       |          | E    | \d    | łŋ   | VGC           | 0     | 141   | 9    |    |    |        |          |                  |                  |
| Collection Device:              | (Summa Can) (Tedlar Bag)                              |                                       |          |      |       |      |               |       |       |      |    |    |        |          |                  |                  |
| Sample Penetration<br>Location: | (Ashphalt) (Concrete) (Soil)                          |                                       |          |      |       |      |               |       |       |      |    |    |        |          |                  |                  |
| Soil Type:                      | (FR) (Till) (Sand & Gravel)<br>(Glacial Marine)       | · · · · · · · · · · · · · · · · · · · |          |      |       |      |               |       |       |      |    |    |        |          |                  |                  |
| Sample Depth:                   | 41                                                    | ·····                                 |          |      |       |      |               |       |       |      |    |    |        |          |                  |                  |
| Depth to Water:                 | 6.01 (MWD CHANTH                                      |                                       |          |      |       |      |               |       |       |      |    |    |        |          | ~                |                  |
| Suspected COCs:                 | (Petroleum) (Solvents)                                |                                       |          |      |       |      |               |       |       |      |    |    |        |          |                  |                  |
| Cannister I.D.:                 | 509                                                   |                                       |          |      |       |      |               |       |       |      |    |    |        |          |                  |                  |
| Flow Control I.D.:              | 0332                                                  |                                       | ļ        |      |       |      |               |       |       |      |    |    |        |          |                  |                  |
| Flow control rate:              | 200 ml/mm                                             |                                       |          |      |       |      |               |       |       |      |    |    |        |          |                  |                  |
| O <sub>2</sub> Ambient          | 20.9 90V                                              |                                       |          |      |       | -    |               |       | ••••• |      |    |    | •••••• |          |                  |                  |
| CO <sub>2</sub> Ambient         | 0.0°/0 V                                              |                                       |          |      |       |      |               |       |       |      |    |    | •••••  |          |                  |                  |
| subsurface<br>pressure/vacuum   | No Deflection (+/- inches of water column)            |                                       |          |      |       |      |               |       |       |      |    |    |        |          |                  |                  |
| Pre-Sample: O <sub>2</sub>      | 12.3%v                                                |                                       |          |      |       |      |               |       |       |      |    |    |        |          |                  |                  |
| Pre-Sample CO <sub>2</sub> :    | 60990V                                                |                                       |          |      |       |      |               |       |       |      |    |    |        |          |                  |                  |
| Pre-Sample PID:                 | 0                                                     |                                       |          |      |       | -    |               |       |       |      |    |    |        |          |                  |                  |
| Pre-Sample CH <sub>4</sub> :    | (% Volume %LED PPM)                                   |                                       |          |      |       |      |               |       |       |      |    |    |        |          |                  |                  |
| Sample Initiation<br>Time:      | 945                                                   |                                       |          |      |       |      |               |       |       |      |    |    |        |          |                  |                  |
| Initial Vacuum:                 | -28" Ha                                               |                                       |          |      | • ••• |      |               |       |       |      |    |    | aøø    |          | C. 0.11 Mr a 200 |                  |
| Sample End Time:                | 956                                                   |                                       |          |      |       |      |               |       |       |      |    |    |        |          | · · · · · · ·    | - 140 - 160 - 17 |
| Final Vaccum:                   | -5" Ha                                                |                                       | L        | L    |       |      | 1             | i     |       |      |    |    |        |          |                  | i                |
| Post Sample O <sub>2</sub> :    | 12,6 % V                                              |                                       |          |      |       |      |               |       |       |      |    |    |        |          |                  |                  |
| Post Sample CO <sub>2</sub> :   | 6.6° V                                                |                                       |          |      |       |      |               | ····- |       |      |    |    |        |          |                  |                  |
|                                 |                                                       |                                       |          |      |       |      |               |       |       |      |    |    |        |          |                  |                  |

Notes:

| Site Name:                      | CFI Washington                                        |    |               | Sam | elar        | Loc      | ati                                                      | ion | Sk              | etch |                   |          |                           |         |                            |
|---------------------------------|-------------------------------------------------------|----|---------------|-----|-------------|----------|----------------------------------------------------------|-----|-----------------|------|-------------------|----------|---------------------------|---------|----------------------------|
| Town:                           | Poilland                                              |    | *****         | 1   | 1           |          |                                                          |     | 1               |      | -                 | - 140004 |                           |         |                            |
| Date:                           | 12/30/10                                              |    |               |     |             | <b>k</b> |                                                          |     |                 |      |                   |          | *****                     |         |                            |
| Sample I.D.:                    | 56-13                                                 |    | $\mathcal{H}$ | ٨VG |             | 稿        | ╉                                                        |     | 6               | 1+   | -                 |          |                           |         | *******                    |
| Sampling<br>Purpose             | (Sourse) (Utility) (Mitigation)<br>(Receptor) (Other) |    |               | Fk  | W           | Pa       | Z                                                        | <   | 1C              |      | Μ                 | 1,       | nar                       |         | ******                     |
| Sampling<br>Personnel:          | Bienn                                                 |    |               | Va  | cu.         | um       |                                                          |     |                 | 05   | 4                 | 11,      | -0                        |         | ••••••                     |
| Project<br>Manager              |                                                       |    |               | Ē   | A           |          |                                                          | 2   | •<br>•          |      |                   | -1-1<br> | ( -                       |         |                            |
| Collection Device:              | (Summa Cap) (Tedlar Bag)                              |    |               |     | <b>'</b> // |          | 1                                                        | ν   |                 |      |                   |          |                           |         |                            |
| Sample Penetration<br>Location: | (Ashphalt) (Concrete) (Soil)                          |    |               |     | -           |          |                                                          |     |                 |      |                   |          |                           |         |                            |
| Soil Type:                      | (Till) (Sand & Gravel)<br>(Glacial Marine)            | :  |               |     | -           |          |                                                          |     |                 |      |                   |          |                           |         |                            |
| Sample Depth:                   | 4'                                                    |    | •             |     | -           |          |                                                          |     |                 |      |                   |          |                           |         | A                          |
| Depth to Water:                 | 6.28' (MW 3)                                          |    |               |     |             |          | 1999 <b>- 1</b> 997 - 1997<br>1999 - <b>19</b> 97 - 1997 |     |                 |      |                   |          |                           |         |                            |
| Suspected COCs:                 | (Petroleum) (Solvents)                                |    |               |     |             |          |                                                          |     |                 |      |                   |          |                           |         |                            |
| Cannister I.D.:                 | 473                                                   |    |               |     |             |          |                                                          |     |                 |      |                   |          |                           |         |                            |
| Flow Control I.D.:              | 0367                                                  |    |               |     |             |          |                                                          |     |                 |      |                   |          |                           |         |                            |
| Flow control rate:              | 200 m/mm                                              |    |               |     |             |          |                                                          |     |                 |      |                   |          |                           |         |                            |
| O <sub>2</sub> Ambient          | 20.9 90V                                              |    |               |     |             |          |                                                          |     |                 |      |                   |          |                           | •••••   |                            |
| CO <sub>2</sub> Ambient         | 0.0% V                                                |    |               |     |             |          |                                                          |     |                 |      |                   |          |                           |         |                            |
| subsurface<br>pressure/vacuum   | No Velled (+/- inches of water column)                |    |               |     |             |          |                                                          |     |                 |      |                   |          |                           |         |                            |
| Pre-Sample: O <sub>2</sub>      | 10.3 70 V                                             |    |               |     |             |          |                                                          |     |                 |      |                   |          |                           |         |                            |
| Pre-Sample CO <sub>2</sub> :    | 8:6% V                                                |    |               |     | -           |          |                                                          |     |                 |      |                   |          |                           |         |                            |
| Pre-Sample PID:                 | Ď                                                     |    |               |     |             |          |                                                          |     |                 |      |                   |          |                           |         |                            |
| Pre-Sample CH <sub>4</sub> :    | (% Volume %LEL) PPM)                                  |    |               |     |             |          |                                                          |     |                 |      |                   |          |                           |         |                            |
| Sample Initiation<br>Time:      | 925                                                   |    |               |     |             |          |                                                          |     |                 |      |                   |          |                           |         |                            |
| Initial Vacuum:                 | -29"Ha                                                |    |               |     |             |          |                                                          |     |                 |      | • • • • • • • • • |          |                           | ******* |                            |
| Sample End Time:                | 934 9                                                 |    |               |     |             |          |                                                          |     | • • • • • • • • |      |                   |          | · · · · · · · · · · · · · |         | - and the second accounter |
| Final Vaccum:                   | -5" Ha                                                | İİ | <b>1</b>      |     |             |          |                                                          |     |                 | 1    |                   |          |                           | i       |                            |
| Post Sample O <sub>2</sub> :    | 10.79.1                                               |    |               |     |             |          |                                                          |     |                 |      |                   |          |                           |         |                            |
| Post Sample CO <sub>2</sub> :   | 8,7%1                                                 |    |               |     |             |          |                                                          |     |                 |      |                   |          |                           |         |                            |

Notes:

|                                 |                                                       | <br>Ala Tanàna amin'ny faritr'o dia mampika dia mampika dia mampika dia mampika dia mampika dia mampika dia mampika |     |          | -        |        |        | _    |      | _    | يغفين والمتجرين |             |                                       |
|---------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----|----------|----------|--------|--------|------|------|------|-----------------|-------------|---------------------------------------|
| Site Name:                      | CFI Washington                                        |                                                                                                                     | Sa  | mple     | Locat    | tion   | Ska    | ətch |      |      |                 |             |                                       |
| Town:                           | Poilland                                              |                                                                                                                     |     |          |          |        | -      | -    |      |      | 2               |             | · · · · · · · · · · · · · · · · · · · |
| Date:                           | 12130/10                                              | <br>Ð                                                                                                               |     |          |          | _      |        |      |      |      |                 |             | -                                     |
| Sample I.D.:                    | 56-15                                                 | Hu                                                                                                                  | 140 | -9       | ht       | 0<br>0 | 15     |      |      |      |                 | -           |                                       |
| Sampling<br>Purpose             | (Source) (Utility) (Mitigation)<br>(Receptor) (Other) |                                                                                                                     |     | -<br>Ten | n l      | tz     |        | 20   | 1N   | ntla | nn              | -           |                                       |
| Sampling<br>Personnel:          | Bienn                                                 |                                                                                                                     | ł   | lac      | uun      | n –    | - 0    | 80   | , 11 | 142  | 0               |             |                                       |
| Project<br>Manager              |                                                       |                                                                                                                     |     | EA       |          | 82     | ،<br>ک |      |      |      |                 |             |                                       |
| Collection Device:              | Summa Can) (Tedlar Bag)                               |                                                                                                                     |     |          | <b>Y</b> |        |        |      |      |      |                 |             |                                       |
| Sample Penetration<br>Location: | (Ashphalt) (Concrete) (Soil)                          |                                                                                                                     |     |          |          |        |        |      |      |      |                 |             |                                       |
| Soil Type:                      | (Fin) (Till) (Sand & Gravel)<br>(Glacial Marine)      |                                                                                                                     |     |          |          |        | -      |      |      |      |                 |             |                                       |
| Sample Depth:                   | 3.5'                                                  |                                                                                                                     |     |          |          |        |        |      |      |      |                 |             |                                       |
| Depth to Water:                 | 6.01' (MW7)                                           |                                                                                                                     |     |          |          |        |        |      |      |      |                 |             |                                       |
| Suspected COCs:                 | (Petroleum) (Solvents)                                |                                                                                                                     |     |          |          |        |        |      |      |      |                 |             |                                       |
| Cannister I.D.:                 | 366                                                   |                                                                                                                     |     |          |          |        |        |      |      |      | -               | -           |                                       |
| Flow Control I.D.:              | 0223                                                  |                                                                                                                     |     |          |          |        |        |      |      |      |                 |             |                                       |
| Flow control rate:              | 200 ml/m.n                                            |                                                                                                                     |     |          | <b> </b> |        |        |      |      |      |                 |             |                                       |
| O <sub>2</sub> Ambient          | 20, 9 %                                               |                                                                                                                     |     |          | <b> </b> |        |        |      |      |      |                 | -           |                                       |
| CO <sub>2</sub> Ambient         | 0.0 %                                                 |                                                                                                                     |     |          |          |        |        |      |      |      |                 |             |                                       |
| subsurface<br>pressure/vacuum   | No Veffection +/- inches of water column)             |                                                                                                                     |     |          |          |        |        |      |      |      |                 |             |                                       |
| Pre-Sample: O <sub>2</sub>      | 19.9 %v                                               |                                                                                                                     |     |          |          |        |        |      |      |      |                 |             |                                       |
| Pre-Sample CO <sub>2</sub> :    | 1.3 % V                                               |                                                                                                                     |     | -        |          |        |        |      |      |      |                 |             |                                       |
| Pre-Sample PID:                 | 0                                                     | <br>                                                                                                                |     |          |          |        |        |      |      |      | -               |             |                                       |
| Pre-Sample CH <sub>4</sub> :    | (% Volume, %LEP, PPM)                                 |                                                                                                                     |     |          |          |        |        |      |      |      | -               |             |                                       |
| Sample Initiation<br>Time:      | 826                                                   |                                                                                                                     |     |          |          |        |        |      |      |      |                 |             |                                       |
| Initial Vacuum:                 | -28 "Ha                                               |                                                                                                                     |     | •        |          |        |        |      |      |      |                 |             |                                       |
| Sample End Time:                | 837                                                   | <br>                                                                                                                |     |          |          |        |        |      |      |      |                 | · · · · · · |                                       |
| Final Vaccum:                   | -4" Hc                                                | <br>                                                                                                                |     |          | 1        |        |        |      |      | i    |                 | L.,         |                                       |
| Post Sample O2:                 | 19.9 % v                                              |                                                                                                                     |     |          |          |        |        |      |      |      |                 |             |                                       |
| Post Sample CO <sub>2</sub> :   | 1.2 9eV                                               |                                                                                                                     |     |          |          |        |        |      |      |      |                 |             |                                       |

Notes:

.

|                                 |                                                       | Wallie                                |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |              |          |   |               |   |          |       |
|---------------------------------|-------------------------------------------------------|---------------------------------------|---|---|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----|--------------|----------|---|---------------|---|----------|-------|
| Site Name:                      | CFI Washington                                        |                                       |   | S | ampl | le L(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ocati | ion | Ske | ətcl         | <br>า    |   |               |   |          |       |
| Town:                           | Partland                                              |                                       |   |   | •    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     | 1   | 1            | -        | - |               |   |          | ***** |
| Date:                           | 1/11/11                                               |                                       |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |     |     | -            |          |   |               |   |          |       |
| Sample I.D.:                    | SG-19                                                 |                                       |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | -   |     |              | +        |   |               | - |          |       |
| Sampling<br>Purpose             | (Source) (Utility) (Mitigation)<br>(Receptor) (Other) |                                       |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | -   |     | +            | <u> </u> |   |               |   | <u>+</u> |       |
| Sampling<br>Personnel:          | Brown                                                 |                                       |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |              |          |   | -             |   |          |       |
| Project<br>Manager              | ·                                                     |                                       |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |              |          |   |               |   |          |       |
| Collection Device:              | Summa Car) (Tedlar Bag)                               |                                       |   |   |      | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |     |     |              |          |   |               |   |          |       |
| Sample Penetration<br>Location: | (Ashphalt) (Concrete) (Soil)                          |                                       |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |     |     |              |          |   |               |   |          |       |
| Soil Type:                      | (Fith) (Till) (Sand & Gravel)<br>(Glacial Marine)     | · · · · · · · · · · · · · · · · · · · |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | -   |     |              |          |   |               |   |          |       |
| Sample Depth:                   | 3.5                                                   |                                       |   |   |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |     |     |              |          |   |               |   |          |       |
| Depth to Water:                 | 5.481 (MW4)                                           |                                       |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |              |          |   |               |   |          |       |
| Suspected COCs:                 | (Petroleum) (Solvents)                                |                                       |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |              |          |   |               |   |          |       |
| Cannister I.D.:                 | 552                                                   |                                       |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |              |          |   |               |   |          |       |
| Flow Control I.D.:              | 0010                                                  |                                       |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     |     |     |              |          |   |               |   |          |       |
| Flow control rate:              | 200 ml/min                                            |                                       |   | - |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |     | ]   | ļ            | ļ        |   |               |   |          |       |
| O <sub>2</sub> Ambient          | 20.99                                                 |                                       |   |   |      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |     |     |              |          | ļ | ļ             |   |          |       |
| CO <sub>2</sub> Ambient         | 0.0%                                                  |                                       |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |              |          |   |               |   |          |       |
| subsurface<br>pressure/vacuum   | No Vetlection (+/- inches of water column)            |                                       |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |     |     |              |          |   |               |   |          |       |
| Pre-Sample: O <sub>2</sub>      | 0.0 % v                                               |                                       |   |   |      | And here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and here and |       |     |     |              |          |   | 4             |   |          |       |
| Pre-Sample CO <sub>2</sub> :    | 1. 1% 1                                               |                                       |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |              |          |   |               |   |          | 1/    |
| Pre-Sample PID:                 | O 0101 100                                            |                                       |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     | ,   | ļ,           |          |   | ļ             | ļ |          |       |
| Pre-Sample CH <sub>4</sub> :    | Out of Railing (% Volume (SEE) PPM)                   |                                       |   | - |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |              |          | [ | r             |   |          |       |
| Sample Initiation<br>Time:      | 1057                                                  |                                       |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |              |          |   |               |   |          |       |
| Initial Vacuum:                 | -29" Ha                                               | ••••••                                |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |              |          |   |               |   |          | -     |
| Sample End Time:                | 1107                                                  | *****                                 |   |   |      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |     |     | 5. 0. 10. 10 |          | · | م:<br>إستنبيه |   |          |       |
| Final Vaccum:                   | -5" Hg                                                | l                                     | l |   |      | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |     | l   |              |          |   | ****          | 1 |          |       |
| Post Sample O <sub>2</sub> :    | OLO YUV                                               |                                       |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |              |          |   |               |   |          |       |
| Post Sample CO <sub>2</sub> :   | 1,1 % V                                               |                                       |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |              |          |   |               |   |          |       |

Notes:

# **APPENDIX 4**

# Laboratory Reports



195 Commerce Way Suite E Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906 www.analyticslab.com

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107 Report Number: 67655 Revision: Rev. 0

#### Re: MAI 381-10

Enclosed are the results of the analyses on your sample(s). Samples were received on 02 September 2010 and analyzed for the tests listed. Samples were received in acceptable condition, with the exceptions noted below or on the chain of custody. These results pertain to samples as received by the laboratory and for the analytical tests requested on the chain of custody. The results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. Please see individual reports for specific methodologies and references.

| Lab Number | Sample Date | Station Location | Analysis Commen                 | <u>its</u> |
|------------|-------------|------------------|---------------------------------|------------|
| 67655-1    | 08/31/10    | B1 5-7'          | Volatile Petroleum Hydrocarbons |            |
| 67655-2    | 08/31/10    | B3 5-7'          | Volatile Petroleum Hydrocarbons |            |
| 67655-3    | 08/31/10    | B5 5-10'         | Electronic Data Deliverable     |            |
|            | 08/31/10    | B5 5-10'         | Volatile Petroleum Hydrocarbons |            |

#### Sample Receipt Exceptions: None

Analytics Environmental Laboratory is certified by the states of New Hampshire, Maine, Massachusetts, Connecticut, Rhode Island, Virginia, Maryland, and is accredited by the Department of Defense (DOD) ELAP program. A list of actual certified parameters is available upon request.

If you have any questions on these results, please do not hesitate to contact us.

Authorized signature

Stephen L. Knollmeyer Lab. Director

Date

This report shall not be reproduced, except in full, without the written consent of Analytics Environmental Laboratory, LLC.



MAI 381-10

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

#### CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: B1 5-7' 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

#### September 14, 2010

| SAM                     | SAMPLE DATA |  |  |  |  |  |  |  |  |  |  |
|-------------------------|-------------|--|--|--|--|--|--|--|--|--|--|
| Lab Sample ID:          | 67655-1     |  |  |  |  |  |  |  |  |  |  |
| Matrix:                 | Solid       |  |  |  |  |  |  |  |  |  |  |
| Percent Solid:          | 83          |  |  |  |  |  |  |  |  |  |  |
| <b>Dilution Factor:</b> | 61          |  |  |  |  |  |  |  |  |  |  |
| Collection Date:        | 08/31/10    |  |  |  |  |  |  |  |  |  |  |
| Lab Receipt Date:       | 09/02/10    |  |  |  |  |  |  |  |  |  |  |
| Analysis Date:          | 09/08/10    |  |  |  |  |  |  |  |  |  |  |

|                                              | VPH A          | NALYTIC | AL RESULTS |          |  |
|----------------------------------------------|----------------|---------|------------|----------|--|
| RANGE/TARGET ANALYTE                         | Elution Range  | RL      | Units      | Result   |  |
| Unadjusted C5-C8 Aliphatics                  | N/A            | 3050    | μg/kg      | U        |  |
| Unadjusted C9-C12 Aliphatics                 | N/A            | 3050    | μg/kg      | U        |  |
| Benzene                                      | C5-C8          | 120     | μg/kg      | U        |  |
| Ethylbenzene                                 | <u>C9-C12</u>  | 120     | µg/kg      | <u>U</u> |  |
| Methyl-tert-butyl ether                      | C5-C8          | 120     | μg/kg      | U        |  |
| Naphthalene                                  | N/A            | 120     | µg/kg      | <u>U</u> |  |
| Toluene                                      | C5-C8          | 120     | µg/kg      | U        |  |
| m- & p-Xylenes                               | C9-C12         | 240     | µg/kg      | <u>U</u> |  |
| o-Xylene                                     | C9-C12         | 120     | µg/kg      | U        |  |
| C5-C8 Aliphatics Hydrocarbons <sup>1,2</sup> | N/A            | 3050    | μg/kg      | U        |  |
| C9-C12 Aliphatic Hydrocarbons <sup>1,3</sup> | N/A            | 3050    | µg/kg      | U        |  |
| C9-C10 Aromatic Hydrocarbons <sup>1</sup>    | N/A            | 610     | µg/kg      | U        |  |
| Surrogate % Recovery (2.5-Dibron             | notoluene) PID |         |            | 100      |  |
| Surrogate % Recovery (2.5-Dibron             | notoluene) FID |         |            | 111      |  |
| Surrogate Acceptance Range                   |                |         |            | 70-130%  |  |

<sup>1</sup>Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

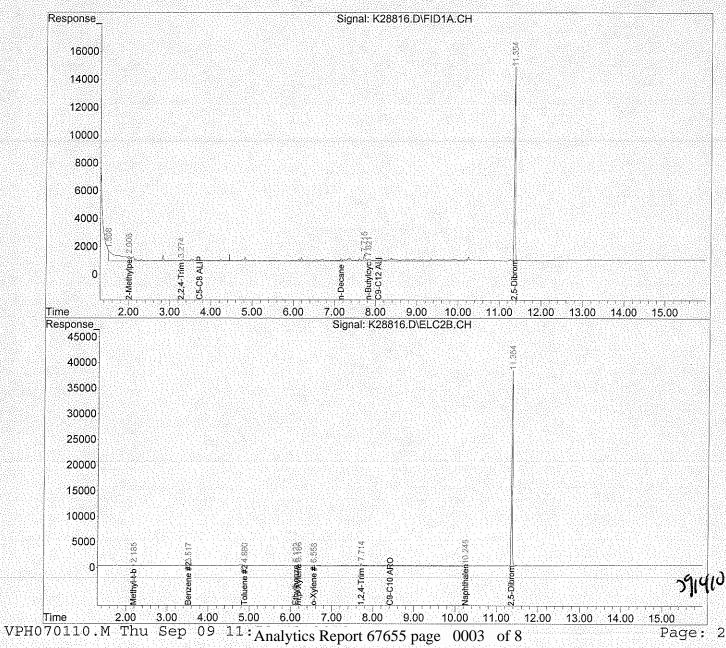
<sup>2</sup>C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

<sup>3</sup>C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004


COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist. Results are expressed on a dry weight basis.

Authorized signature: Multiluli

Data Path : C:\msdchem\1\DATA\090810-K\ Data File : K28816.D Signal(s) : Signal #1: FID1A.CH Signal #2: ELC2B.CH Acq On : 08 Sep 2010 8:05 pm Operator : JJL Sample : 67655-1 Misc : 100,9.98,SOIL ALS Vial Sample Multiplier: 1 : 26 Integration File signal 1: autoint1.e 28 9/9/10 Integration File signal 2: autoint2.e Quant Time: Sep 09 11:52:12 2010 Quant Method : C:\msdchem\1\METHODS\VPH070110.M Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004 QLast Update : Sun Jul 04 08:52:25 2010 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Small noise peaks clipped Volume Inj. į,

Signal #1 Phase : Signal #1 Info 2

Signal #2 Phase: Signal #2 Info :





MAI 381-10

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

#### **CLIENT SAMPLE ID**

Project Name:

Project Number: Client Sample ID: B3 5-7' 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

#### September 14, 2010

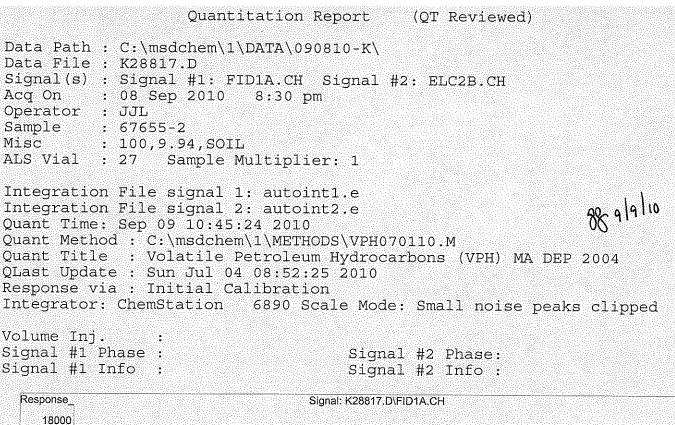
| SAMPLE DATA       |          |   |  |  |  |  |  |  |  |
|-------------------|----------|---|--|--|--|--|--|--|--|
| Lab Sample ID:    | 67655-2  | - |  |  |  |  |  |  |  |
| Matrix:           | Solid    |   |  |  |  |  |  |  |  |
| Percent Solid:    | 79       |   |  |  |  |  |  |  |  |
| Dilution Factor:  | 77       |   |  |  |  |  |  |  |  |
| Collection Date:  | 08/31/10 |   |  |  |  |  |  |  |  |
| Lab Receipt Date: | 09/02/10 |   |  |  |  |  |  |  |  |
| Analysis Date:    | 09/08/10 |   |  |  |  |  |  |  |  |

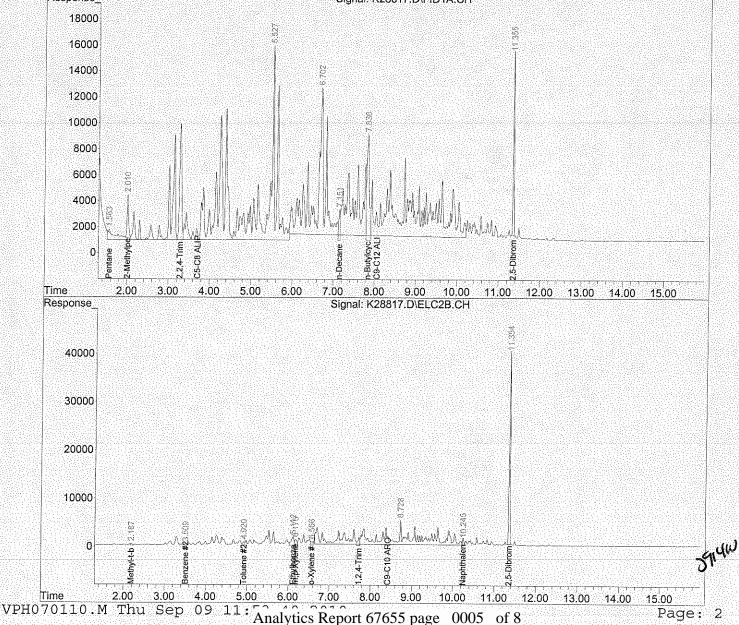
|                                              | VPH A          | NALYTIC | AL RESULTS |              |  |
|----------------------------------------------|----------------|---------|------------|--------------|--|
| RANGE/TARGET ANALYTE                         | Elution Range  | RL      | Units      | Result       |  |
| Unadjusted C5-C8 Aliphatics                  | N/A            | 3850    | µg/kg      | 45400        |  |
| Unadjusted C9-C12 Aliphatics                 | N/A            | 3850    | µg/kg      | 61400        |  |
| Benzene                                      | C5-C8          | 150     | µg/kg      | U            |  |
| Ethylbenzene                                 | C9-C12         | 150     | µg/kg      | 516          |  |
| Methyl-tert-butyl ether                      | C5-C8          | 150     | µg/kg      | <u>140 J</u> |  |
| Naphthalene                                  | N/A            | 150     | µg/kg      | 300          |  |
| Toluene                                      | C5-C8          | 150     | μg/kg      | U            |  |
| m- & p-Xylenes                               | C9-C12         | 310     | µg/kg      | 240 J        |  |
| o-Xylene                                     | C9-C12         | 150     | μg/kg      | 151 J        |  |
| C5-C8 Aliphatics Hydrocarbons <sup>1,2</sup> | N/A            | 3850    | μg/kg      | 45300        |  |
| C9-C12 Aliphatic Hydrocarbons <sup>1,3</sup> | N/A            | 3850    | µg/kg      | 44100        |  |
| C9-C10 Aromatic Hydrocarbons                 | N/A            | 770     | μg/kg      | 16400        |  |
| Surrogate % Recovery (2.5-Dibron             | notoluene) PID |         |            | 112          |  |
| Surrogate % Recovery (2.5-Dibron             | notoluene) FID |         |            | 121          |  |
| Surrogate Acceptance Range                   |                |         |            | 70-130%      |  |

<sup>1</sup>Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

<sup>2</sup>C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

<sup>3</sup>C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.


RL = Report Limit


U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist. Results are expressed on a dry weight basis.

Mulikill Authorized signature:







MAI 381-10

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

#### **CLIENT SAMPLE ID**

Project Name:

Project Number: Client Sample ID: B5 5-10' 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

September 14, 2010

| SAM               | IPLE DATA |
|-------------------|-----------|
| Lab Sample ID:    | 67655-3   |
| Matrix:           | Solid     |
| Percent Solid:    | 88        |
| Dilution Factor:  | 57        |
| Collection Date:  | 08/31/10  |
| Lab Receipt Date: | 09/02/10  |
| Analysis Date:    | 09/08/10  |

|                                              | VPH A          | NALYTIC. | AL RESULTS |         |  |
|----------------------------------------------|----------------|----------|------------|---------|--|
| RANGE/TARGET ANALYTE                         | Elution Range  | RL       | Units      | Result  |  |
| Unadjusted C5-C8 Aliphatics                  | N/A            | 2850     | µg/kg      | 51300   |  |
| Unadjusted C9-C12 Aliphatics                 | N/A            | 2850     | μg/kg      | 53500   |  |
| Benzene                                      | C5-C8          | 110      | μg/kg      | U       |  |
| Ethylbenzene                                 | C9-C12         | 110      | μg/kg      | 401     |  |
| Methyl-tert-butyl ether                      | C5-C8          | 110      | µg/kg      | 155     |  |
| Naphthalene                                  | N/A            | 110      | µg/kg      | 751     |  |
| Toluene                                      | C5-C8          | 110      | μg/kg      | U       |  |
| m- & p-Xylenes                               | <u>C9-C12</u>  | 230      | µg/kg      | 727     |  |
| o-Xylene                                     | C9-C12         | . 110    | µg/kg      | 106 J   |  |
| C5-C8 Aliphatics Hydrocarbons <sup>1,2</sup> | N/A            | 2850     | µg/kg      | 51200   |  |
| C9-C12 Aliphatic Hydrocarbons <sup>1,3</sup> | N/A            | 2850     | µg/kg      | 31700   |  |
| C9-C10 Aromatic Hydrocarbons                 | N/A            | 570      | μg/kg      | 20600   |  |
| Surrogate % Recovery (2,5-Dibron             | notoluene) PID |          |            | 100     |  |
| Surrogate % Recovery (2.5-Dibron             | notoluene) FID |          |            | 107     |  |
| Surrogate Acceptance Range                   |                |          |            | 70-130% |  |

<sup>1</sup>Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.  $^{2}C5 = C9$  Alight the large data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

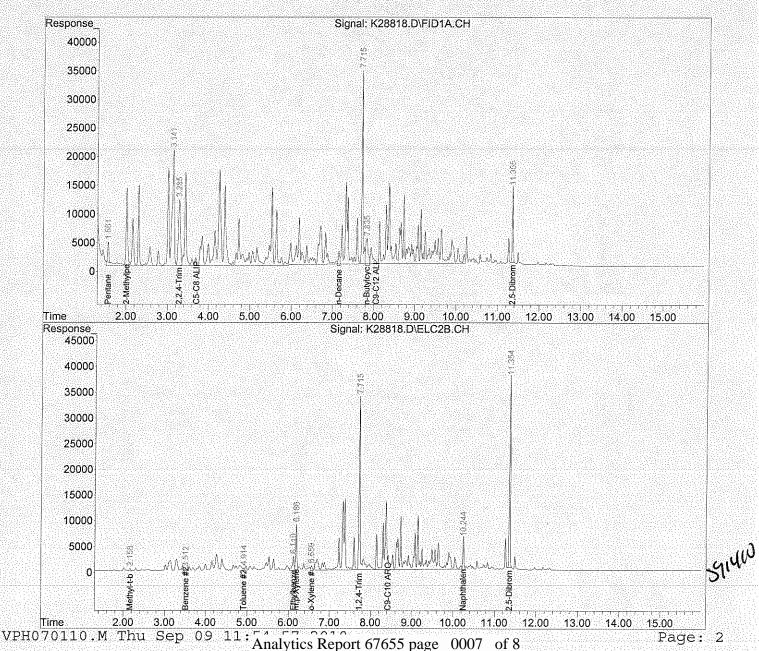
 $^{2}$ C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

<sup>3</sup>C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004


COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist. Results are expressed on a dry weight basis.

Authorized signature: Mullull

Analytics Report 67655 page 0006 of 8

Data Path : C:\msdchem\1\DATA\090810-K\ Data File : K28818.D Signal(s) : Signal #1: FID1A.CH Signal #2: ELC2B.CH : 08 Sep 2010 Acq On 8:54 pm Operator : JJL Sample : 67655-3 Misc : 100,11.32,SOIL ALS Vial : 28 Sample Multiplier: 1 Integration File signal 1: autoint1.e 28 9/9/10 Integration File signal 2: autoint2.e Quant Time: Sep 09 11:54:26 2010 Quant Method : C:\msdchem\1\METHODS\VPH070110.M Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004 QLast Update : Sun Jul 04 08:52:25 2010 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Small noise peaks clipped Volume Inj.

Signal #1 Phase : Signal #1 Info : Signal #2 Phase: Signal #2 Info :



| MAINE ENVIRONMENTAL LABORATORY- Chain of Custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ANALYSES LABORATORY REPORT            | EPORT #     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |             |
| PROJECT MANAGER<br>P. P. C. C. C. T. TELEPHONE FAX # / E-MAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ALL ALL                               |             |
| COMPANY PURCHASE ORDER # / BILL TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                     |             |
| ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TURNAROUND REQUEST                    | EQUEST A    |
| PROJECT NAME<br>MAJ 381-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Priority (SURCHARGE)                  | CHARGE)     |
| SAMPLE<br>SAMPLE<br>DENTIFICATION<br>SAMPLE<br>SAMPLE<br>SAMPLE<br>SAMPLE<br>SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · · |             |
| # CON<br>TYPE<br># CON<br># CON<br>ATTRIX<br># CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | nov<br>CTOR |
| 1 5-7 1 100 N Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (                                     | -           |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 2           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 60          |
| 765:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |             |
| 5 pa,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |             |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |             |
| of s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |             |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |             |
| Port Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver and Aver an | Principe PEDD (CFI- Would the         | Ś           |
| d preserved Xyes I no I N/A OP / A A OP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · (· The cittle got happy chap        | _           |
| DATE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RECEIVED BY:                          |             |
| ALT OI DATE DATE TWE33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RECEIVED BY:                          |             |
| NUSHEU BY: / J COD240 DATE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ECEIVED BY LABORATORY:                |             |
| COC-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |             |



195 Commerce Way Suite E Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906 www.analyticslab.com

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107 Report Number: 67731 Revision: Rev. 0

#### Re: MAI 383-10

Enclosed are the results of the analyses on your sample(s). Samples were received on 10 September 2010 and analyzed for the tests listed. Samples were received in acceptable condition, with the exceptions noted below or on the chain of custody. These results pertain to samples as received by the laboratory and for the analytical tests requested on the chain of custody. The results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. Please see individual reports for specific methodologies and references.

| Lab Number | Sample Date | Station Location | Analysis Comments               |
|------------|-------------|------------------|---------------------------------|
| 67731-1    | 09/07/10    | MW-1             | Volatile Petroleum Hydrocarbons |
| 67731-2    | 09/07/10    | MW-2             | Volatile Petroleum Hydrocarbons |
| 67731-3    | 09/07/10    | MW-3             | Electronic Data Deliverable     |
|            | 09/07/10    | MW-3             | Volatile Petroleum Hydrocarbons |

#### Sample Receipt Exceptions: None

Analytics Environmental Laboratory is certified by the states of New Hampshire, Maine, Massachusetts, Connecticut, Rhode Island, Virginia, Maryland, and is accredited by the Department of Defense (DOD) ELAP program. A list of actual certified parameters is available upon request.

If you have any questions on these results, please do not hesitate to contact us.

Authorized signature

Stephen L. Knollmeyer Lab. Director

Date

This report shall not be reproduced, except in full, without the written consent of Analytics Environmental Laboratory, LLC.



MAI 383-10

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

#### CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: MW-1 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

#### September 17, 2010

#### SAMPLE DATA

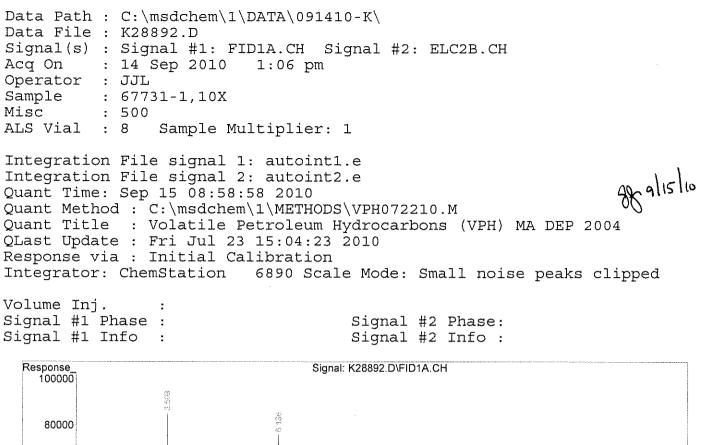
| Lab Sample ID:          | 67731-1  |
|-------------------------|----------|
| Matrix:                 | Aqueous  |
| Percent Solid:          | N/A      |
| <b>Dilution Factor:</b> | 10       |
| Collection Date:        | 09/07/10 |
| Lab Receipt Date:       | 09/10/10 |
| Analysis Date:          | 09/14/10 |

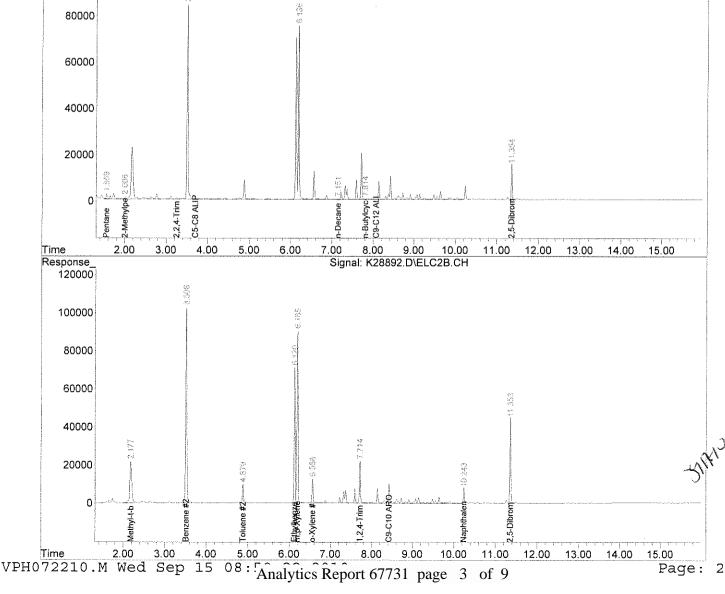
|                                              |                |     | AL RESULTS |         |  |
|----------------------------------------------|----------------|-----|------------|---------|--|
| RANGE/TARGET ANALYTE                         | Elution Range  | RL  | Units      | Result  |  |
| Unadjusted C5-C8 Aliphatics                  | N/A            | 500 | μg/L       | 4340    |  |
| Unadjusted C9-C12 Aliphatics                 | N/A            | 500 | μg/L       | 6410    |  |
| Benzene                                      | C5-C8          | 20  | μg/L       | 1550    |  |
| Ethylbenzene                                 | <u>C9-C12</u>  | 20  | μg/L       | 1150    |  |
| Methyl-tert-butyl ether                      | <u>C5-C8</u>   | 20  | μg/L       | 1550    |  |
| Naphthalene                                  | N/A            | 20  | μg/L       | 135     |  |
| Toluene                                      | <u>C5-C8</u>   | 20  | μg/L       | 160     |  |
| m- & p-Xylenes                               | <u>C9-C12</u>  | 40  | μg/L       | 1280    |  |
| o-Xylene                                     | C9-C12         | 20  | μg/L       | 207     |  |
| C5-C8 Aliphatics Hydrocarbons <sup>1,2</sup> | N/A            | 500 | μg/L       | 1080    |  |
| C9-C12 Aliphatic Hydrocarbons <sup>1,3</sup> | N/A            | 500 | μg/L       | 2210    |  |
| C9-C10 Aromatic Hydrocarbons                 | N/A            | 100 | μg/L       | 1560    |  |
| Surrogate % Recovery (2,5-Dibron             | notoluene) PID |     |            | 94      |  |
| Surrogate % Recovery (2.5-Dibron             | notoluene) FID |     |            |         |  |
| Surrogate Acceptance Range                   |                |     |            | 70-130% |  |

<sup>1</sup>Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

 $^{2}$ C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

<sup>3</sup>C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.


RL = Report Limit


U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist.

Authorized signature: Mululull







MAI 383-10

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

#### CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: MW-2 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

September 17, 2010

#### SAMPLE DATA

| Lab Sample ID:          | 67731-2  |
|-------------------------|----------|
| Matrix:                 | Aqueous  |
| Percent Solid:          | N/A      |
| <b>Dilution Factor:</b> | 1        |
| Collection Date:        | 09/07/10 |
| Lab Receipt Date:       | 09/10/10 |
| Analysis Date:          | 09/13/10 |

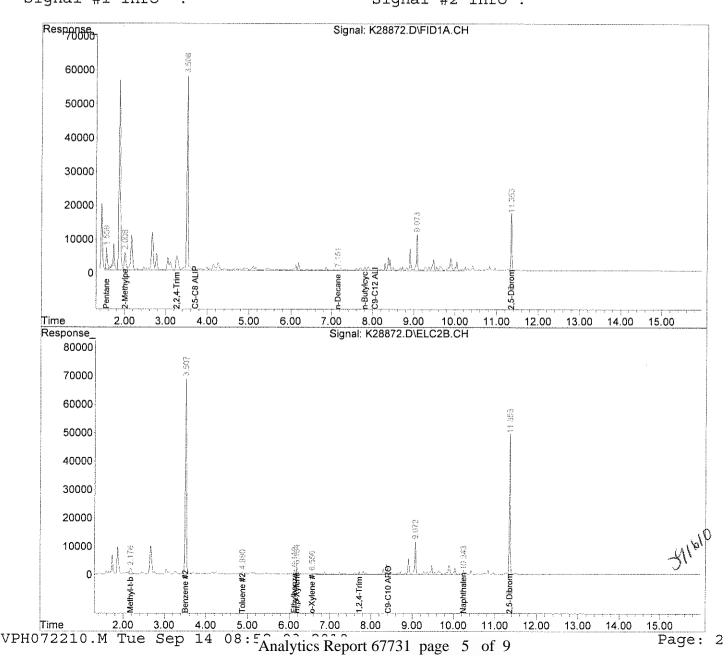
|                                              | VPH AN         | ALYTIC | AL RESULTS |            |   |
|----------------------------------------------|----------------|--------|------------|------------|---|
| RANGE/TARGET ANALYTE                         | Elution Range  | RL     | Units      | Result     | - |
| Unadjusted C5-C8 Aliphatics                  | N/A            | 50     | μg/L       | 667        |   |
| Unadjusted C9-C12 Aliphatics                 | N/A            | 50     | μg/L       | 192        |   |
| Benzene                                      | C5-C8          | 2      | μg/L       | 105        |   |
| Ethylbenzene                                 | C9-C12         | 2      | μg/L       | 3          |   |
| Methyl-tert-butyl ether                      | C5-C8          | 2      | μg/L       | 15         |   |
| Naphthalene                                  | N/A            | 2      | μg/L       | 3          |   |
| Toluene                                      | C5-C8          | 2      | μg/L       | <u>2 J</u> |   |
| m- & p-Xylenes                               | C9-C12         | 4      | μg/L       | 4          |   |
| o-Xylene                                     | C9-C12         | 2      | μg/L       | U          |   |
| C5-C8 Aliphatics Hydrocarbons <sup>1,2</sup> | N/A            | 50     | μg/L       | 545        |   |
| C9-C12 Aliphatic Hydrocarbons <sup>1,3</sup> | N/A            | 50     | μg/L       | 89         |   |
| C9-C10 Aromatic Hydrocarbons                 | N/A            | 10     | μg/L       | 96         |   |
| Surrogate % Recovery (2.5-Dibror             | notoluene) PID |        |            | 105        |   |
| Surrogate % Recovery (2,5-Dibror             | notoluene) FID |        |            | 98         |   |
| Surrogate Acceptance Range                   |                |        |            | 70-130%    |   |

<sup>1</sup>Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

<sup>2</sup>C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

<sup>3</sup>C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit


U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist.

Authorized signature: Mulul

Quantitation Report (Not Reviewed) Data Path : C:\msdchem\1\DATA\091310-K\ Data File : K28872.D Signal(s) : Signal #1: FID1A.CH Signal #2: ELC2B.CH Aca On : 13 Sep 2010 4:47 pm Operator : JJL Sample : 67731-2 Misc 5000 : ALS Vial : 17 Sample Multiplier: 1 88 aliulio Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e Quant Time: Sep 14 08:51:39 2010 Quant Method : C:\msdchem\1\METHODS\VPH072210.M Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004 QLast Update : Fri Jul 23 15:04:23 2010 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Small noise peaks clipped Volume Inj. : Signal #1 Phase : Signal #2 Phase: Signal #1 Info Signal #2 Info : :





MAI 383-10

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

#### CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: MW-3 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

#### September 17, 2010

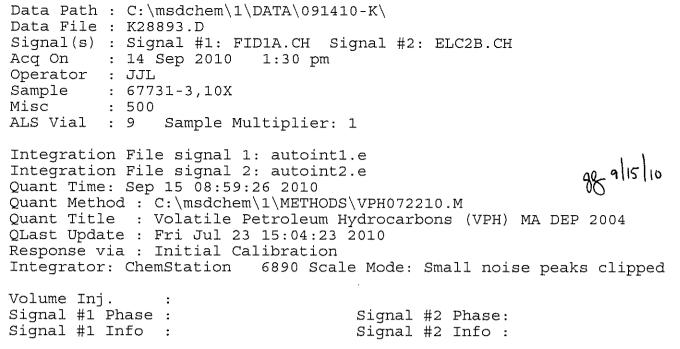
| SAM                     | IPLE DATA |
|-------------------------|-----------|
| Lab Sample ID:          | 67731-3   |
| Matrix:                 | Aqueous   |
| Percent Solid:          | N/A       |
| <b>Dilution Factor:</b> | 10        |
| Collection Date:        | 09/07/10  |
| Lab Receipt Date:       | 09/10/10  |
| Analysis Date:          | 09/14/10  |

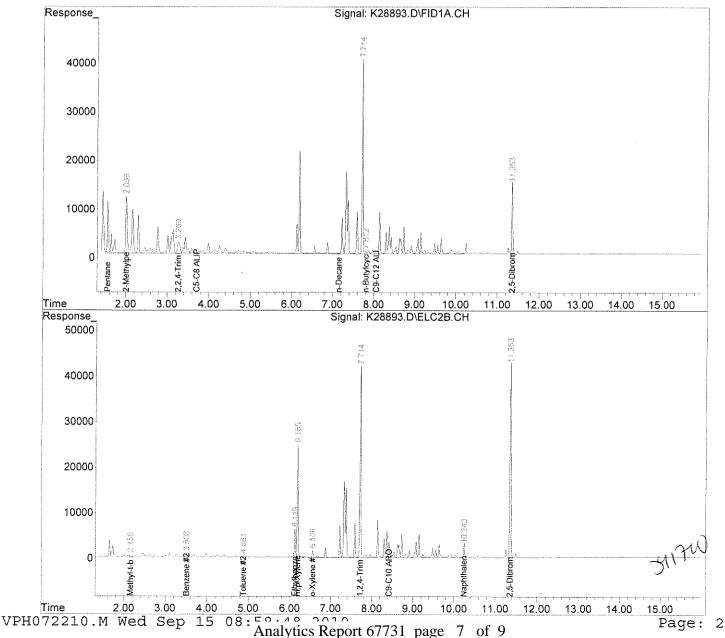
|                                              | VPH AN         | ALYTIC | AL RESULTS |         |  |
|----------------------------------------------|----------------|--------|------------|---------|--|
| RANGE/TARGET ANALYTE                         | Elution Range  | RL     | Units      | Result  |  |
| Unadjusted C5-C8 Aliphatics                  | N/A            | 500    | μg/L       | 3140    |  |
| Unadjusted C9-C12 Aliphatics                 | N/A            | 500    | μg/L       | 4600    |  |
| Benzene                                      | C5-C8          | 20     | μg/L       | 14 J    |  |
| Ethylbenzene                                 | C9-C12         | 20     | μg/L       | 101     |  |
| Methyl-tert-butyl ether                      | C5-C8          | 20     | μg/L       | 29      |  |
| Naphthalene                                  | N/A            | 20     | μg/L       | 51      |  |
| Toluene                                      | C5-C8          | 20     | μg/L       | U       |  |
| m- & p-Xylenes                               | C9-C12         | 40     | μg/L       | 355     |  |
| o-Xylene                                     | C9-C12         | 20     | μg/L       | 25      |  |
| C5-C8 Aliphatics Hydrocarbons <sup>1,2</sup> | N/A            | 500    | μg/L       | 3100    |  |
| C9-C12 Aliphatic Hydrocarbons <sup>1,3</sup> | N/A            | 500    | μg/L       | 1720    |  |
| C9-C10 Aromatic Hydrocarbons                 | N/A            | 100    | μg/L       | 2400    |  |
| Surrogate % Recovery (2,5-Dibror             | notoluene) PID |        |            | 90      |  |
| Surrogate % Recovery (2,5-Dibror             | notoluene) FID |        |            | 91      |  |
| Surrogate Acceptance Range                   |                |        |            | 70-130% |  |

<sup>1</sup>Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

 $^{2}$ C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

<sup>3</sup>C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.


RL = Report Limit


U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist.

Authorized signature: \_\_\_\_\_Multilli





|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                                              |                               |                                         |                            |                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |             |         |                                                                                                                |       |        |                         | REL                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------|-------------------------------|-----------------------------------------|----------------------------|----------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------|---------|----------------------------------------------------------------------------------------------------------------|-------|--------|-------------------------|------------------------------------------------------------------------|
| MAINE ENVIRONMENTAL LABORATORY-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IME                          | NTA                                          | VL L                          | ABO                                     | RAT                        | <b>JRY</b>                       | -                         | ain o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chain of Custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                  |             |         | ANALYSES                                                                                                       | ES    |        | LABOR/                  | LABORATORY REPORT #                                                    |
| One Main Street Yarmouth, Maine 04096-6716<br>e-mail: melab@main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iouth <sub>.</sub><br>e-     | , Main<br>mail:                              | ie 040<br>melaj               | 96-671<br>b@ma                          | تە                         | 7) 846<br>:om                    | -6569                     | fax: (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (207) 846-6569 fax: (207) 846-9066<br>.rr.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -9066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Į                                                                                                                |             |         |                                                                                                                |       |        |                         | Delivered bv                                                           |
| PROJECT MANAGER<br>H. Kodis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                                              |                               | TELEPHONE                               | HONE                       |                                  |                           | FAX # / E-MAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E-MAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |             |         |                                                                                                                |       |        |                         |                                                                        |
| COMPANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |                                              |                               | PURCH                                   | PURCHASE ORDER # / BILL TO | ER # / BIL)                      | - TO                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |             |         |                                                                                                                |       |        |                         |                                                                        |
| ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |                                              |                               |                                         |                            |                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |             |         |                                                                                                                |       |        |                         | URNAROUND REQUEST                                                      |
| PROJECT NAME<br>MAI 383 - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                              |                               | SAMPL                                   | SAMPLER NAME               |                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | *****       |         |                                                                                                                |       |        | Ounte 1                 | La Priority ( <del>ВИВСНАН</del> СЕ)<br>Quinte # <b>МС? 3 (2) (13)</b> |
| SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SHENIAT                      | SHINERS<br>CF                                | FIELD                         |                                         | SAMPLE                     |                                  | ≤                         | (ETHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  | НЛ          |         |                                                                                                                |       |        |                         |                                                                        |
| Anal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LNOD #                       |                                              | YES NO                        |                                         | ATRIX                      | <del>ช</del> ย                   |                           | PRESERVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DATE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | Λ           |         |                                                                                                                |       |        |                         | LABORATORY<br>IDENTIFICATION/<br>SUBCONTRACTOR                         |
| -<br>Switcs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ო                            | 1 ac                                         |                               | <b>√</b><br>×                           | A Q                        | $\prec$                          | ¥                         | Her/±6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  | ×           |         |                                                                                                                |       |        | IELLS                   | 31-1                                                                   |
| Rej<br>S Rej                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\omega$                     |                                              | *                             |                                         |                            | $\checkmark$                     |                           | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | ×           |         |                                                                                                                |       |        | -                       | 3                                                                      |
| S- An<br>port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Э                            | $\rightarrow$                                | *                             |                                         |                            | ×                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  | X           |         |                                                                                                                |       |        |                         | , d                                                                    |
| 6773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                              | The de Latio                  |                                         | ▶                          |                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Value and the second second second second second second second second second second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |             |         |                                                                                                                |       |        |                         |                                                                        |
| 31 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                              |                               |                                         |                            |                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |             |         |                                                                                                                |       |        |                         |                                                                        |
| page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                              |                               |                                         |                            |                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |             |         | A shake a second second second second second second second second second second second second second second se |       |        |                         |                                                                        |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                                              |                               |                                         |                            |                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | Construction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | and a property of the second second second second second second second second second second second second second |             |         |                                                                                                                |       |        |                         |                                                                        |
| of 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                              |                               |                                         | Ň                          |                                  |                           | a construction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |             |         |                                                                                                                |       |        |                         |                                                                        |
| )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                                              |                               |                                         |                            |                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |             |         |                                                                                                                |       |        |                         |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\left[ \right]$             |                                              |                               |                                         |                            |                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |             |         |                                                                                                                |       |        |                         |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                                              |                               |                                         |                            |                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |             |         |                                                                                                                |       |        |                         |                                                                        |
| A DATA DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA CALLER DE LA |                              |                                              |                               |                                         |                            | "Mark and                        | Sources of Annual Sources | CALL CONTRACTOR OF A DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A A MARKET BALL AND A MARKET BALL AND A MARKET BALL AND A MARKET BALL AND A MARKET BALL AND A MARKET BALL AND A  |             |         |                                                                                                                |       |        | R-H-                    | 07/10/10                                                               |
| Received within hold time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | ×.                                           |                               | 01 10                                   | A/N C                      | Custody                          |                           | seal present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | □ yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  | COMMENTS    | <br>    | _                                                                                                              |       |        |                         | - E                                                                    |
| Received in good condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Joca o.                      |                                              |                               | 0 D                                     |                            |                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | ЭЧ          | E E     | EDU                                                                                                            |       | Ч<br>Ч | foriusa                 | ME DEP EDD (CFI - WEShington Ave)                                      |
| Samples received preserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ia hari                      | °° ₩es                                       |                               | on E                                    |                            | S                                | spa                       | \$\$<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cilonia do la livolio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  | Le          | Level I | 01/0                                                                                                           | U EVO | hrand  | QA/QC W/Chroniztagraphs | N<br>S                                                                 |
| RELINQUISHED BY SAMPLER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and the second second second | an an an the first start of the start of the | eenere Essekääda-churittee ve | والمعادية والمحادثة والمحادثة والمحادثة |                            | فسترجب ومعرفين والمحادث والمستري |                           | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -butte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>F</u>                                                                                                         | неремер ву: | BY:     |                                                                                                                |       |        |                         | B The                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N.                           | 22                                           |                               |                                         |                            |                                  |                           | ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BATE JO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ENG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E \                                                                                                              | REGENTED BY |         |                                                                                                                |       |        |                         | $\frac{1}{2}$                                                          |
| RELINQUISHED BY. / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                              |                               |                                         |                            |                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | RECEIVED BY | BY TVB  | LABORATORY                                                                                                     | ÷     |        |                         | All glates                                                             |
| COC-04 (2) 21-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                                              |                               |                                         |                            |                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\geq$                                                                                                           |             | 2       |                                                                                                                |       |        |                         | · // ·                                                                 |

#### ANALYTICS SAMPLE RECEIPT CHECKLIST

| AEL LAB#: 67731                                                        | COOLER NUMBER:              | 60      |
|------------------------------------------------------------------------|-----------------------------|---------|
| CLIENT: MEL                                                            | NUMBER OF COOLERS:          | 1       |
| PROJECT: MAT 383-10                                                    | DATE RECEIVED:              | 9/10/10 |
| A: PRELIMINARY EXAMINATION:                                            | DATE COOLER OPENED:         | 9/10/10 |
| 1. Cooler received by(initials): BB                                    | Date Received:              | 9/10/10 |
| 2. Circle one: Hand delivered                                          | Shipped                     |         |
| 3. Did cooler come with a shipping slip?                               | Y                           | NH      |
| 3a. Enter carrier name and airbill number here:                        | Λ                           | 1A      |
| 4. Were custody seals on the outside of cooler? A Seal Date            | ۲<br>۲. <u>۲</u> Seal Name: | NAN     |
| 5. Did the custody seals arrive unbroken and intact upon arrival?      | Y                           | (N/A    |
| 6. COC#: <u>/A</u>                                                     |                             |         |
| 7. Were Custody papers filled out properly (ink,signed, etc)?          | Y                           | N       |
| 8. Were custody papers sealed in a plastic bag?                        | Ŷ                           | N       |
| 9. Did you sign the COC in the appropriate place?                      | $\bigcirc$                  | N       |
| 10. Was the project identifiable from the COC papers?                  | X                           | N       |
| 11. Was enough ice used to chill the cooler? N                         | Temp. of cooler:            | 1-300   |
| B. Log-In: Date samples were logged in: 9/10                           | 10 By: 103                  |         |
| 12. Type of packing in cooler (bubble wrip, popcorn)                   | $()$ $(\mathbf{y})$         | Ν.      |
| 13. Were all bottles sealed in separate plastic bags?                  | Ì                           | Ν       |
| 14. Did all bottles arrive unbroken and were labels in good condition? | Ŷ                           | Ν       |
| 15. Were all bottle labels complete(ID,Date,time,etc.)                 | $(\tilde{\mathbf{Y}})$      | Ν       |
| 16. Did all bottle labels agree with custody papers?                   | $(\tilde{i})$               | Ν       |
| 17. Were the correct containers used for the tests indicated:          | C)<br>V                     | N       |
| 18. Were samples received at the correct pH?                           | Y<br>(Y)                    | (N LA)  |
| 19. Was sufficient amount of sample sent for the tests indicated?      | (Y)                         | N       |
| 20. Were bubbles absent in VOA samples?                                | Ŷ                           | Ν       |
| If NO, List Sample ID's and Lab #s:                                    |                             |         |

C:ANLYTICS LLC\AEL DOCUMENTS\FORMS\SMPL CHKLST\Edit 4908 Analytics Report 67731 page 9 of 9

21. Laboratory labeling verified by (initials):

.

Q

Date: 9/10/10



195 Commerce Way Suife E Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906 www.analyticslab.com

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107 Report Number: 68856 Revision: Rev. 0

#### Re: DEP 2540-11

Enclosed are the results of the analyses on your sample(s). Samples were received on 13 January 2011 and analyzed for the tests listed. Samples were received in acceptable condition, with the exceptions noted below or on the chain of custody. These results pertain to samples as received by the laboratory and for the analytical tests requested on the chain of custody. The results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. Please see individual reports for specific methodologies and references.

Sample Analysis: The attached pages detail the Client Sample IDs, Lab Sample IDs, and Analyses requested

Sample Receipt Exceptions: None

Analytics Environmental Laboratory is certified by the states of New Hampshire, Maine, Massachusetts, Connecticut, Rhode Island, Virginia, Maryland, and is accredited by the Department of Defense (DOD) ELAP program. A list of actual certified parameters is available upon request.

If you have any questions on these results, please do not hesitate to contact us.

Authorized signature

Stephen L. Knollmeyer Lab. Director

Date

This report shall not be reproduced, except in full, without the written consent of Analytics Environmental Laboratory, LLC.



195 Commerce Way Suite E Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906 www.analyticslab.com

**REV: Rev. 0** 

# CLIENT: Maine Environmental Laboratory, REPORT NUMBER: 68856 Inc.

#### PROJECT: DEP 2540-11

| <u>Lab Number</u><br>68856-1 | Sample Date<br>01/10/11 | Station Location | Analysis Comments<br>EPA 8260B (Halocarbons only)               |
|------------------------------|-------------------------|------------------|-----------------------------------------------------------------|
|                              | 01/10/11                | MW-1             | Volatile Petroleum Hydrocarbons                                 |
| 68856-2                      | 01/10/11<br>01/10/11    | MW-2<br>MW-2     | EPA 8260B (Halocarbons only)<br>Volatile Petroleum Hydrocarbons |
| 68856-3                      | 01/10/11                | MW-4             | EPA 8260B (Halocarbons only)                                    |
|                              | 01/10/11                | MW-4             | Volatile Petroleum Hydrocarbons                                 |
| 68856-4                      | 01/10/11                | MW-5             | EPA 8260B (Halocarbons only)                                    |
|                              | 01/10/11                | MW-5             | Volatile Petroleum Hydrocarbons                                 |
| 68856-5                      | 01/10/11                | Trip Blank       | Electronic Data Deliverable                                     |
|                              | 01/10/11                | Trip Blank       | Volatile Petroleum Hydrocarbons                                 |



Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

#### CLIENT SAMPLE ID

DEP 2540-11

Project Name:

**Project Number:** 

Field Sample ID: MW-1

#### 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

January 21, 2011 SAMPLE DATA

| Lab Sample ID:    | 68856-1  |
|-------------------|----------|
| Matrix:           | Aqueous  |
| Percent Solid:    | N/A      |
| Dilution Factor:  | 1        |
| Collection Date:  | 01/10/11 |
| Lab Receipt Date: | 01/13/11 |
| Analysis Date:    | 01/19/11 |
|                   |          |

#### Quantitation Result Quantitation Result $\mu g/L$ Limit $\mu g/L$ **COMPOUND COMPOUND** $\tilde{L}$ imit $\mu g/L$ $\mu g/L$ U 1,2-Dichloroethane 1 U Vinyl chloride 1 U 1,1,1-Trichloroethane 1 1.1-Dichloroethene 1 U cis-1,2-Dichloroethene 1 U 1,1,2-Trichloroethane 1 U U U 1,1,2,2-Tetrachloroethane 1 trans-1,2-Dichloroethene 1 U Trichloroethene î U Chlorobenzene U Tetrachloroethene 1 U Bromoform Chloromethane Dichlorodifluoromethane U 1 U 5 U Trichlorofluoromethane U Methylene chloride U U 1,3-Dichlorobenzene Chloroform 1 U Carbon tetrachloride ĺ U 1,2-Dichlorobenzene U Bromodichloromethane 1 U 1,4-Dichlorobenzene U Dibromochloromethane U 1,2-Dichloropropane Ĭ 2 U cis-1,3-Dichloropropene $\mathbf{U}$ Bromomethane U Chloroethane Ū trans-1,3-Dichloropropene 1 I 1,1-Dichloroethane 1 U 1 U Dibromomethane Surrogate Standard Recovery % 105 Bromofluorobenzene 98 d4-1,2-Dichloroethane 99 % d8-Toluene % B=Detected in U=Undetected J=Estimated E=Exceeds Calibration Range

ANALYTICAL RESULTS VOLATILE ORGANICS

METHODOLOGY: Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B.

#### COMMENTS:

8021HW/8260 (3):Res(30):Rec(3)

Authorized signature \_\_\_\_\_\_



DEP 2540-11

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

#### CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: MW-1 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

January 24, 2011

# SAMPLE DATALab Sample ID:68856-1Matrix:AqueousPercent Solid:N/ADilution Factor:10Collection Date:01/10/11Lab Receipt Date:01/13/11Analysis Date:01/19/11

|                                              |                |     | AL RESULTS  |         |         |
|----------------------------------------------|----------------|-----|-------------|---------|---------|
| RANGE/TARGET ANALYTE                         | Elution Range  | RL  | Units       | Result  |         |
| Unadjusted C5-C8 Aliphatics                  | N/A            | 500 | μg/L        | 4660    |         |
| Unadjusted C9-C12 Aliphatics                 | N/A            | 500 | μg/L        | 8500    | <u></u> |
| Benzene                                      | <u>C5-C8</u>   | 20  | <u>μg/L</u> | 1510    |         |
| Ethylbenzene                                 | C9-C12         | 20  | μg/L        | 1520    |         |
| Methyl-tert-butyl ether                      | C5-C8          | 20  | μg/L        | 1790    |         |
| Naphthalene                                  | N/A            | 20  | μg/L        | 330     |         |
| Toluene                                      | <u>C5-C8</u>   | 20  | μg/L        | 97      |         |
| m- & p-Xylenes                               | C9-C12         | 40  | μg/L        | 1090    |         |
| o-Xylene                                     | C9-C12         | 20  | μg/L        | 161     |         |
| C5-C8 Aliphatics Hydrocarbons <sup>1,2</sup> | N/A            | 500 | μg/L        | 1260    |         |
| C9-C12 Aliphatic Hydrocarbons <sup>1,3</sup> | N/A            | 500 | μg/L        | 3090    |         |
| C9-C10 Aromatic Hydrocarbons                 | N/A            | 100 | $\mu g/L$   | 2640    |         |
| Surrogate % Recovery (2,5-Dibron             | notoluene) PID |     |             | 91      |         |
| Surrogate % Recovery (2.5-Dibron             |                |     |             | 96      |         |
| Surrogate Acceptance Range                   |                |     |             | 70-130% |         |

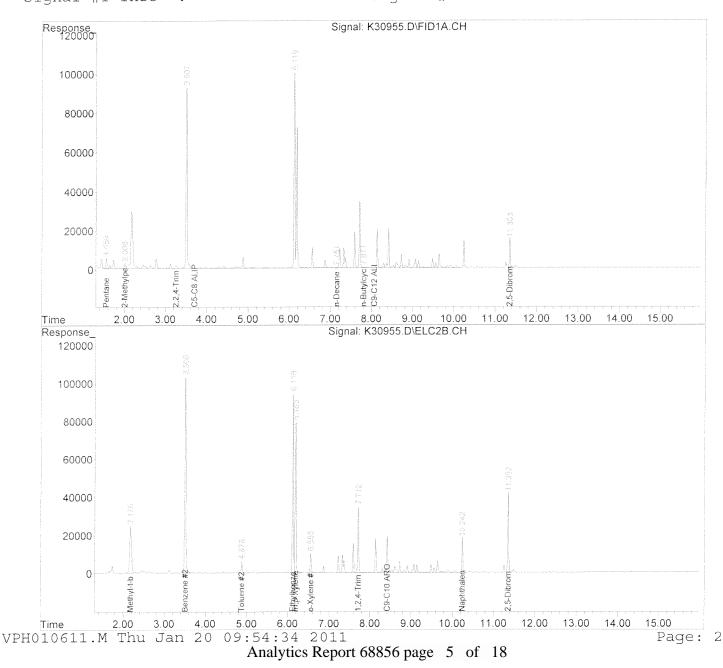
<sup>1</sup>Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

<sup>2</sup>C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

<sup>3</sup>C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank


METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist.

Authorized signature: Mulull

Quantitation Report (Not Reviewed)

```
Data Path : C:\msdchem\1\DATA\011911-K\
Data File : K30955.D
Signal(s) : Signal #1: FID1A.CH Signal #2: ELC2B.CH
         : 19 Jan 2011 3:26 pm
Acq On
Operator
          : JJL
          : 68856-1,10X
Sample
          : 500
Misc
                 Sample Multiplier: 1
ALS Vial : 12
Integration File signal 1: autointl.e
Integration File signal 2: autoint2.e
Quant Time: Jan 19 15:48:07 2011
Quant Method : C:\msdchem\1\METHODS\VPH010611.M
Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004
QLast Update : Thu Jan 06 23:33:51 2011
Response via : Initial Calibration
                         6890 Scale Mode: Small noise peaks clipped
Integrator: ChemStation
Volume Inj.
                :
                                    Signal #2 Phase:
Signal #1 Phase :
                                    Signal #2 Info :
Signal #1 Info
                :
```





Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

#### CLIENT SAMPLE ID

DEP 2540-11

**Project Name:** 

**Project Number:** 

Field Sample ID: MW-2

January 21, 2011 SAMPLE DATA

| L7: %1VER R.            | JRJ RFINAIN |
|-------------------------|-------------|
| Lab Sample ID:          | 68856-2     |
| Matrix:                 | Aqueous     |
| Percent Solid:          | N/A         |
| <b>Dilution Factor:</b> | 1           |
| Collection Date:        | 01/10/11    |
| Lab Receipt Date:       | 01/13/11    |
| Analysis Date:          | 01/19/11    |
|                         |             |

#### Quantitation Result Quantitation Result $\hat{L}$ imit $\mu g/L$ $\mu g/L$ **COMPOUND COMPOUND** $\tilde{L}$ imit $\mu g/L$ $\mu g/L$ U 1,2-Dichloroethane 1 U Vinyl chloride 1 U 1,1-Dichloroethene U 1,1,1-Trichloroethane ł 1 U cis-1,2-Dichloroethene U 1,1,2-Trichloroethane 1 1 U 1,1,2,2-Tetrachloroethane U 1 trans-1,2-Dichloroethene 1 U Trichloroethene U Chlorobenzene U Tetrachloroethene U Bromoform 1 U Dichlorodifluoromethane Chloromethane U 1 U 5 U Trichlorofluoromethane Methylene chloride U 1,3-Dichlorobenzene Chloroform 1 U U Carbon tetrachloride U 1,2-Dichlorobenzene Bromodichloromethane 1.4-Dichlorobenzene U U Ĩ U U 1,2-Dichloropropane Dibromochloromethane 2 cis-1,3-Dichloropropene U Bromomethane U 1 U U trans-1,3-Dichloropropene 1 Chloroethane 1 (and U 1 U 1,1-Dichloroethane Dibromomethane Surrogate Standard Recovery 102 % Bromofluorobenzene 103 % d4-1,2-Dichloroethane 96 % d8-Toluene B=Detected in J=Estimated E=Exceeds Calibration Range U=Undetected

ANALYTICAL RESULTS VOLATILE ORGANICS

Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B. METHODOLOGY:

#### COMMENTS:

8021HW/8260 (3):Res(30):Rec(3)

Authorized signature Mull



DEP 2540-11

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

#### CLIENT SAMPLE ID

**Project Name:** 

**Project Number:** Client Sample ID: MW-2 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

January 21, 2011

| SAMPLE DATA       |          |  |  |  |  |
|-------------------|----------|--|--|--|--|
| Lab Sample ID:    | 68856-2  |  |  |  |  |
| Matrix:           | Aqueous  |  |  |  |  |
| Percent Solid:    | N/A      |  |  |  |  |
| Dilution Factor:  | 1        |  |  |  |  |
| Collection Date:  | 01/10/11 |  |  |  |  |
| Lab Receipt Date: | 01/13/11 |  |  |  |  |
| Analysis Date:    | 01/19/11 |  |  |  |  |

|                                               | VPH AN         | ALYTIC | AL RESULTS  |          |                                        |
|-----------------------------------------------|----------------|--------|-------------|----------|----------------------------------------|
| RANGE/TARGET ANALYTE                          | Elution Range  | RL     | Units       | Result   |                                        |
| Jnadjusted C5-C8 Aliphatics                   | N/A            | 50     | μg/L        | 413      |                                        |
| Unadjusted C9-C12 Aliphatics                  | N/A            | 50     | μg/L        | 148      |                                        |
| Benzene                                       | C5-C8          | 2      | μg/L        | 44       |                                        |
| Ethylbenzene                                  | C9-C12         | 2      | μg/L        | U        |                                        |
| Methyl-tert-butyl ether                       | C5-C8          | 2      | μg/L        | 15       |                                        |
| Naphthalene                                   | N/A            | 2      | μg/L        | <u> </u> |                                        |
| Foluene                                       | C5-C8          | 2      | μg/L        | U        |                                        |
| n- & p-Xylenes                                | C9-C12         | 4      | μg/L        | U        |                                        |
| p-Xylene                                      | C9-C12         | 2      | μg/L        | U        |                                        |
| C5-C8 Aliphatics Hydrocarbons <sup>1,2</sup>  | N/A            | 50     | μg/L        | 355      |                                        |
| C9-C12 Aliphatic Hydrocarbons <sup>1,3</sup>  | N/A            | 50     | <u>μg/L</u> | 74       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| C9-C10 Aromatic Hydrocarbons                  | N/A            | 10     | μg/L        | 74       |                                        |
| Surrogate % Recovery (2.5-Dibron              | notoluene) PID |        |             | 79       |                                        |
| Surrogate % Recovery (2.5-Dibromotoluene) FID |                |        |             | 77       |                                        |
| Surrogate Acceptance Range                    |                |        |             | 70-130%  |                                        |

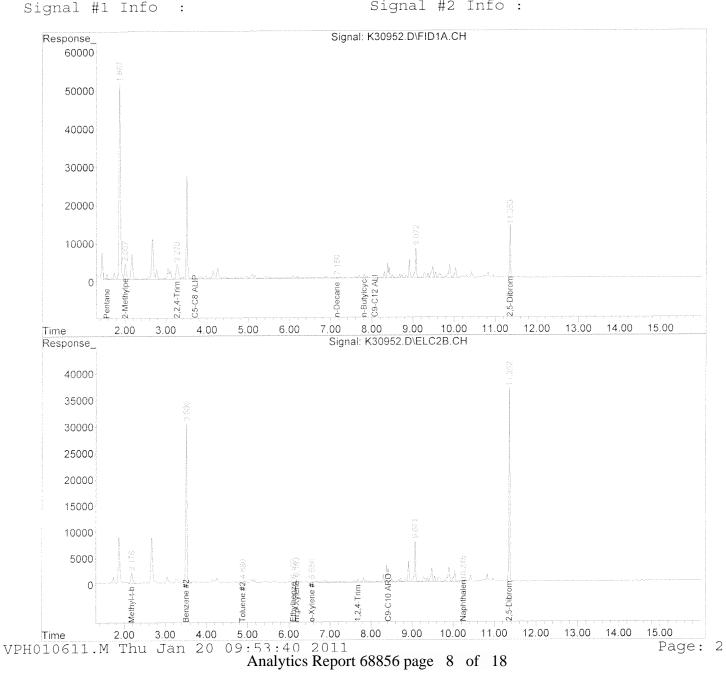
Hydrocarbon Range data exclude concentrations of any surrogate(s)

 $^{2}$ C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

<sup>3</sup>C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank


METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist.

Authorized signature: Mullull

Quantitation Report (Not Reviewed)

Data Path : C:\msdchem\1\DATA\011911-K\ Data File : K30952.D Signal(s) : Signal #1: FID1A.CH Signal #2: ELC2B.CH : 19 Jan 2011 2:11 pm Acq On : JJL Operator : 68856-2 Sample : 5000 Misc Sample Multiplier: 1 ALS Vial : 9 Integration File signal 1: autointl.e Integration File signal 2: autoint2.e Quant Time: Jan 19 15:31:01 2011 Quant Method : C:\msdchem\1\METHODS\VPH010611.M Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004 QLast Update : Thu Jan 06 23:33:51 2011 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Small noise peaks clipped Volume Inj. Signal #2 Phase: Signal #1 Phase : Signal #2 Info :





Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

#### CLIENT SAMPLE ID

**Project Name:** 

DEP 2540-11

**Project Number:** 

Field Sample ID: MW-4

#### 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

January 21, 2011 SAMPLE DATA

| Lab Sample ID:    | 68856-3  |
|-------------------|----------|
| Matrix:           | Aqueous  |
| Percent Solid:    | N/A      |
| Dilution Factor:  | 1        |
| Collection Date:  | 01/10/11 |
| Lab Receipt Date: | 01/13/11 |
| Analysis Date:    | 01/19/11 |
|                   |          |

| COMPOUND                 | Quantitation Limit $\mu g/L$ | Result $\mu g/L$ | COMPOUND                   | Quantitation<br>Limit $\mu g/L$ | Result<br>μg/L |
|--------------------------|------------------------------|------------------|----------------------------|---------------------------------|----------------|
| Vinyl chloride           | 1                            | U                | 1,2-Dichloroethane         | 1                               | U              |
| 1,1-Dichloroethene       | 1                            | U                | 1,1,1-Trichloroethane      | 1                               | U              |
| cis-1,2-Dichloroethene   | 1                            | U                | 1,1,2-Trichloroethane      | 1                               | U              |
| trans-1,2-Dichloroethene | 1                            | U                | 1,1,2,2-Tetrachloroethane  | 1                               | U              |
| Trichloroethene          | 1                            | U                | Chlorobenzene              | 1                               | U              |
| Tetrachloroethene        | 1                            | U                | Bromoform                  | 1                               | U              |
| Chloromethane            | I                            | U                | Dichlorodifluoromethane    | l                               | U              |
| Methylene chloride       | 5                            | U                | Trichlorofluoromethane     |                                 | U              |
| Chloroform               | 1                            | U                | 1,3-Dichlorobenzene        | I                               | U              |
| Carbon tetrachloride     | 1                            | U                | 1,2-Dichlorobenzene        | revend                          | U              |
| Bromodichloromethane     | 1                            | U                | 1,4-Dichlorobenzene        | stored                          | U              |
| Dibromochloromethane     | a company                    | U                | 1,2-Dichloropropane        | (News)                          | U              |
| Bromomethane             | 2                            | U                | cis-1,3-Dichloropropene    | 1                               | U              |
| Chloroethane             | I                            | U                | trans-1,3-Dichloropropene  | 1                               | U              |
| 1,1-Dichloroethane       | Veroved                      | U                | Dibromomethane             | www                             | U              |
|                          |                              | Surrogate        | Standard Recovery          |                                 |                |
| d4-1,2-Dichloroethane    | 90 %                         | d8-Tolue         | ene 104 % Br               | omofluorobenzene                | 103 %          |
| U=Undetecte              | d J=Estim                    | ated E=          | =Exceeds Calibration Range | B=Detected in                   |                |

ANALYTICAL RESULTS VOLATILE ORGANICS

METHODOLOGY: Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B.

COMMENTS:

8021HW/8260 (3):Res(30):Rec(3)

Authorized signature Mullull



DEP 2540-11

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

#### CLIENT SAMPLE ID

**Project Name:** 

Project Number: Client Sample ID: MW-4 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

January 21, 2011

| SAMPLE DATA       |          |  |  |  |
|-------------------|----------|--|--|--|
| Lab Sample ID:    | 68856-3  |  |  |  |
| Matrix:           | Aqueous  |  |  |  |
| Percent Solid:    | N/A      |  |  |  |
| Dilution Factor:  | Ĩ        |  |  |  |
| Collection Date:  | 01/10/11 |  |  |  |
| Lab Receipt Date: | 01/13/11 |  |  |  |
| Analysis Date:    | 01/19/11 |  |  |  |

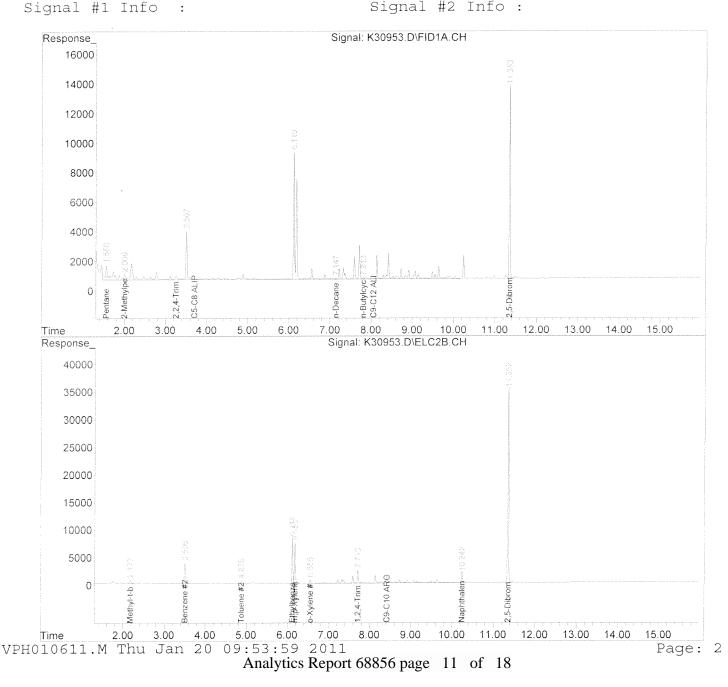
| VPH ANALYTICAL RESULTS                                                                      |                |    |           |         |                           |
|---------------------------------------------------------------------------------------------|----------------|----|-----------|---------|---------------------------|
| RANGE/TARGET ANALYTE                                                                        | Elution Range  | RL | Units     | Result  |                           |
| Unadjusted C5-C8 Aliphatics                                                                 | N/A            | 50 | μg/L      | 37 J    |                           |
| Unadjusted C9-C12 Aliphatics                                                                | N/A            | 50 | $\mu g/L$ | 80      |                           |
| Benzene                                                                                     | C5-C8          | 2  | $\mu$ g/L | 6       | activalizationationations |
| Ethylbenzene                                                                                | C9-C12         | 2  | μg/L      | 13      |                           |
| Methyl-tert-butyl ether                                                                     | C5-C8          | 2  | $\mu$ g/L | 4       |                           |
| Naphthalene                                                                                 | N/A            | 2  | μg/L      | 4       |                           |
| Toluene                                                                                     | C5-C8          | 2  | μg/L      | U       |                           |
| m- & p-Xylenes                                                                              | C9-C12         | 4  | μg/L      | 10      |                           |
| o-Xylene                                                                                    | C9-C12         | 2  | $\mu g/L$ | 1 J     |                           |
| C5-C8 Aliphatics Hydrocarbons <sup>1,2</sup>                                                | N/A            | 50 | μg/L      | 27 J    |                           |
| C9-C12 Aliphatic Hydrocarbons <sup>1,3</sup>                                                | N/A            | 50 | μg/L      | 30 J    |                           |
| C9-C10 Aromatic Hydrocarbons                                                                | N/A            | 10 | μg/L      | 26      |                           |
| Surrogate % Recovery (2.5-Dibron                                                            | notoluene) PID |    |           | 75      |                           |
| Surrogate % Recovery (2.5-Dibromotoluene) FID                                               |                |    |           | 72      |                           |
| Surrogate Acceptance Range                                                                  |                |    |           | 70-130% |                           |
| <sup>1</sup> Hydrocarbon Range data exclude<br><sup>2</sup> C5-C8 Aliphatic Hydrocarbons e: |                |    |           |         |                           |

<sup>3</sup>C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.


COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist.

Authorized signature: Mull

Analytics Report 68856 page 10 of 18

Quantitation Report (Not Reviewed)

Data Path : C:\msdchem\1\DATA\011911-K\ Data File : K30953.D Signal(s) : Signal #1: FID1A.CH Signal #2: ELC2B.CH : 19 Jan 2011 2:36 pm Acq On Operator : JJL : 68856-3 Sample : 5000 Misc Sample Multiplier: 1 ALS Vial : 10 Integration File signal 1: autointl.e Integration File signal 2: autoint2.e Quant Time: Jan 19 15:31:39 2011 Quant Method : C:\msdchem\1\METHODS\VPH010611.M Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004 QLast Update : Thu Jan 06 23:33:51 2011 Response via : Initial Calibration 6890 Scale Mode: Small noise peaks clipped Integrator: ChemStation Volume Inj. : Signal #2 Phase: Signal #1 Phase :



195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

January 21, 2011

SAMPLE DATA

Lab Sample ID:

Percent Solid:

**Dilution Factor:** 

**Collection Date:** 

Analysis Date:

Lab Receipt Date: 01/13/11

Matrix:

68856-4

Aqueous

01/10/11

01/19/11

N/A

1

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

anvironmental laboratory LLC

#### CLIENT SAMPLE ID

DEP 2540-11 Project Name:

**Project Number:** 

*s* 😤 e

Field Sample ID: MW-5

#### ANALYTICAL RESULTS VOLATILE ORGANICS

| COMPOUND                 | Quantitation Limit $\mu g/L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Result $\mu g/L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COMPOUND                  | Quantitation Limit $\mu g/L$ | Result<br>µg/L |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------|----------------|
| Vinyl chloride           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2-Dichloroethane        | ž.                           | · U            |
| 1,1-Dichloroethene       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,1,1-Trichloroethane     | 1                            | U              |
| cis-1,2-Dichloroethene   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,1,2-Trichloroethane     | 1                            | U              |
| trans-1,2-Dichloroethene | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,1,2,2-Tetrachloroethane | 1                            | U              |
| Trichloroethene          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chlorobenzene             | 1                            | U              |
| Fetrachloroethene        | * 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bromoform                 | 1                            | U              |
| Chloromethane            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dichlorodifluoromethane   | 1                            | U              |
| Methylene chloride       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a construction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | Trichlorofluoromethane    | 1                            | U              |
| Chloroform               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,3-Dichlorobenzene       | 1                            | U              |
| Carbon tetrachloride     | presses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2-Dichlorobenzene       | li conta                     | U              |
| Bromodichloromethane     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,4-Dichlorobenzene       | beest                        | U              |
| Dibromochloromethane     | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2-Dichloropropane       | hona                         | U              |
| Bromomethane             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cis-1,3-Dichloropropene   | 1                            | U              |
| Chloroethane             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | trans-1,3-Dichloropropene | 1                            | U              |
| ,1-Dichloroethane        | Anna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dibromomethane            | Ĩ                            | U              |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Surrogate Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ndard Recovery            |                              |                |
| 4-1,2-Dichloroethane     | 91 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d8-Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 104 % Bro                 | omofluorobenzene             | 102 %          |
| U=Undetecte              | d J=Estima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ated E=Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ceeds Calibration Range B | =Detected in                 |                |

**METHODOLOGY:** Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B. COMMENTS:

8021HW/8260 (3):Res(30):Rec(3)

Authorized signature Mullull



DEP 2540-11

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

#### CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: MW-5 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

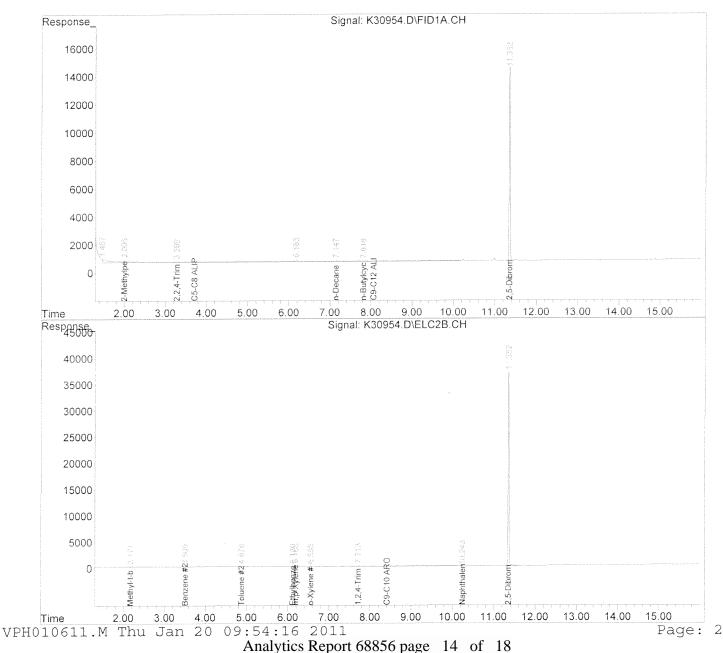
January 21, 2011

| SAMPLE DATA       |          |  |
|-------------------|----------|--|
| Lab Sample ID:    | 68856-4  |  |
| Matrix:           | Aqueous  |  |
| Percent Solid:    | N/A      |  |
| Dilution Factor:  | - Second |  |
| Collection Date:  | 01/10/11 |  |
| Lab Receipt Date: | 01/13/11 |  |
| Analysis Date:    | 01/19/11 |  |

| VPH ANALYTICAL RESULTS                                                                                                                                                                                                                                                                                                                                                                                                  |               |    |             |        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|-------------|--------|--|
| RANGE/TARGET ANALYTE                                                                                                                                                                                                                                                                                                                                                                                                    | Elution Range | RL | Units       | Result |  |
| Unadjusted C5-C8 Aliphatics                                                                                                                                                                                                                                                                                                                                                                                             | N/A           | 50 | μg/L        | U      |  |
| Unadjusted C9-C12 Aliphatics                                                                                                                                                                                                                                                                                                                                                                                            | N/A           | 50 | μg/L        | U      |  |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                 | C5-C8         | 2  | μg/L        |        |  |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                            | C9-C12        | 2  | μg/L        | U      |  |
| Methyl-tert-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                 | C5-C8         | 2  | $\mu g/L$   | U      |  |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                             | N/A           | 2  | <u>μg/L</u> | U      |  |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                 | C5-C8         | 2  | $\mu g/L$   | U      |  |
| m- & p-Xylenes                                                                                                                                                                                                                                                                                                                                                                                                          | C9-C12        | 4  | μg/L        | U      |  |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                | C9-C12        | 2  | μg/L        | U      |  |
| C5-C8 Aliphatics Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                           | N/A           | 50 | μg/L        | U      |  |
| C9-C12 Aliphatic Hydrocarbons <sup>1,3</sup>                                                                                                                                                                                                                                                                                                                                                                            | N/A           | 50 | μg/L        |        |  |
| C9-C10 Aromatic Hydrocarbons <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                               | N/A           | 10 | μg/L        | U      |  |
| Surrogate % Recovery (2.5-Dibromotoluene) PID 80                                                                                                                                                                                                                                                                                                                                                                        |               |    |             |        |  |
| Surrogate % Recovery (2.5-Dibromotoluene) FID 77                                                                                                                                                                                                                                                                                                                                                                        |               |    |             |        |  |
| Surrogate Acceptance Range 70-130%                                                                                                                                                                                                                                                                                                                                                                                      |               |    |             |        |  |
| <sup>1</sup> Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.<br><sup>2</sup> C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range<br><sup>3</sup> C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic<br>Hydrocarbons.<br>RL = Report Limit |               |    |             |        |  |

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.


COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist.

Authorized signature: Mulbell

Quantitation Report (Not Reviewed)

Data Path : C:\msdchem\1\DATA\011911-K\ Data File : K30954.D Signal(s) : Signal #1: FIDIA.CH Signal #2: ELC2B.CH : 19 Jan 2011 3:01 pm Acq On Operator : JJL : 68856-4 Sample : 5000 Misc Sample Multiplier: 1 ALS Vial : 11 Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e Quant Time: Jan 19 15:35:57 2011 Quant Method : C:\msdchem\1\METHODS\VPH010611.M Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004 QLast Update : Thu Jan 06 23:33:51 2011 Response via : Initial Calibration 6890 Scale Mode: Small noise peaks clipped Integrator: ChemStation Volume Inj. : Signal #1 Phase :

Signal #1 Info : Signal #2 Phase: Signal #2 Info :





DEP 2540-11

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

#### CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: Trip Blank 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

January 21, 2011

| SAMPLE DATA             |          |  |
|-------------------------|----------|--|
| Lab Sample ID:          | 68856-5  |  |
| Matrix:                 | Aqueous  |  |
| Percent Solid:          | N/A      |  |
| <b>Dilution Factor:</b> | 1        |  |
| Collection Date:        | 01/10/11 |  |
| Lab Receipt Date:       | 01/13/11 |  |
| Analysis Date:          | 01/19/11 |  |

| Elution Range<br>N/A                          | RL                                                                                                        | Units                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               |                                                                                                           | UHHS                                                                                                                                                                                                                                                                                       | Result                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 19/25                                         | 50                                                                                                        | μg/L                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| N/A                                           | 50                                                                                                        | μg/L                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C5-C8                                         | 2                                                                                                         | $\mu$ g/L                                                                                                                                                                                                                                                                                  | U                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C9-C12                                        | 2                                                                                                         | μg/L                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C5-C8                                         | 2                                                                                                         | μg/L                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| N/A                                           | 2                                                                                                         | $\mu g/L$                                                                                                                                                                                                                                                                                  | U                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C5-C8                                         | 2                                                                                                         | μg/L                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <u>C9-C12</u>                                 | 4                                                                                                         | μg/L                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C9-C12                                        | 2                                                                                                         | $\mu g/L$                                                                                                                                                                                                                                                                                  | U                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| N/A                                           | 50                                                                                                        | μg/L                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <u>N/A</u>                                    | 50                                                                                                        | μg/L                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| N/A                                           | 10                                                                                                        | μg/L                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| otoluene) PID                                 |                                                                                                           |                                                                                                                                                                                                                                                                                            | 84                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Surrogate % Recovery (2,5-Dibromotoluene) FID |                                                                                                           |                                                                                                                                                                                                                                                                                            | 85                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Surrogate Acceptance Range                    |                                                                                                           |                                                                                                                                                                                                                                                                                            | 70-130%                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               | C5-C8<br>C9-C12<br>C5-C8<br>N/A<br>C5-C8<br>C9-C12<br>C9-C12<br>N/A<br>N/A<br>N/A<br>N/A<br>otoluene) PID | C5-C8         2           C9-C12         2           C5-C8         2           N/A         2           C5-C8         2           C9-C12         4           C9-C12         2           N/A         50           N/A         50           N/A         10           otoluene) PID         10 | $M/A$ $L/B$ C5-C8       2 $\mu g/L$ C9-C12       2 $\mu g/L$ C5-C8       2 $\mu g/L$ N/A       2 $\mu g/L$ C5-C8       2 $\mu g/L$ C5-C8       2 $\mu g/L$ C9-C12       4 $\mu g/L$ C9-C12       2 $\mu g/L$ N/A       50 $\mu g/L$ N/A       50 $\mu g/L$ N/A       10 $\mu g/L$ otoluene) PID $\mu g/L$ | N/A       2 $\mu g/L$ U         C5-C8       2 $\mu g/L$ U         C5-C8       2 $\mu g/L$ U         C5-C8       2 $\mu g/L$ U         N/A       2 $\mu g/L$ U         C5-C8       2 $\mu g/L$ U         C5-C8       2 $\mu g/L$ U         C9-C12       4 $\mu g/L$ U         C9-C12       2 $\mu g/L$ U         N/A       50 $\mu g/L$ U         N/A       50 $\mu g/L$ U         N/A       10 $\mu g/L$ U         N/A       10 $\mu g/L$ U         N/A       10       85       85 |

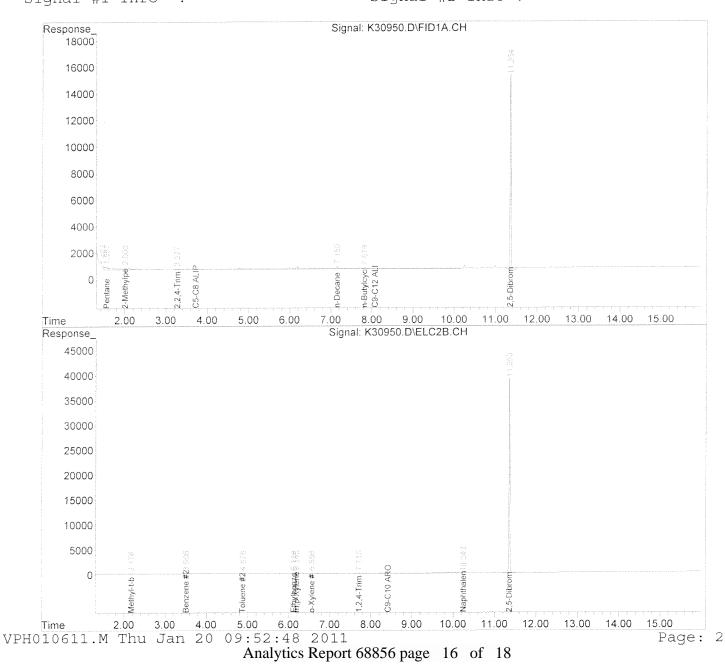
<sup>1</sup>Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

 $^{2}$ C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

<sup>3</sup>C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank


METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist.

Authorized signature: Mulul

Quantitation Report (Not Reviewed)

Data Path : C:\msdchem\1\DATA\011911-K\ Data File : K30950.D Signal(s) : Signal #1: FID1A.CH Signal #2: ELC2B.CH : 19 Jan 2011 1:21 pm Acq On Operator : JJL : 68856-5 Sample : 5000 Misc : 7 Sample Multiplier: 1 ALS Vial Integration File signal 1: autointl.e Integration File signal 2: autoint2.e Ouant Time: Jan 19 15:30:20 2011 Quant Method : C:\msdchem\1\METHODS\VPH010611.M Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004 QLast Update : Thu Jan 06 23:33:51 2011 Response via : Initial Calibration 6890 Scale Mode: Small noise peaks clipped Integrator: ChemStation Volume Inj. : Signal #2 Phase: Signal #1 Phase : Signal #2 Info : Signal #1 Info :



| - VIX                                                                                                       |                                        |                                         |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|
| MAINE ENVIRONMENTAL LABORATORY- Chain of Custody                                                            | ANALYSES LABORATORY REPORT             | REPORT #                                |
| One Main Street Yarmouth, Maine 04096-6716 (207) 846-6569 fax: (207) 846-9066<br>e-mail: melab@maine.rr.com | Delivered by                           | p A                                     |
| PROJECT MANAGER FAX # / E-MAIL                                                                              |                                        | <u>eessartooreessantooseestaaseesta</u> |
| COMPANY PURCHASE ORDER # / BILL TO                                                                          |                                        |                                         |
| ADDRESS                                                                                                     |                                        | Fedures                                 |
| PROJECT NAME<br>DEP2SAO-11<br>SAMPLER NAME                                                                  | Vector - 30                            | NCHAHGE)                                |
| SAMPLE<br>SAMPLE<br>IDENTIFICATION                                                                          | PH<br>PH                               | DRY                                     |
| GI CC DHESEHALED CC CC LARESEALAED CC ALL ALL ALL ALL ALL ALL ALL ALL ALL                                   |                                        | ATION/<br>ACTOR                         |
| ics X GW X Herler On Vor                                                                                    | X X   68856 -                          | entronaue                               |
| X X A                                                                                                       | XX                                     | R                                       |
| 16-4                                                                                                        |                                        | m                                       |
| AU-5 S X L                                                                                                  | J                                      | J                                       |
| TX DX X II Jug dig pag                                                                                      |                                        | 5                                       |
| e 1                                                                                                         |                                        |                                         |
| 7 6                                                                                                         |                                        |                                         |
| pf 1                                                                                                        |                                        |                                         |
| 8                                                                                                           |                                        |                                         |
|                                                                                                             |                                        |                                         |
|                                                                                                             |                                        |                                         |
|                                                                                                             |                                        |                                         |
| Afyes Dino DIN/A<br>Afyes Dino DIN/A                                                                        | COMMENTS<br>A IN YIGH IN BUT S         |                                         |
| Frozen ice packs                                                                                            | ser or lis contraction                 |                                         |
| RELINQUISHED BY SAMPLER: DATE TIME                                                                          |                                        |                                         |
| RELINQUISHED BY: A TOPOP DATE // TIME JS                                                                    | RECEIVED BY:                           |                                         |
| UISHED BY:                                                                                                  | RECEIVED BY LABORATORY. / W. 1/13 / 11 |                                         |
| COC-04                                                                                                      |                                        | 1 1                                     |

#### ANALYTICS SAMPLE RECEIPT CHECKLIST

| analytics | environmental<br>laboratory LLC |
|-----------|---------------------------------|
|-----------|---------------------------------|

| AEL LAB#: 68856                                                                                                                                              | COOLER NUMBER:                  | 109                                                                                         |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------|--------|
| CLIENT: MEL                                                                                                                                                  | NUMBER OF COOLERS:              |                                                                                             |        |
| PROJECT: DEP 2540-1(                                                                                                                                         | DATE RECEIVED:                  | 1/13/11                                                                                     |        |
|                                                                                                                                                              |                                 |                                                                                             |        |
| A: PRELIMINARY EXAMINATION:                                                                                                                                  | DATE COOLER OPENED:             | 1/13/11                                                                                     |        |
| 1. Cooler received by(initials):                                                                                                                             | Date Received:                  | _1/13/11_                                                                                   |        |
| 2. Circle one: (Hand delivered)                                                                                                                              | Shipped                         | , ,                                                                                         |        |
| 3. Did cooler come with a shipping slip?                                                                                                                     | Y                               | (N/R)                                                                                       |        |
| 3a. Enter carrier name and airbill number here:                                                                                                              |                                 |                                                                                             |        |
| 4. Were custody seals on the outside of cooler? Seal Date:                                                                                                   | Y Seal Name:                    | N                                                                                           |        |
| 5. Did the custody seals arrive unbroken and intact upon arrival?                                                                                            | Y                               | N/A)                                                                                        |        |
| 6. COC#:                                                                                                                                                     |                                 |                                                                                             |        |
| 7. Were Custody papers filled out properly (ink,signed, etc)?                                                                                                | $\widehat{\mathbf{Y}}$          | Ν                                                                                           |        |
| 8. Were custody papers sealed in a plastic bag?                                                                                                              | Ŷ                               | N                                                                                           |        |
| 9. Did you sign the COC in the appropriate place?                                                                                                            | $\overline{(\mathbf{\hat{r}})}$ | N                                                                                           |        |
| 10. Was the project identifiable from the COC papers?                                                                                                        | (Y)                             | N                                                                                           |        |
| 11. Was enough ice used to chill the cooler? $(Y)_N$                                                                                                         | Temp. of cooler:                | 4.60                                                                                        |        |
| B. Log-In: Date samples were logged in:                                                                                                                      | By: Uhu-                        |                                                                                             |        |
| 12. Type of packing in cooler(bubble wrap, popcorn)                                                                                                          | Ŷ                               | N L h                                                                                       |        |
| 13. Were all bottles sealed in separate plastic bags?                                                                                                        | Ý                               | (Jan 1/13/11)                                                                               | 10     |
| 14. Did all bottles arrive unbroken and were labels in good condition?                                                                                       | T CP CP 11/3                    | N MAN                                                                                       | s list |
| 15. Were all bottle labels complete(ID.Date.time.etc.)                                                                                                       | , Q-1113                        | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N |        |
| <ul> <li>16. Did all bottle labels agree with custody papers? - See Coc do</li> <li>17. Were the correct containers used for the tests indicated:</li> </ul> | ale dole (1)                    | N                                                                                           |        |
| 17. Were the correct containers used for the tests indicated:                                                                                                | (T)                             | Ν                                                                                           |        |
| 18. Were samples received at the correct pH?                                                                                                                 | Y                               | м <i>H</i>                                                                                  |        |
| 19. Was sufficient amount of sample sent for the tests indicated?                                                                                            | $\bigcirc$                      | N                                                                                           |        |
| 20. Were bubbles absent in VOA samples?                                                                                                                      | Y                               |                                                                                             |        |
| If NO. List Sample ID's and Lab #s: 68856 -                                                                                                                  | - LE, F PEASIZE<br>- ZF PEASIZE | or Lefter Bubb                                                                              | LES    |
| 68856 -                                                                                                                                                      | ZE PEASIZE                      | BURBLE                                                                                      |        |
|                                                                                                                                                              |                                 |                                                                                             |        |
| 21. Laboratory labeling verified by (initials):                                                                                                              | Date:                           | 1/13/11                                                                                     |        |
|                                                                                                                                                              |                                 |                                                                                             |        |



195 Commerce Way Suite E Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906 www.analyticslab.com

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107 Report Number: 68781 Revision: Rev. 0

#### Re: MAI 401-10

Enclosed are the results of the analyses on your sample(s). Samples were received on 03 January 2011 and analyzed for the tests listed. Samples were received in acceptable condition, with the exceptions noted below or on the chain of custody. These results pertain to samples as received by the laboratory and for the analytical tests requested on the chain of custody. The results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. Please see individual reports for specific methodologies and references.

| Lab Number | Sample Date | Station Location | Analysis                      | Comments [Variable] |
|------------|-------------|------------------|-------------------------------|---------------------|
| 68781-1    | 12/30/10    | MW3              | EPA 8260B (Halocarbons only   | )                   |
|            | 12/30/10    | MW3              | Volatile Petroleum Hydrocarbo | ons                 |
| 68781-2    | 12/30/10    | MW7              | Electronic Data Deliverable   |                     |
|            | 12/30/10    | MW7              | EPA 8260B (Halocarbons only   | )                   |
|            | 12/30/10    | MW7              | Volatile Petroleum Hydrocarbo | ons                 |
|            |             |                  |                               |                     |

#### Sample Receipt Exceptions: None

Analytics Environmental Laboratory is certified by the states of New Hampshire, Maine, Massachusetts, Connecticut, Rhode Island, Virginia, Maryland, and is accredited by the Department of Defense (DOD) ELAP program. A list of actual certified parameters is available upon request.

If you have any questions on these results, please do not hesitate to contact us.

Authorized signature \_

Stephen L. Knollmeyer Lab. Director 12/2011

Date

This report shall not be reproduced, except in full, without the written consent of Analytics Environmental Laboratory, LLC.



Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

#### CLIENT SAMPLE ID

Project Name:

MAI 401-10

**Project Number:** 

Field Sample ID: MW3

#### January 11, 2011 SAMPLE DATA

| Lab Sample ID:          | 68781-1  |
|-------------------------|----------|
| Matrix:                 | Aqueous  |
| Percent Solid:          | N/A      |
| <b>Dilution Factor:</b> | 1        |
| <b>Collection Date:</b> | 12/30/10 |
| Lab Receipt Date:       | 01/03/11 |
| Analysis Date:          | 01/07/11 |
|                         |          |

| Quantitation Limit $\mu$ g/L                                         | Result<br>μg/L                                                              | COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Quantitation Limit $\mu g/L$                                                                                                                                                                                                                                                                                                                                                                                                         | Result<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1                                                                    | U                                                                           | 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1                                                                    | U                                                                           | I,I,I-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1                                                                    | U                                                                           | 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1                                                                    | U                                                                           | 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1                                                                    | U                                                                           | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1                                                                    | U                                                                           | Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1                                                                    | U                                                                           | Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 5                                                                    | U                                                                           | Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1                                                                    | U                                                                           | 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1                                                                    | U                                                                           | 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1                                                                    | U                                                                           | 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1                                                                    | U                                                                           | 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 2                                                                    | U                                                                           | cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1                                                                    | U                                                                           | trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1                                                                    | U                                                                           | Dibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| d4-1,2-Dichloroethane 87 % d8-Toluene 103 % Bromofluorobenzene 100 % |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                      | Limit µg/L<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Limit $\mu g/L$ $\mu g/L$ 1       U         1       U         1       U         1       U         1       U         1       U         1       U         1       U         1       U         1       U         1       U         5       U         1       U         1       U         1       U         2       U         1       U         1       U         1       U         1       U         1       U         1       U         1       U         1       U         1       U | Limit µg/Lµg/LCOMPOUND1U1,2-Dichloroethane1U1,1,1-Trichloroethane1U1,1,2-Trichloroethane1U1,1,2,2-Tetrachloroethane1UChlorobenzene1UBromoform1UDichlorodifluoromethane5UTrichlorofluoromethane1U1,3-Dichlorobenzene1U1,2-Dichlorobenzene1U1,2-Dichlorobenzene1U1,2-Dichlorobenzene1U1,2-Dichlorobenzene1U1,2-Dichlorobenzene1U1,2-Dichlorobenzene1U1,2-Dichlorobenzene1U1,2-Dichloropropane2Ucis-1,3-Dichloropropene1UDibromomethane | QuantitudorResult<br>$\mu g/L$ COMPOUNDLimit $\mu g/L$ 1U1,2-Dichloroethane11U1,1.1-Trichloroethane11U1,1,2-Trichloroethane11U1,1,2-Trichloroethane11U1,1,2-Trichloroethane11U1,1,2-Trichloroethane11UChlorobenzene11UBromoform11UDichlorodifluoromethane15UTrichlorofluoromethane11U1,3-Dichlorobenzene11U1,2-Dichlorobenzene11U1,2-Dichloropropane12Ucis-1,3-Dichloropropane11Utrans-1,3-Dichloropropene11UDibromomethane1 |  |

ANALYTICAL RESULTS VOLATILE ORGANICS

METHODOLOGY: Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B.

COMMENTS:

8021HW/8260 (3):Res(30):Rec(3)

Authorized signature Mublull



MAI 401-10

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

#### CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: MW3 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

#### January 12, 2011

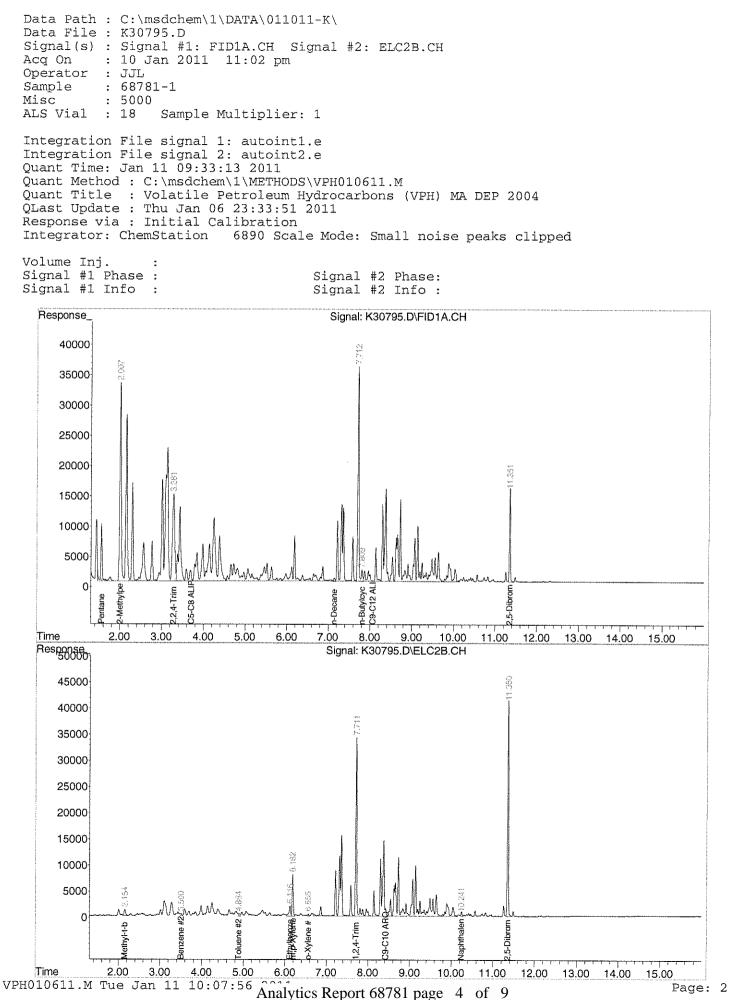
| SAMPLE DATA             |          |  |
|-------------------------|----------|--|
| Lab Sample ID:          | 68781-1  |  |
| Matrix:                 | Aqueous  |  |
| Percent Solid:          | N/A      |  |
| <b>Dilution Factor:</b> | 1        |  |
| Collection Date:        | 12/30/10 |  |
| Lab Receipt Date:       | 01/03/11 |  |
| Analysis Date:          | 01/10/11 |  |

| VPH ANALYTICAL RESULTS                       |               |    |       |         |  |  |  |
|----------------------------------------------|---------------|----|-------|---------|--|--|--|
| RANGE/TARGET ANALYTE                         | Elution Range | RL | Units | Result  |  |  |  |
| Unadjusted C5-C8 Aliphatics                  | N/A           | 50 | μg/L  | 841     |  |  |  |
| Unadjusted C9-C12 Aliphatics                 | N/A           | 50 | μg/L  | 589     |  |  |  |
| Benzene                                      | C5-C8         | 2  | μg/L  | U       |  |  |  |
| Ethylbenzene                                 | C9-C12        | 2  | μg/L  | 5       |  |  |  |
| Methyl-tert-butyl ether                      | C5-C8         | 2  | μg/L  | 7       |  |  |  |
| Naphthalene                                  | N/A           | 2  | μg/L  | U       |  |  |  |
| Toluene                                      | C5-C8         | 2  | μg/L  | 1 J     |  |  |  |
| m- & p-Xylenes                               | C9-C12        | 4  | μg/L  | 11      |  |  |  |
| o-Xylene                                     | C9-C12        | 2  | μg/L  | U       |  |  |  |
| C5-C8 Aliphatics Hydrocarbons <sup>1,2</sup> | N/A           | 50 | μg/L  | 833     |  |  |  |
| C9-C12 Aliphatic Hydrocarbons <sup>1,3</sup> | N/A           | 50 | μg/L  | 251     |  |  |  |
| C9-C10 Aromatic Hydrocarbons                 | N/A           | 10 | μg/L  | 323     |  |  |  |
| Surrogate % Recovery (2.5-Dibrom             | otoluene) PID |    |       | 89      |  |  |  |
| Surrogate % Recovery (2.5-Dibron             |               |    |       | 87      |  |  |  |
| Surrogate Acceptance Range                   |               |    |       | 70-130% |  |  |  |

<sup>2</sup>C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

<sup>3</sup>C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit


U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist.

Authorized signature: Maluell

Analytics Report 68781 page 3 of 9





Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

#### CLIENT SAMPLE ID

**Project Name:** 

MAI 401-10

**Project Number:** 

Field Sample ID: MW7

#### 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

#### January 12, 2011 SAMPLE DATA

| Lab Sample ID:    | 68781-2  |
|-------------------|----------|
| Matrix:           | Aqueous  |
| Percent Solid:    | N/A      |
| Dilution Factor:  | 1        |
| Collection Date:  | 12/30/10 |
| Lab Receipt Date: | 01/03/11 |
| Analysis Date:    | 01/10/11 |
|                   |          |

| COMPOUND                 | Quantitation Limit $\mu$ g/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result<br>µg/L               | COMPOUND                    | Quantitation<br>Limit $\mu g/L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result<br>μg/L |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Vinyl chloride           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                            | 1,2-Dichloroethane          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U              |
| 1,1-Dichloroethene       | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | U                            | 1,1,1-Trichloroethane       | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U              |
| cis-1,2-Dichloroethene   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                            | 1,1,2-Trichloroethane       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U              |
| trans-1,2-Dichloroethene | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                            | 1,1,2,2-Tetrachloroethane   | and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | U              |
| Trichloroethene          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                            | Chlorobenzene               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U              |
| Tetrachloroethene        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                            | Bromoform                   | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U              |
| Chloromethane            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                            | Dichlorodifluoromethane     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U              |
| Methylene chloride       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                            | Trichlorofluoromethane      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U              |
| Chloroform               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                            | 1,3-Dichlorobenzene         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U              |
| Carbon tetrachloride     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ú                            | 1,2-Dichlorobenzene         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U              |
| Bromodichloromethane     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                            | 1,4-Dichlorobenzene         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U              |
| Dibromochloromethane     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                            | 1,2-Dichloropropane         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U              |
| Bromomethane             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                            | cis-1,3-Dichloropropene     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U              |
| Chloroethane             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                            | trans-1,3-Dichloropropene   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U              |
| 1,1-Dichloroethane       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                            | Dibromomethane              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U              |
| d4-1,2-Dichloroethane 10 | )7 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surrogate Star<br>d8-Toluene | adard Recovery<br>102 % Bro | omofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 99 %           |
| U=Undetectec             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | eds Calibration Range B:    | =Detected in Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |

ANALYTICAL RESULTS VOLATILE ORGANICS

METHODOLOGY: Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B.

COMMENTS:

8021HW/8260 (3):Res(30):Rec(3)

Authorized signature Mulull



MAI 401-10

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

#### CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: MW7 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

#### January 12, 2011

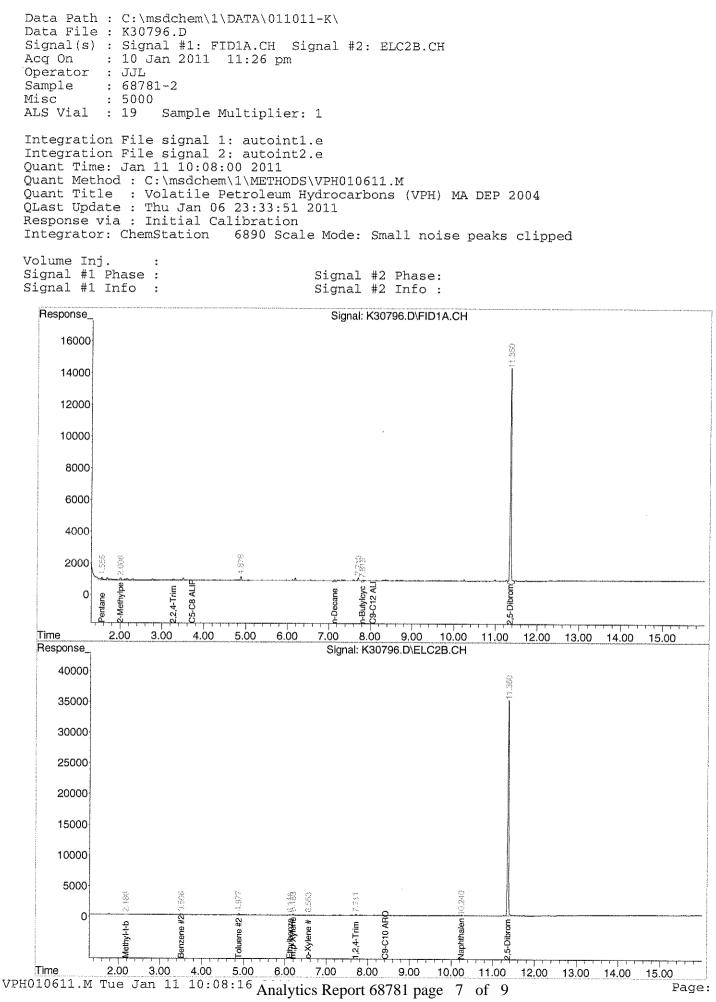
| SAM                     | IPLE DATA |
|-------------------------|-----------|
| Lab Sample ID:          | 68781-2   |
| Matrix:                 | Aqueous   |
| Percent Solid:          | N/A       |
| <b>Dilution Factor:</b> | 1         |
| <b>Collection Date:</b> | 12/30/10  |
| Lab Receipt Date:       | 01/03/11  |
| Analysis Date:          | 01/10/11  |

| VPH ANALYTICAL RESULTS                       |                     |               |                     |                                  |  |  |  |
|----------------------------------------------|---------------------|---------------|---------------------|----------------------------------|--|--|--|
| RANGE/TARGET ANALYTE                         | Elution Range       | RL            | Units               | Result                           |  |  |  |
| Unadjusted C5-C8 Aliphatics                  | N/A                 | 50            | μg/L                | U                                |  |  |  |
| Unadjusted C9-C12 Aliphatics                 | N/A                 | 50            | μg/L                | U                                |  |  |  |
| Benzene                                      | C5-C8               | 2             | μg/L                | U                                |  |  |  |
| Ethylbenzene                                 | C9-C12              | 2             | μg/L                | U                                |  |  |  |
| Methyl-tert-butyl ether                      | C5-C8               | 2             | μg/L                | U                                |  |  |  |
| Naphthalene                                  | N/A                 | 2             | μg/L                | U                                |  |  |  |
| Toluene                                      | C5-C8               | 2             | μg/L                | U                                |  |  |  |
| m- & p-Xylenes                               | C9-C12              |               | μg/L                | U                                |  |  |  |
| o-Xylene                                     | C9-C12              | 2             | μg/L                | U                                |  |  |  |
| C5-C8 Aliphatics Hydrocarbons <sup>1,2</sup> | N/A                 | 50            | μg/L                | U                                |  |  |  |
| C9-C12 Aliphatic Hydrocarbons <sup>1,3</sup> | N/A                 | 50            | μg/L                | U                                |  |  |  |
| C9-C10 Aromatic Hydrocarbons                 | N/A                 | 10            | μg/L                | U                                |  |  |  |
| Surrogate % Recovery (2,5-Dibron             | notoluene) PID      |               |                     | 77                               |  |  |  |
| Surrogate % Recovery (2.5-Dibron             | notoluene) FID      |               |                     | 80                               |  |  |  |
| Surrogate Acceptance Range                   |                     |               |                     | 70-130%                          |  |  |  |
| Hydrocarbon Range data exclude               | concentrations of a | any surrogate | (s) and/or internal | standards eluting in that range. |  |  |  |

<sup>2</sup>C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

<sup>3</sup>C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit


U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist.

Authorized signature: Mullull

Analytics Report 68781 page 6 of 9



| 999 / Add Hannesson Hannesson (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 19 |                                                                                                       | yangar<br>Sagang             | FEL                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------|
| MAINE ENVIRONN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAINE ENVIRONMENTAL LABORATORY- Chain of Custody                                                      | 本<br>MALYSES                 | LABORATORY REPORT #                            |
| One Main Street Yarmouth, Maine 04096-6716<br>e-mail: melab@main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (207) 846-65<br>e.rr.com                                                                              |                              | Dalivarad hv                                   |
| PROJECT MANAGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TELEPHONE FAX # / E-MAIL                                                                              |                              | <b>5</b>                                       |
| ٩NΥ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PURCHASE ORDER # / BILL TO                                                                            | 5.UN<br>DN8                  |                                                |
| ADRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                       | Лини                         | TURNAROUND REQUEST                             |
| PROJECT NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLER NAME                                                                                          | \$98)                        | L Priority (SURCHARGE)                         |
| )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 FIELD                                                                                               | 00                           | Quote # MEL31201CN-3S                          |
| * CONFINE<br>SAMPLE<br>IDENTIFICATION<br>IDENTIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ANDEL         BAMPLE         BAMPLING         SAMPLING           000000000000000000000000000000000000 | 728<br>1121                  | LABORATORY<br>IDENTIFICATION/<br>SUBCONTRACTOR |
| 9<br>Emk<br>tytics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 100 × GW × GW × Her/466 1250                                                                        | XX                           | 1 - 18289                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65 viol × Gw × Hci/26 12/20/0 1315                                                                    | ××                           | 2                                              |
| port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                              |                                                |
| t 687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                       |                              |                                                |
| 81 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                              |                                                |
| age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                       |                              |                                                |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                       |                              |                                                |
| of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       |                              |                                                |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                       |                              |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |                              |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |                              |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |                              | 1-1-1-M                                        |
| Received within hold time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | u no u N/A Custody seal preser                                                                        | COMMENTS                     |                                                |
| Temp. Blank °C2°/Frozen ice packs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                       | We DEPEDD (Cumberland Farms, | land Farms,                                    |
| Samples received preserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Types a no a N/A With the convertion                                                                  |                              | Washington Ave)                                |
| HELINQUISHED BY SAMPLER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DATE                                                                                                  | RECEIVED BY:                 | 1/2/1<br>1/2/11                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                    | RECEIVED BY: TU May          |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DATE TIME                                                                                             | RECEIVED BY-LABORATORY:      | )1/c/1-01-                                     |
| COC-04 2 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                       | A                            | Dage I of )                                    |

#### ANALYTICS SAMPLE RECEIPT CHECKLIST

| AEL LAB#: <u>68781</u><br>CLIENT: <u>MEL</u><br>PROJECT: <u>MAI401</u> -60 | COOLER NUMBER:<br>NUMBER OF COOLERS:<br>DATE RECEIVED: | (31<br>(<br>(-3-1) |                      |
|----------------------------------------------------------------------------|--------------------------------------------------------|--------------------|----------------------|
| A: PRELIMINARY EXAMINATION:                                                | DATE COOLER OPENED:                                    | (-3-11             | _                    |
| 1. Cooler received by(initials):                                           | Date Received:                                         | (-3-11             |                      |
| 2. Circle one: Hand delivered                                              | Shipped                                                |                    |                      |
| 3. Did cooler come with a shipping slip?                                   | Y                                                      | Ŕ                  |                      |
| 3a. Enter carrier name and airbill number here:                            |                                                        |                    | ***                  |
| 4. Were custody seals on the outside of cooler?<br>How many & where:       | Y<br>Scal Name:                                        | Ð                  |                      |
| 5. Did the custody seals arrive unbroken and intact upon arrival?          | Y                                                      | NA                 | -                    |
| 6. COC#:                                                                   |                                                        |                    |                      |
| 7. Were Custody papers filled out properly (ink,signed, etc)?              | Ŷ                                                      | N                  |                      |
| 8. Were custody papers sealed in a plastic bag?                            | Ū,                                                     | N                  |                      |
| 9. Did you sign the COC in the appropriate place?                          | Ĝ                                                      | N                  |                      |
| 10. Was the project identifiable from the COC papers?                      | Ŷ                                                      | N                  |                      |
| 11. Was enough ice used to chill the cooler? (V) N                         | Temp. of cooler:                                       | 2°                 | -                    |
| B. Log-In: Date samples were logged in:                                    | Ву:                                                    | <b>.</b>           |                      |
| 12. Type of packing in cooler(bubble wrap, popcorn)                        | Y                                                      | Ì                  |                      |
| 13. Were all bottles sealed in separate plastic bags?                      | Ś                                                      | Ν                  |                      |
| 14. Did all bottles arrive unbroken and were labels in good condition?     | Y                                                      | · · ·              | ustic top of         |
| 15. Were all bottle labels complete(ID,Date,time,etc.)                     | Ø                                                      | N N                | AMPLE MW7 15 CARCLEY |
| 16. Did all bottle labels agree with custody papers?                       | Ô                                                      | N                  | I AN LEAKING         |
| 17. Were the correct containers used for the tests indicated:              | Ĭ                                                      | N                  | I disposed of        |
| 18. Were samples received at the correct pH?                               | Y                                                      | NЛ                 | by CP 1/3/11         |
| 19. Was sufficient amount of sample sent for the tests indicated?          | Ø                                                      | Ν                  | serverely            |
| 20. Were bubbles absent in VOA samples?                                    | Ø                                                      | Ν                  | Cracked              |
| If NO, List Sample ID's and Lab #s:                                        | -                                                      |                    |                      |
|                                                                            |                                                        |                    |                      |

21. Laboratory labeling verified by (initials):

Date: 13/11



#### ANALYTICAL REPORT

| Lab Number:     | L1013912                                                       |
|-----------------|----------------------------------------------------------------|
| Client:         | MAI Environmental<br>1034 Broadway<br>South Portland, ME 04106 |
| ATTN:<br>Phone: | Paul Prescott<br>(207) 767-3663                                |
| Project Name:   | CFI WASHINGTON AVE                                             |
| Project Number: | 1047                                                           |
| Report Date:    | 09/15/10                                                       |

Certifications & Approvals: MA (M-MA030), NY (11627), CT (PH-0141), NH (2206), NJ (MA015), RI (LAO00299), ME (MA0030), PA (Registration #68-02089), LA NELAC (03090), FL NELAC (E87814), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com



| Project Name:   | CFI WASHINGTON AVE |
|-----------------|--------------------|
| Project Number: | 1047               |

 Lab Number:
 L1013912

 Report Date:
 09/15/10

| Alpha<br>Sample ID | Client ID | Sample<br>Location | Collection<br>Date/Time |
|--------------------|-----------|--------------------|-------------------------|
| L1013912-01        | SG-1      | PORTLAND, ME       | 09/07/10 11:00          |
| L1013912-02        | SG-2      | PORTLAND, ME       | 09/07/10 10:39          |
| L1013912-03        | SG-3      | PORTLAND, ME       | 09/07/10 10:18          |
| L1013912-04        | SG-5      | PORTLAND, ME       | 09/07/10 08:45          |
| L1013912-05        | SG-6      | PORTLAND, ME       | 09/07/10 09:12          |
| L1013912-06        | SG-7      | PORTLAND, ME       | 09/07/10 09:32          |
| L1013912-07        | SG-8      | PORTLAND, ME       | 09/07/10 09:58          |



Project Name: CFI WASHINGTON AVE Project Number: 1047 
 Lab Number:
 L1013912

 Report Date:
 09/15/10

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

MCP Related Narratives

Canisters were released from the laboratory on August 23, 2010. The canister certification data is provided as an addendum. The internal standards were within method criteria.

Petroleum Hydrocarbons in Air

All MCP required questions were answered with affirmative responses; therefore, there are no relevant data issues to discuss.

L1013912-01 through -04 have elevated detection limits due to the dilution required by the elevated



Project Name: CFI WASHINGTON AVE Project Number: 1047 
 Lab Number:
 L1013912

 Report Date:
 09/15/10

**Case Narrative (continued)** 

concentrations of target compounds in the sample.

L1013912-07 has elevated detection limits due to the dilution required by the elevated concentrations of nontarget compounds in the sample.

Volatile Organics in Air (TO15-LL)

TO15-LL L1013912-01 through -04 and -07 have elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

**Fixed Gases** 

L1013912-01 thru 04 and 07: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen in order to facilitate the transfer of sample to the Gas Chromatograph. The addition of Nitrogen resulted in a dilution of the sample. The reporting limits have been elevated accordingly.

L1013912-05 and 06: Prior to sample analysis, the canisters were pressurized with UHP Hydrogen in order to facilitate the transfer of sample to the Gas Chromatograph. The addition of Hydrogen resulted in a dilution of the sample. The reporting limits have been elevated accordingly.

The WG432347-3 Laboratory Duplicate RPD, performed on L1013912-01 through -04, is outside the acceptance criteria for carbon dioxide. The elevated RPD has been attributed to sample matrix. Sample and duplicate have been reanalyzed and confirm the results of the original analysis. The re-analysis has been reported.

The WG432347-7 Laboratory Duplicate RPD, performed on L1013912-05, is outside the acceptance criteria for oxygen. The elevated RPD has been attributed to sample matrix. Sample and duplicate have been reanalyzed and confirm the results of the original analysis. The re-analysis has been reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

(ib Parks Andy Rezendes

Title: Technical Director/Representative

Date: 09/15/10



# AIR



L1013912

09/15/10

Lab Number:

Report Date:

## Project Name: CFI WASHINGTON AVE

Project Number: 1047

| Lab ID:           | L1013912-01 D  | Date Collected: | 09/07/10 11:00 |
|-------------------|----------------|-----------------|----------------|
| Client ID:        | SG-1           | Date Received:  | 09/08/10       |
| Sample Location:  | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:           | Soil_Vapor     |                 |                |
| Anaytical Method: | 48,TO-15       |                 |                |
| Analytical Date:  | 09/12/10 02:10 |                 |                |
| Analyst:          | RY             |                 |                |

|                                  |                       | ppbV |     | ug/m3   |      |     |           | Dilution |
|----------------------------------|-----------------------|------|-----|---------|------|-----|-----------|----------|
| Parameter                        | Results               | RL   | MDL | Results | RL   | MDL | Qualifier | Factor   |
| Volatile Organics in Air (Low Le | evel) - Mansfield Lab | )    |     |         |      |     |           |          |
| Vinyl chloride                   | ND                    | 451. |     | ND      | 1150 |     |           | 2256     |
| 1,1-Dichloroethene               | ND                    | 451. |     | ND      | 1790 |     |           | 2256     |
| trans-1,2-Dichloroethene         | ND                    | 451. |     | ND      | 1790 |     |           | 2256     |
| 1,1-Dichloroethane               | ND                    | 451. |     | ND      | 1820 |     |           | 2256     |
| cis-1,2-Dichloroethene           | ND                    | 451. |     | ND      | 1790 |     |           | 2256     |
| 1,2-Dichloroethane               | ND                    | 451. |     | ND      | 1820 |     |           | 2256     |
| 1,1,1-Trichloroethane            | ND                    | 451. |     | ND      | 2460 |     |           | 2256     |
| Trichloroethene                  | ND                    | 451. |     | ND      | 2420 |     |           | 2256     |
| 1,2-Dibromoethane                | ND                    | 451. |     | ND      | 3460 |     |           | 2256     |
| Tetrachloroethene                | ND                    | 451. |     | ND      | 3060 |     |           | 2256     |
|                                  |                       |      |     |         |      |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 102        |           | 60-140                 |
| Bromochloromethane  | 101        |           | 60-140                 |
| chlorobenzene-d5    | 112        |           | 60-140                 |



L1013912

09/15/10

Lab Number:

Report Date:

Project Name: CFI WASHINGTON AVE

Project Number: 1047

| Lab ID:           | L1013912-02 D  | Date Collected: | 09/07/10 10:39 |
|-------------------|----------------|-----------------|----------------|
| Client ID:        | SG-2           | Date Received:  | 09/08/10       |
| Sample Location:  | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:           | Soil_Vapor     |                 |                |
| Anaytical Method: | 48,TO-15       |                 |                |
| Analytical Date:  | 09/12/10 02:43 |                 |                |
| Analyst:          | RY             |                 |                |

|                                  |                       | ppbV |     | ug/m3   |      |     |           | Dilution |
|----------------------------------|-----------------------|------|-----|---------|------|-----|-----------|----------|
| Parameter                        | Results               | RL   | MDL | Results | RL   | MDL | Qualifier | Factor   |
| Volatile Organics in Air (Low Le | evel) - Mansfield Lat | )    |     |         |      |     |           |          |
| Vinyl chloride                   | ND                    | 407. |     | ND      | 1040 |     |           | 2034     |
| 1,1-Dichloroethene               | ND                    | 407. |     | ND      | 1610 |     |           | 2034     |
| trans-1,2-Dichloroethene         | ND                    | 407. |     | ND      | 1610 |     |           | 2034     |
| 1,1-Dichloroethane               | ND                    | 407. |     | ND      | 1640 |     |           | 2034     |
| cis-1,2-Dichloroethene           | ND                    | 407. |     | ND      | 1610 |     |           | 2034     |
| 1,2-Dichloroethane               | ND                    | 407. |     | ND      | 1640 |     |           | 2034     |
| 1,1,1-Trichloroethane            | ND                    | 407. |     | ND      | 2220 |     |           | 2034     |
| Trichloroethene                  | ND                    | 407. |     | ND      | 2180 |     |           | 2034     |
| 1,2-Dibromoethane                | ND                    | 407. |     | ND      | 3120 |     |           | 2034     |
| Tetrachloroethene                | ND                    | 407. |     | ND      | 2760 |     |           | 2034     |
|                                  |                       |      |     |         |      |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 131        |           | 60-140                 |
| Bromochloromethane  | 119        |           | 60-140                 |
| chlorobenzene-d5    | 113        |           | 60-140                 |



L1013912

09/15/10

Lab Number:

Report Date:

Project Name: CFI WASHINGTON AVE

Project Number: 1047

| Lab ID:           | L1013912-03 D  | Date Collected: | 09/07/10 10:18 |
|-------------------|----------------|-----------------|----------------|
| Client ID:        | SG-3           | Date Received:  | 09/08/10       |
| Sample Location:  | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:           | Soil_Vapor     |                 |                |
| Anaytical Method: | 48,TO-15       |                 |                |
| Analytical Date:  | 09/12/10 03:16 |                 |                |
| Analyst:          | RY             |                 |                |

|                                  |                       | ppbV |     | ug/m3   |      |     |           | Dilution |
|----------------------------------|-----------------------|------|-----|---------|------|-----|-----------|----------|
| Parameter                        | Results               | RL   | MDL | Results | RL   | MDL | Qualifier | Factor   |
| Volatile Organics in Air (Low Le | evel) - Mansfield Lab | 1    |     |         |      |     |           |          |
| Vinyl chloride                   | ND                    | 469. |     | ND      | 1200 |     |           | 2343     |
| 1,1-Dichloroethene               | ND                    | 469. |     | ND      | 1860 |     |           | 2343     |
| trans-1,2-Dichloroethene         | ND                    | 469. |     | ND      | 1860 |     |           | 2343     |
| 1,1-Dichloroethane               | ND                    | 469. |     | ND      | 1900 |     |           | 2343     |
| cis-1,2-Dichloroethene           | ND                    | 469. |     | ND      | 1860 |     |           | 2343     |
| 1,2-Dichloroethane               | ND                    | 469. |     | ND      | 1900 |     |           | 2343     |
| 1,1,1-Trichloroethane            | ND                    | 469. |     | ND      | 2550 |     |           | 2343     |
| Trichloroethene                  | ND                    | 469. |     | ND      | 2520 |     |           | 2343     |
| 1,2-Dibromoethane                | ND                    | 469. |     | ND      | 3600 |     |           | 2343     |
| Tetrachloroethene                | ND                    | 469. |     | ND      | 3180 |     |           | 2343     |
|                                  |                       |      |     |         |      |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 112        |           | 60-140                 |
| Bromochloromethane  | 108        |           | 60-140                 |
| chlorobenzene-d5    | 125        |           | 60-140                 |



L1013912

09/15/10

Lab Number:

Report Date:

## Project Name: CFI WASHINGTON AVE

Project Number: 1047

| Lab ID:           | L1013912-04 D  | Date Collected: | 09/07/10 08:45 |
|-------------------|----------------|-----------------|----------------|
| Client ID:        | SG-5           | Date Received:  | 09/08/10       |
| Sample Location:  | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:           | Soil_Vapor     |                 |                |
| Anaytical Method: | 48,TO-15       |                 |                |
| Analytical Date:  | 09/12/10 03:50 |                 |                |
| Analyst:          | RY             |                 |                |

|                                  |                      | ppbV |     | ug/m3   |      |     |           | Dilution |
|----------------------------------|----------------------|------|-----|---------|------|-----|-----------|----------|
| Parameter                        | Results              | RL   | MDL | Results | RL   | MDL | Qualifier | Factor   |
| Volatile Organics in Air (Low Le | vel) - Mansfield Lab | )    |     |         |      |     |           |          |
| Vinyl chloride                   | ND                   | 429. |     | ND      | 1100 |     |           | 2144     |
| 1,1-Dichloroethene               | ND                   | 429. |     | ND      | 1700 |     |           | 2144     |
| trans-1,2-Dichloroethene         | ND                   | 429. |     | ND      | 1700 |     |           | 2144     |
| 1,1-Dichloroethane               | ND                   | 429. |     | ND      | 1730 |     |           | 2144     |
| cis-1,2-Dichloroethene           | ND                   | 429. |     | ND      | 1700 |     |           | 2144     |
| 1,2-Dichloroethane               | ND                   | 429. |     | ND      | 1730 |     |           | 2144     |
| 1,1,1-Trichloroethane            | ND                   | 429. |     | ND      | 2340 |     |           | 2144     |
| Trichloroethene                  | ND                   | 429. |     | ND      | 2300 |     |           | 2144     |
| 1,2-Dibromoethane                | ND                   | 429. |     | ND      | 3290 |     |           | 2144     |
| Tetrachloroethene                | ND                   | 429. |     | ND      | 2900 |     |           | 2144     |
|                                  |                      |      |     |         |      |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 113        |           | 60-140                 |
| Bromochloromethane  | 119        |           | 60-140                 |
| chlorobenzene-d5    | 110        |           | 60-140                 |



L1013912

09/15/10

Lab Number:

Report Date:

Project Name: CFI WASHINGTON AVE

Project Number: 1047

| Lab ID:           | L1013912-05    | Date Collected: | 09/07/10 09:12 |
|-------------------|----------------|-----------------|----------------|
| Client ID:        | SG-6           | Date Received:  | 09/08/10       |
| Sample Location:  | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:           | Soil_Vapor     |                 |                |
| Anaytical Method: | 48,TO-15       |                 |                |
| Analytical Date:  | 09/12/10 01:01 |                 |                |
| Analyst:          | RY             |                 |                |

|                                  |                      | ppbV  |     | ug/m3   |       |     |           | Dilution |
|----------------------------------|----------------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                        | Results              | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air (Low Le | vel) - Mansfield Lab | )     |     |         |       |     |           |          |
| Vinyl chloride                   | ND                   | 0.200 |     | ND      | 0.511 |     |           | 1        |
| 1,1-Dichloroethene               | ND                   | 0.200 |     | ND      | 0.792 |     |           | 1        |
| trans-1,2-Dichloroethene         | ND                   | 0.200 |     | ND      | 0.792 |     |           | 1        |
| 1,1-Dichloroethane               | ND                   | 0.200 |     | ND      | 0.809 |     |           | 1        |
| cis-1,2-Dichloroethene           | ND                   | 0.200 |     | ND      | 0.792 |     |           | 1        |
| 1,2-Dichloroethane               | ND                   | 0.200 |     | ND      | 0.809 |     |           | 1        |
| 1,1,1-Trichloroethane            | ND                   | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Trichloroethene                  | ND                   | 0.200 |     | ND      | 1.07  |     |           | 1        |
| 1,2-Dibromoethane                | ND                   | 0.200 |     | ND      | 1.54  |     |           | 1        |
| Tetrachloroethene                | 1.34                 | 0.200 |     | 9.07    | 1.36  |     |           | 1        |
|                                  |                      |       |     |         |       |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 133        |           | 60-140                 |
| Bromochloromethane  | 121        |           | 60-140                 |
| chlorobenzene-d5    | 109        |           | 60-140                 |



L1013912

09/15/10

Lab Number:

Report Date:

## Project Name: CFI WASHINGTON AVE

Project Number: 1047

| Lab ID:           | L1013912-06    | Date Collected: | 09/07/10 09:32 |
|-------------------|----------------|-----------------|----------------|
| Client ID:        | SG-7           | Date Received:  | 09/08/10       |
| Sample Location:  | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:           | Soil_Vapor     |                 |                |
| Anaytical Method: | 48,TO-15       |                 |                |
| Analytical Date:  | 09/12/10 01:37 |                 |                |
| Analyst:          | RY             |                 |                |

|                                  |                       | ppbV  |     | ug/m3   |       |     |           | Dilution |
|----------------------------------|-----------------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                        | Results               | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air (Low Le | evel) - Mansfield Lab | )     |     |         |       |     |           |          |
| Vinyl chloride                   | ND                    | 0.200 |     | ND      | 0.511 |     |           | 1        |
| 1,1-Dichloroethene               | ND                    | 0.200 |     | ND      | 0.792 |     |           | 1        |
| trans-1,2-Dichloroethene         | ND                    | 0.200 |     | ND      | 0.792 |     |           | 1        |
| 1,1-Dichloroethane               | ND                    | 0.200 |     | ND      | 0.809 |     |           | 1        |
| cis-1,2-Dichloroethene           | ND                    | 0.200 |     | ND      | 0.792 |     |           | 1        |
| 1,2-Dichloroethane               | ND                    | 0.200 |     | ND      | 0.809 |     |           | 1        |
| 1,1,1-Trichloroethane            | ND                    | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Trichloroethene                  | ND                    | 0.200 |     | ND      | 1.07  |     |           | 1        |
| 1,2-Dibromoethane                | ND                    | 0.200 |     | ND      | 1.54  |     |           | 1        |
| Tetrachloroethene                | 0.406                 | 0.200 |     | 2.75    | 1.36  |     |           | 1        |
|                                  |                       |       |     |         |       |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 98         |           | 60-140                 |
| Bromochloromethane  | 64         |           | 60-140                 |
| chlorobenzene-d5    | 88         |           | 60-140                 |



L1013912

09/15/10

Lab Number:

Report Date:

### Project Name: CFI WASHINGTON AVE

Project Number: 1047

| Lab ID:           | L1013912-07 D  | Date Collected: | 09/07/10 09:58 |
|-------------------|----------------|-----------------|----------------|
| Client ID:        | SG-8           | Date Received:  | 09/08/10       |
| Sample Location:  | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:           | Soil_Vapor     |                 |                |
| Anaytical Method: | 48,TO-15       |                 |                |
| Analytical Date:  | 09/12/10 04:24 |                 |                |
| Analyst:          | RY             |                 |                |

|                                  |                      | ppbV |     | ug/m3   |      |     |           | Dilution |
|----------------------------------|----------------------|------|-----|---------|------|-----|-----------|----------|
| Parameter                        | Results              | RL   | MDL | Results | RL   | MDL | Qualifier | Factor   |
| Volatile Organics in Air (Low Le | vel) - Mansfield Lab | )    |     |         |      |     |           |          |
| Vinyl chloride                   | ND                   | 442. |     | ND      | 1130 |     |           | 2212     |
| 1,1-Dichloroethene               | ND                   | 442. |     | ND      | 1750 |     |           | 2212     |
| trans-1,2-Dichloroethene         | ND                   | 442. |     | ND      | 1750 |     |           | 2212     |
| 1,1-Dichloroethane               | ND                   | 442. |     | ND      | 1790 |     |           | 2212     |
| cis-1,2-Dichloroethene           | ND                   | 442. |     | ND      | 1750 |     |           | 2212     |
| 1,2-Dichloroethane               | ND                   | 442. |     | ND      | 1790 |     |           | 2212     |
| 1,1,1-Trichloroethane            | ND                   | 442. |     | ND      | 2410 |     |           | 2212     |
| Trichloroethene                  | ND                   | 442. |     | ND      | 2380 |     |           | 2212     |
| 1,2-Dibromoethane                | ND                   | 442. |     | ND      | 3400 |     |           | 2212     |
| Tetrachloroethene                | ND                   | 442. |     | ND      | 3000 |     |           | 2212     |
|                                  |                      |      |     |         |      |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 112        |           | 60-140                 |
| Bromochloromethane  | 111        |           | 60-140                 |
| chlorobenzene-d5    | 105        |           | 60-140                 |



 Lab Number:
 L1013912

 Report Date:
 09/15/10

### Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 09/11/10 12:57

|                                      | ppbV          |            |          | ug/m3        |       |        |           | Dilution |
|--------------------------------------|---------------|------------|----------|--------------|-------|--------|-----------|----------|
| Parameter                            | Results       | RL         | MDL      | Results      | RL    | MDL    | Qualifier | Factor   |
| Volatile Organics in Air (Low Level) | - Mansfield L | ab for sar | mple(s): | 01-07 Batch: | WG43  | 1974-4 |           |          |
| Vinyl chloride                       | ND            | 0.200      |          | ND           | 0.511 |        |           | 1        |
| 1,1-Dichloroethene                   | ND            | 0.200      |          | ND           | 0.792 |        |           | 1        |
| trans-1,2-Dichloroethene             | ND            | 0.200      |          | ND           | 0.792 |        |           | 1        |
| 1,1-Dichloroethane                   | ND            | 0.200      |          | ND           | 0.809 |        |           | 1        |
| cis-1,2-Dichloroethene               | ND            | 0.200      |          | ND           | 0.792 |        |           | 1        |
| 1,2-Dichloroethane                   | ND            | 0.200      |          | ND           | 0.809 |        |           | 1        |
| 1,1,1-Trichloroethane                | ND            | 0.200      |          | ND           | 1.09  |        |           | 1        |
| Trichloroethene                      | ND            | 0.200      |          | ND           | 1.07  |        |           | 1        |
| 1,2-Dibromoethane                    | ND            | 0.200      |          | ND           | 1.54  |        |           | 1        |
| Tetrachloroethene                    | ND            | 0.200      |          | ND           | 1.36  |        |           | 1        |
|                                      |               |            |          |              |       |        |           |          |



## Lab Control Sample Analysis Batch Quality Control

**Project Name:** CFI WASHINGTON AVE

Project Number: 1047

Lab Number: L1013912

Report Date: 09/15/10

| Parameter                                       | LCS<br>%Recovery | LC<br>Qual %Rec    |             | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|-------------------------------------------------|------------------|--------------------|-------------|---------------------|-----|------|------------|
| Volatile Organics in Air (Low Level) - Mansfiel | d Lab Associat   | ed sample(s): 01-0 | 7 Batch: WG | 431974-3            |     |      |            |
| Vinyl chloride                                  | 102              |                    |             | 70-130              | -   |      |            |
| 1,1-Dichloroethene                              | 102              |                    | -           | 70-130              | -   |      |            |
| trans-1,2-Dichloroethene                        | 94               |                    | -           | 70-130              | -   |      |            |
| 1,1-Dichloroethane                              | 95               |                    | -           | 70-130              | -   |      |            |
| cis-1,2-Dichloroethene                          | 97               |                    | -           | 70-130              | -   |      |            |
| 1,2-Dichloroethane                              | 103              |                    | -           | 70-130              | -   |      |            |
| 1,1,1-Trichloroethane                           | 107              |                    | -           | 70-130              | -   |      |            |
| Trichloroethene                                 | 109              |                    | -           | 70-130              | -   |      |            |
| 1,2-Dibromoethane                               | 98               |                    | -           | 70-130              | -   |      |            |
| Tetrachloroethene                               | 98               |                    | -           | 70-130              | -   |      |            |



#### Lab Duplicate Analysis Batch Quality Control

Project Name: CFI WASHINGTON AVE

Project Number: 1047

Lab Number:

Lab Number: L1013912 Report Date: 09/15/10

Parameter Native Sample **Duplicate Sample** Units RPD Qual **RPD** Limits Volatile Organics in Air (Low Level) - Mansfield Lab Associated sample(s): 01-07 QC Batch ID: WG431974-5 QC Sample: L1013911-01 Client ID: DUP Sample Vinyl chloride ppbV ND ND NC 25 NC 25 1,1-Dichloroethene ND ND ppbV 25 ND ND ppbV NC trans-1,2-Dichloroethene 1,1-Dichloroethane ND ND ppbV NC 25 cis-1,2-Dichloroethene ND ND ppbV NC 25 1,2-Dichloroethane ND ND ppbV NC 25 ND ND ppbV NC 25 1,1,1-Trichloroethane Trichloroethene ND ND NC 25 ppbV 1,2-Dibromoethane ND ND NC 25 ppbV Tetrachloroethene 2.03 2.05 ppbV 25 1



|                                                                                                            |                                                                                      | Serial_No:09151016:45                                                                         |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Project Name:                                                                                              | CFI WASHINGTON AVE                                                                   | Lab Number: L1013912                                                                          |
| Project Number:                                                                                            | 1047                                                                                 | <b>Report Date:</b> 09/15/10                                                                  |
|                                                                                                            | SAMPLE RESULTS                                                                       |                                                                                               |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | L1013912-01 D<br>SG-1<br>PORTLAND, ME<br>Soil_Vapor<br>51,3C<br>09/15/10 11:20<br>AR | Date Collected:09/07/10 11:00Date Received:09/08/10Field Prep:Not SpecifiedExtraction Method: |

| Parameter                         | Result | Qualifier | Units | RL    | MDL | Dilution Factor |
|-----------------------------------|--------|-----------|-------|-------|-----|-----------------|
| Fixed Gases by GC - Mansfield Lab |        |           |       |       |     |                 |
| Oxygen                            | ND     |           | %     | 1.69  |     | 1.689           |
| Methane                           | 60.7   |           | %     | 0.169 |     | 1.689           |
| Carbon Dioxide                    | 9.76   |           | %     | 0.169 |     | 1.689           |



|                                                                                                |                                                                              |                | Serial_No:                                                             | 09151016:45                                 |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                  | CFI WASHINGTON A                                                             | /E             | Lab Number:                                                            | L1013912                                    |
| Project Number:                                                                                | 1047                                                                         |                | Report Date:                                                           | 09/15/10                                    |
|                                                                                                |                                                                              | SAMPLE RESULTS |                                                                        |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date: | L1013912-02<br>SG-2<br>PORTLAND, ME<br>Soil_Vapor<br>51,3C<br>09/15/10 12:01 | D              | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Method: | 09/07/10 10:39<br>09/08/10<br>Not Specified |

| Parameter                         | Result | Qualifier | Units | RL    | MDL | <b>Dilution Factor</b> |
|-----------------------------------|--------|-----------|-------|-------|-----|------------------------|
| Fixed Gases by GC - Mansfield Lab |        |           |       |       |     |                        |
| Oxygen                            | ND     |           | %     | 1.52  |     | 1.522                  |
| Methane                           | 64.5   |           | %     | 0.152 |     | 1.522                  |
| Carbon Dioxide                    | 8.89   |           | %     | 0.152 |     | 1.522                  |



Analyst:

AR

|                                                                                                            |                                                                                    |                | Serial_No:                                                             | 09151016:45                                 |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                              | CFI WASHINGTON AVE                                                                 |                | Lab Number:                                                            | L1013912                                    |
| Project Number:                                                                                            | 1047                                                                               |                | Report Date:                                                           | 09/15/10                                    |
|                                                                                                            |                                                                                    | SAMPLE RESULTS |                                                                        |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | L1013912-03<br>SG-3<br>PORTLAND, ME<br>Soil_Vapor<br>51,3C<br>09/15/10 12:42<br>AR | D              | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Method: | 09/07/10 10:18<br>09/08/10<br>Not Specified |

| Parameter                         | Result | Qualifier | Units | RL    | MDL | Dilution Factor |
|-----------------------------------|--------|-----------|-------|-------|-----|-----------------|
| Fixed Gases by GC - Mansfield Lab |        |           |       |       |     |                 |
| Oxygen                            | ND     |           | %     | 1.75  |     | 1.754           |
| Methane                           | 43.3   |           | %     | 0.175 |     | 1.754           |
| Carbon Dioxide                    | 15.0   |           | %     | 0.175 |     | 1.754           |



|                  |                                                                    | Serial_No                                                                      | :09151016:45                                                                                                                                                                       |
|------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CFI WASHINGTON A | VE                                                                 | Lab Number:                                                                    | L1013912                                                                                                                                                                           |
| 1047             |                                                                    | Report Date:                                                                   | 09/15/10                                                                                                                                                                           |
|                  | SAMPLE RESULTS                                                     |                                                                                |                                                                                                                                                                                    |
| L1013912-04      | D                                                                  | Date Collected:                                                                | 09/07/10 08:45                                                                                                                                                                     |
| SG-5             |                                                                    | Date Received:                                                                 | 09/08/10                                                                                                                                                                           |
| PORTLAND, ME     |                                                                    | •                                                                              | Not Specified                                                                                                                                                                      |
| Soil_Vapor       |                                                                    | Extraction Method:                                                             |                                                                                                                                                                                    |
| 51,3C            |                                                                    |                                                                                |                                                                                                                                                                                    |
| 09/15/10 13:23   |                                                                    |                                                                                |                                                                                                                                                                                    |
|                  | 1047<br>L1013912-04<br>SG-5<br>PORTLAND, ME<br>Soil_Vapor<br>51,3C | SAMPLE RESULTS<br>L1013912-04 D<br>SG-5<br>PORTLAND, ME<br>Soil_Vapor<br>51,3C | CFI WASHINGTON AVE Lab Number:<br>1047 Report Date:<br>SAMPLE RESULTS Date Collected:<br>SG-5 Date Received:<br>PORTLAND, ME Field Prep:<br>Soil_Vapor<br>51,3C Extraction Method: |

| Parameter                         | Result | Qualifier | Units | RL    | MDL | <b>Dilution Factor</b> |
|-----------------------------------|--------|-----------|-------|-------|-----|------------------------|
| Fixed Gases by GC - Mansfield Lab |        |           |       |       |     |                        |
| Oxygen                            | ND     |           | %     | 1.60  |     | 1.605                  |
| Methane                           | 0.510  |           | %     | 0.160 |     | 1.605                  |
| Carbon Dioxide                    | 18.1   |           | %     | 0.160 |     | 1.605                  |

Analyst:

AR

|                                                                                                |                                                                              |                | Serial_No:                                                             | 09151016:45                                 |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                  | CFI WASHINGTON AV                                                            | VE             | Lab Number:                                                            | L1013912                                    |
| Project Number:                                                                                | 1047                                                                         |                | Report Date:                                                           | 09/15/10                                    |
|                                                                                                |                                                                              | SAMPLE RESULTS |                                                                        |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date: | L1013912-05<br>SG-6<br>PORTLAND, ME<br>Soil_Vapor<br>51,3C<br>09/15/10 14:04 | D              | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Method: | 09/07/10 09:12<br>09/08/10<br>Not Specified |

| Parameter                         | Result | Qualifier | Units | RL    | MDL | Dilution Factor |
|-----------------------------------|--------|-----------|-------|-------|-----|-----------------|
| Fixed Gases by GC - Mansfield Lab |        |           |       |       |     |                 |
| Oxygen                            | 5.56   |           | %     | 2.05  |     | 2.049           |
| Methane                           | ND     |           | %     | 0.205 |     | 2.049           |
| Carbon Dioxide                    | 10.6   |           | %     | 0.205 |     | 2.049           |



Analyst:

AR

|                                                                            |                                                            |                | Serial_No:                                                             | 09151016:45                                 |
|----------------------------------------------------------------------------|------------------------------------------------------------|----------------|------------------------------------------------------------------------|---------------------------------------------|
| Project Name:                                                              | CFI WASHINGTON A                                           | VE             | Lab Number:                                                            | L1013912                                    |
| Project Number:                                                            | 1047                                                       |                | Report Date:                                                           | 09/15/10                                    |
|                                                                            |                                                            | SAMPLE RESULTS |                                                                        |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method: | L1013912-06<br>SG-7<br>PORTLAND, ME<br>Soil_Vapor<br>51,3C | D              | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Method: | 09/07/10 09:32<br>09/08/10<br>Not Specified |

| Parameter                         | Result | Qualifier | Units | RL    | MDL | <b>Dilution Factor</b> |
|-----------------------------------|--------|-----------|-------|-------|-----|------------------------|
| Fixed Gases by GC - Mansfield Lab |        |           |       |       |     |                        |
| Oxygen                            | 10.3   |           | %     | 1.94  |     | 1.944                  |
| Methane                           | ND     |           | %     | 0.194 |     | 1.944                  |
| Carbon Dioxide                    | 8.33   |           | %     | 0.194 |     | 1.944                  |

Analytical Date:

Analyst:

09/14/10 20:51

AR

| Project Name: | CFI WASHINGTON AVE |
|---------------|--------------------|

Project Number: 1047

### Serial\_No:09151016:45

 Lab Number:
 L1013912

 Report Date:
 09/15/10

| Lab ID:<br>Client ID:                             | L1013912-07<br>SG-8                 | D | Date Collected:<br>Date Received: | 09/07/10 09:58<br>09/08/10 |
|---------------------------------------------------|-------------------------------------|---|-----------------------------------|----------------------------|
| Sample Location:<br>Matrix:<br>Analytical Method: | PORTLAND, ME<br>Soil_Vapor<br>51,3C |   | Field Prep:<br>Extraction Method: | Not Specified              |
| Analytical Date:<br>Analyst:                      | 09/14/10 21:32<br>AR                |   |                                   |                            |

| Parameter                         | Result | Qualifier | Units | RL    | MDL | <b>Dilution Factor</b> |
|-----------------------------------|--------|-----------|-------|-------|-----|------------------------|
| Fixed Gases by GC - Mansfield Lab |        |           |       |       |     |                        |
| Oxygen                            | ND     |           | %     | 1.66  |     | 1.656                  |
| Methane                           | ND     |           | %     | 0.166 |     | 1.656                  |
| Carbon Dioxide                    | 21.5   |           | %     | 0.166 |     | 1.656                  |



Project Name:CFI WASHINGTON AVELab Number:L1013912Project Number:1047Report Date:09/15/10

### Method Blank Analysis Batch Quality Control

Analytical Method:51,3CAnalytical Date:09/15/10 10:57Analyst:AR

| Parameter                         | Result       | Qualifier   | Units  | s RL        | MDL |
|-----------------------------------|--------------|-------------|--------|-------------|-----|
| Fixed Gases by GC - Mansfield Lab | o for sample | e(s): 01-05 | Batch: | WG432347-13 |     |
| Oxygen                            | ND           |             | %      | 1.00        |     |
| Methane                           | ND           |             | %      | 0.100       |     |
| Carbon Dioxide                    | ND           |             | %      | 0.100       |     |



Project Name:CFI WASHINGTON AVELab Number:L1013912Project Number:1047Report Date:09/15/10

### Method Blank Analysis Batch Quality Control

Analytical Method:51,3CAnalytical Date:09/14/10 16:45Analyst:AR

| Parameter                         | Result     | Qualifier   | Units  | s RL       | MDL |
|-----------------------------------|------------|-------------|--------|------------|-----|
| Fixed Gases by GC - Mansfield Lab | for sample | e(s): 06-07 | Batch: | WG432347-2 |     |
| Oxygen                            | ND         |             | %      | 1.00       |     |
| Methane                           | ND         |             | %      | 0.100      |     |
| Carbon Dioxide                    | ND         |             | %      | 0.100      |     |



## Lab Control Sample Analysis Batch Quality Control

**Project Name:** CFI WASHINGTON AVE

Project Number: 1047 Lab Number: L1013912 Report Date: 09/15/10

| Parameter                         | LCS<br>%Recovery      | Qual      | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|-----------------------------------|-----------------------|-----------|-------------------|------|---------------------|-----|------|------------|
| Fixed Gases by GC - Mansfield Lab | Associated sample(s): | 01-07 Bat | ch: WG432347-1    |      |                     |     |      |            |
| Oxygen                            | 91                    |           | -                 |      | 80-120              | -   |      |            |
| Methane                           | 103                   |           | -                 |      | 80-120              | -   |      |            |
| Carbon Dioxide                    | 102                   |           | -                 |      | 80-120              | -   |      |            |

## Fixed Gases by GC - Mansfield Lab Associated sample(s): 01-07 Batch: WG432347-12

| Oxygen         | 92  | - | 80-120 | - |  |
|----------------|-----|---|--------|---|--|
| Methane        | 107 | - | 80-120 | - |  |
| Carbon Dioxide | 110 | - | 80-120 | - |  |



#### Lab Duplicate Analysis Batch Quality Control

Project Name: CFI WASHINGTON AVE

Project Number: 1047

Lab Number: L1013912 Report Date: 09/15/10

Native Sample **Duplicate Sample** Units RPD Qual **RPD** Limits Parameter Fixed Gases by GC - Mansfield Lab Associated sample(s): 01-07 QC Batch ID: WG432347-3 QC Sample: L1013912-01 Client ID: SG-1 Oxygen ND ND % NC 5 Methane 60.7 61.3 % 1 5 Carbon Dioxide 9.76 12.4 % 24 Q 5 Fixed Gases by GC - Mansfield Lab Associated sample(s): 01-07 QC Batch ID: WG432347-4 QC Sample: L1013912-02 Client ID: SG-2 ND ND % NC 5 Oxygen 64.5 64.6 % 0 5 Methane % 5 Carbon Dioxide 8.89 9.42 6 Q Fixed Gases by GC - Mansfield Lab Associated sample(s): 01-07 QC Batch ID: WG432347-5 QC Sample: L1013912-03 Client ID: SG-3 ND ND % NC 5 Oxygen Methane 43.3 43.5 % 0 5 Carbon Dioxide 15.0 13.5 % 5 11 Q Fixed Gases by GC - Mansfield Lab Associated sample(s): 01-07 QC Batch ID: WG432347-6 QC Sample: L1013912-04 Client ID: SG-5 NC 5 Oxygen ND ND % % 5 Methane 0.510 0.510 0 Carbon Dioxide 18.1 16.5 % 9 Q 5



### Lab Duplicate Analysis Batch Quality Control

Project Name: CFI WASHINGTON AVE

 Lab Number:
 L1013912

 Report Date:
 09/15/10

Project Number: 1047

| Parameter                                   | Native Sample                  | Duplicate Sample   | Units         | RPD              | RPD Limits |
|---------------------------------------------|--------------------------------|--------------------|---------------|------------------|------------|
| Fixed Gases by GC - Mansfield Lab Associate | d sample(s): 01-07 QC Batch ID | : WG432347-7 QC Sa | ample: L10139 | 912-05 Client ID | : SG-6     |
| Oxygen                                      | 5.56                           | 6.05               | %             | 8                | Q 5        |
| Methane                                     | ND                             | ND                 | %             | NC               | 5          |
| Carbon Dioxide                              | 10.6                           | 10.5               | %             | 1                | 5          |
| ixed Gases by GC - Mansfield Lab Associate  | d sample(s): 01-07 QC Batch ID | : WG432347-8 QC Sa | ample: L10139 | 912-06 Client ID | : SG-7     |
| Oxygen                                      | 10.3                           | 9.96               | %             | 3                | 5          |
| Methane                                     | ND                             | ND                 | %             | NC               | 5          |
| Carbon Dioxide                              | 8.33                           | 8.33               | %             | 0                | 5          |
| ixed Gases by GC - Mansfield Lab Associate  | d sample(s): 01-07 QC Batch ID | : WG432347-9 QC Sa | ample: L10139 | 912-07 Client ID | : SG-8     |
| Oxygen                                      | ND                             | ND                 | %             | NC               | 5          |
| Methane                                     | ND                             | ND                 | %             | NC               | 5          |
| Carbon Dioxide                              | 21.5                           | 21.5               | %             | 0                | 5          |



| Serial_No:09151016:4 |          |  |
|----------------------|----------|--|
| b Number:            | L1013912 |  |

Lab Number: Report Date:

#### Project Name: CFI WASHINGTON AVE 1047

Project Number:

| Lab ID:            | L1013912-01 D  | Date Collected: | 09/07/10 11:00 |
|--------------------|----------------|-----------------|----------------|
| Client ID:         | SG-1           | Date Received:  | 09/08/10       |
| Sample Location:   | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:            | Soil_Vapor     |                 |                |
| Analytical Method: | 96,APH         |                 |                |
| Analytical Date:   | 09/12/10 02:10 |                 |                |
| Analyst:           | AJ             |                 |                |
|                    |                |                 |                |

| Quality Control Information                                                     |                      |  |
|---------------------------------------------------------------------------------|----------------------|--|
| Sample Type:                                                                    | 200 ml/min Composite |  |
| Sample Container Type:                                                          | Canister - 2.7 Liter |  |
| Sampling Flow Controller:                                                       | Mechanical           |  |
| Sampling Zone:                                                                  | Unknown              |  |
| Sampling Flow Meter RPD of pre & post-sampling calibration check:               | <=20%                |  |
| Were all QA/QC procedures REQUIRED by the method followed?                      | Yes                  |  |
| Were all performance/acceptance standards for the required procedures achieved? | Yes                  |  |
| Were significant modifications made to the method as specified in Sect 11.1.2?  | No                   |  |
|                                                                                 |                      |  |

| Parameter                       | Result        | Qualifier | Units | RL    | MDL | Dilution Factor |
|---------------------------------|---------------|-----------|-------|-------|-----|-----------------|
| Petroleum Hydrocarbons in Air - | Mansfield Lab |           |       |       |     |                 |
| 1,3-Butadiene                   | ND            |           | ug/m3 | 4400  |     | 2200            |
| Methyl tert butyl ether         | ND            |           | ug/m3 | 4400  |     | 2200            |
| Benzene                         | 70000         |           | ug/m3 | 4400  |     | 2200            |
| Toluene                         | ND            |           | ug/m3 | 4400  |     | 2200            |
| C5-C8 Aliphatics, Adjusted      | 24000000      |           | ug/m3 | 26000 |     | 2200            |
| Ethylbenzene                    | 25000         |           | ug/m3 | 4400  |     | 2200            |
| p/m-Xylene                      | ND            |           | ug/m3 | 8800  |     | 2200            |
| o-Xylene                        | ND            |           | ug/m3 | 4400  |     | 2200            |
| Naphthalene                     | ND            |           | ug/m3 | 4400  |     | 2200            |
| C9-C12 Aliphatics, Adjusted     | 2800000       |           | ug/m3 | 31000 |     | 2200            |
| C9-C10 Aromatics Total          | 100000        |           | ug/m3 | 22000 |     | 2200            |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 103        |           | 50-200                 |
| Bromochloromethane  | 107        |           | 50-200                 |
| Chlorobenzene-d5    | 119        |           | 50-200                 |



| Serial_No:09151016:4 |          |  |
|----------------------|----------|--|
| b Number:            | L1013912 |  |

Lab Number: Report Date:

## Project Name: CFI WASHINGTON AVE

Project Number: 1047

| Lab ID:            | L1013912-02 D  | Date Collected: | 09/07/10 10:39 |
|--------------------|----------------|-----------------|----------------|
| Client ID:         | SG-2           | Date Received:  | 09/08/10       |
| Sample Location:   | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:            | Soil_Vapor     |                 |                |
| Analytical Method: | 96,APH         |                 |                |
| Analytical Date:   | 09/12/10 02:43 |                 |                |
| Analyst:           | AJ             |                 |                |
|                    |                |                 |                |

| Quality Control Information                                                     |                      |
|---------------------------------------------------------------------------------|----------------------|
| Sample Type:                                                                    | 200 ml/min Composite |
| Sample Container Type:                                                          | Canister - 2.7 Liter |
| Sampling Flow Controller:                                                       | Mechanical           |
| Sampling Zone:                                                                  | Unknown              |
| Sampling Flow Meter RPD of pre & post-sampling calibration check:               | <=20%                |
| Were all QA/QC procedures REQUIRED by the method followed?                      | Yes                  |
| Were all performance/acceptance standards for the required procedures achieved? | Yes                  |
| Were significant modifications made to the method as specified in Sect 11.1.2?  | No                   |
|                                                                                 |                      |

| Parameter                       | Result        | Qualifier | Units | RL    | MDL | <b>Dilution Factor</b> |
|---------------------------------|---------------|-----------|-------|-------|-----|------------------------|
| Petroleum Hydrocarbons in Air - | Mansfield Lab |           |       |       |     |                        |
| 1,3-Butadiene                   | ND            |           | ug/m3 | 4000  |     | 2000                   |
| Methyl tert butyl ether         | ND            |           | ug/m3 | 4000  |     | 2000                   |
| Benzene                         | 5600          |           | ug/m3 | 4000  |     | 2000                   |
| Toluene                         | ND            |           | ug/m3 | 4000  |     | 2000                   |
| C5-C8 Aliphatics, Adjusted      | 7700000       |           | ug/m3 | 24000 |     | 2000                   |
| Ethylbenzene                    | ND            |           | ug/m3 | 4000  |     | 2000                   |
| p/m-Xylene                      | ND            |           | ug/m3 | 8000  |     | 2000                   |
| o-Xylene                        | ND            |           | ug/m3 | 4000  |     | 2000                   |
| Naphthalene                     | ND            |           | ug/m3 | 4000  |     | 2000                   |
| C9-C12 Aliphatics, Adjusted     | 310000        |           | ug/m3 | 28000 |     | 2000                   |
| C9-C10 Aromatics Total          | 30000         |           | ug/m3 | 20000 |     | 2000                   |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 133        |           | 50-200                 |
| Bromochloromethane  | 132        |           | 50-200                 |
| Chlorobenzene-d5    | 117        |           | 50-200                 |



| Serial_No:09151016:4 |          |  |
|----------------------|----------|--|
| b Number:            | L1013912 |  |

Lab Number: Report Date:

#### Project Name: CFI WASHINGTON AVE 1047

Project Number:

| Lab ID:            | L1013912-03 D  | Date Collected: | 09/07/10 10:18 |
|--------------------|----------------|-----------------|----------------|
| Client ID:         | SG-3           | Date Received:  | 09/08/10       |
| Sample Location:   | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:            | Soil_Vapor     |                 |                |
| Analytical Method: | 96,APH         |                 |                |
| Analytical Date:   | 09/12/10 03:16 |                 |                |
| Analyst:           | AJ             |                 |                |
|                    |                |                 |                |

| Quality Control Information                                                     |                      |
|---------------------------------------------------------------------------------|----------------------|
| Sample Type:                                                                    | 200 ml/min Composite |
| Sample Container Type:                                                          | Canister - 2.7 Liter |
| Sampling Flow Controller:                                                       | Mechanical           |
| Sampling Zone:                                                                  | Unknown              |
| Sampling Flow Meter RPD of pre & post-sampling calibration check:               | <=20%                |
| Were all QA/QC procedures REQUIRED by the method followed?                      | Yes                  |
| Were all performance/acceptance standards for the required procedures achieved? | Yes                  |
| Were significant modifications made to the method as specified in Sect 11.1.2?  | No                   |
|                                                                                 |                      |

| Parameter                       | Result        | Qualifier | Units | RL    | MDL | Dilution Factor |
|---------------------------------|---------------|-----------|-------|-------|-----|-----------------|
| Petroleum Hydrocarbons in Air - | Mansfield Lab |           |       |       |     |                 |
| 1,3-Butadiene                   | ND            |           | ug/m3 | 4600  |     | 2300            |
| Methyl tert butyl ether         | ND            |           | ug/m3 | 4600  |     | 2300            |
| Benzene                         | 18000         |           | ug/m3 | 4600  |     | 2300            |
| Toluene                         | ND            |           | ug/m3 | 4600  |     | 2300            |
| C5-C8 Aliphatics, Adjusted      | 24000000      |           | ug/m3 | 28000 |     | 2300            |
| Ethylbenzene                    | ND            |           | ug/m3 | 4600  |     | 2300            |
| p/m-Xylene                      | ND            |           | ug/m3 | 9200  |     | 2300            |
| o-Xylene                        | ND            |           | ug/m3 | 4600  |     | 2300            |
| Naphthalene                     | ND            |           | ug/m3 | 4600  |     | 2300            |
| C9-C12 Aliphatics, Adjusted     | 710000        |           | ug/m3 | 32000 |     | 2300            |
| C9-C10 Aromatics Total          | ND            |           | ug/m3 | 23000 |     | 2300            |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 114        |           | 50-200                 |
| Bromochloromethane  | 114        |           | 50-200                 |
| Chlorobenzene-d5    | 123        |           | 50-200                 |



| Serial_N | lo:09151016:45 |
|----------|----------------|
| Number:  | L1013912       |

Lab Number: Report Date:

## Project Name: CFI WASHINGTON AVE

Project Number: 1047

| Lab ID:            | L1013912-04 D  | Date Collected: | 09/07/10 08:45 |
|--------------------|----------------|-----------------|----------------|
| Client ID:         | SG-5           | Date Received:  | 09/08/10       |
| Sample Location:   | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:            | Soil_Vapor     |                 |                |
| Analytical Method: | 96,APH         |                 |                |
| Analytical Date:   | 09/12/10 03:50 |                 |                |
| Analyst:           | AJ             |                 |                |
|                    |                |                 |                |

| Quality Control Information                                                     |                      |
|---------------------------------------------------------------------------------|----------------------|
| Sample Type:                                                                    | 200 ml/min Composite |
| Sample Container Type:                                                          | Canister - 2.7 Liter |
| Sampling Flow Controller:                                                       | Mechanical           |
| Sampling Zone:                                                                  | Unknown              |
| Sampling Flow Meter RPD of pre & post-sampling calibration check:               | <=20%                |
| Were all QA/QC procedures REQUIRED by the method followed?                      | Yes                  |
| Were all performance/acceptance standards for the required procedures achieved? | Yes                  |
| Were significant modifications made to the method as specified in Sect 11.1.2?  | No                   |
|                                                                                 |                      |

| Parameter                       | Result        | Qualifier | Units | RL    | MDL | Dilution Factor |
|---------------------------------|---------------|-----------|-------|-------|-----|-----------------|
| Petroleum Hydrocarbons in Air - | Mansfield Lab |           |       |       |     |                 |
| 1,3-Butadiene                   | ND            |           | ug/m3 | 4200  |     | 2100            |
| Methyl tert butyl ether         | ND            |           | ug/m3 | 4200  |     | 2100            |
| Benzene                         | 6700          |           | ug/m3 | 4200  |     | 2100            |
| Toluene                         | ND            |           | ug/m3 | 4200  |     | 2100            |
| C5-C8 Aliphatics, Adjusted      | 31000000      |           | ug/m3 | 25000 |     | 2100            |
| Ethylbenzene                    | ND            |           | ug/m3 | 4200  |     | 2100            |
| p/m-Xylene                      | ND            |           | ug/m3 | 8400  |     | 2100            |
| o-Xylene                        | ND            |           | ug/m3 | 4200  |     | 2100            |
| Naphthalene                     | ND            |           | ug/m3 | 4200  |     | 2100            |
| C9-C12 Aliphatics, Adjusted     | 76000         |           | ug/m3 | 29000 |     | 2100            |
| C9-C10 Aromatics Total          | ND            |           | ug/m3 | 21000 |     | 2100            |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 114        |           | 50-200                 |
| Bromochloromethane  | 129        |           | 50-200                 |
| Chlorobenzene-d5    | 116        |           | 50-200                 |



| Serial_     | _No:09151016:45 |
|-------------|-----------------|
| Lab Number: | L1013912        |

Report Date:

### Project Name: CFI WASHINGTON AVE

Project Number: 1047

| Lab ID:            | L1013912-05    |
|--------------------|----------------|
| Client ID:         | SG-6           |
| Sample Location:   | PORTLAND, ME   |
| Matrix:            | Soil_Vapor     |
| Analytical Method: | 96,APH         |
| Analytical Date:   | 09/12/10 01:01 |
| Analyst:           | AJ             |

| Date Collected: | 09/07/10 09:12 |
|-----------------|----------------|
| Date Received:  | 09/08/10       |
| Field Prep:     | Not Specified  |

| Quality Control Information                                                     |                      |  |
|---------------------------------------------------------------------------------|----------------------|--|
| Sample Type:                                                                    | 200 ml/min Composite |  |
| Sample Container Type:                                                          | Canister - 2.7 Liter |  |
| Sampling Flow Controller:                                                       | Mechanical           |  |
| Sampling Zone:                                                                  | Unknown              |  |
| Sampling Flow Meter RPD of pre & post-sampling calibration check:               | <=20%                |  |
| Were all QA/QC procedures REQUIRED by the method followed?                      | Yes                  |  |
| Were all performance/acceptance standards for the required procedures achieved? | Yes                  |  |
| Were significant modifications made to the method as specified in Sect 11.1.2?  | No                   |  |

| Parameter                       | Result        | Qualifier I | Units | RL  | MDL | <b>Dilution Factor</b> |
|---------------------------------|---------------|-------------|-------|-----|-----|------------------------|
| Petroleum Hydrocarbons in Air - | Mansfield Lab |             |       |     |     |                        |
| 1,3-Butadiene                   | ND            | u           | ıg/m3 | 2.0 |     | 1                      |
| Methyl tert butyl ether         | ND            | u           | ıg/m3 | 2.0 |     | 1                      |
| Benzene                         | ND            | u           | ıg/m3 | 2.0 |     | 1                      |
| Toluene                         | ND            | u           | ıg/m3 | 2.0 |     | 1                      |
| C5-C8 Aliphatics, Adjusted      | 60            | u           | ıg/m3 | 12  |     | 1                      |
| Ethylbenzene                    | ND            | u           | ıg/m3 | 2.0 |     | 1                      |
| p/m-Xylene                      | ND            | u           | ıg/m3 | 4.0 |     | 1                      |
| o-Xylene                        | ND            | u           | ıg/m3 | 2.0 |     | 1                      |
| Naphthalene                     | ND            | u           | ıg/m3 | 2.0 |     | 1                      |
| C9-C12 Aliphatics, Adjusted     | 24            | u           | ıg/m3 | 14  |     | 1                      |
| C9-C10 Aromatics Total          | ND            | u           | ıg/m3 | 10  |     | 1                      |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 135        |           | 50-200                 |
| Bromochloromethane  | 139        |           | 50-200                 |
| Chlorobenzene-d5    | 115        |           | 50-200                 |



| Serial_No:  | 09151016:45 |
|-------------|-------------|
| Lab Number: | L1013912    |

Report Date:

## Project Name:CFI WASHINGTON AVEProject Number:1047

| Lab ID:            | L1013912-06    |
|--------------------|----------------|
| Client ID:         | SG-7           |
| Sample Location:   | PORTLAND, ME   |
| Matrix:            | Soil_Vapor     |
| Analytical Method: | 96,APH         |
| Analytical Date:   | 09/12/10 01:37 |
| Analyst:           | AJ             |
|                    |                |

| Date Collected: | 09/07/10 09:32 |
|-----------------|----------------|
| Date Received:  | 09/08/10       |
| Field Prep:     | Not Specified  |

| Quality Control Information                                                     |                      |  |  |
|---------------------------------------------------------------------------------|----------------------|--|--|
| Sample Type:                                                                    | 200 ml/min Composite |  |  |
| Sample Container Type:                                                          | Canister - 2.7 Liter |  |  |
| Sampling Flow Controller:                                                       | Mechanical           |  |  |
| Sampling Zone:                                                                  | Unknown              |  |  |
| Sampling Flow Meter RPD of pre & post-sampling calibration check:               | <=20%                |  |  |
| Were all QA/QC procedures REQUIRED by the method followed?                      | Yes                  |  |  |
| Were all performance/acceptance standards for the required procedures achieved? | Yes                  |  |  |
| Were significant modifications made to the method as specified in Sect 11.1.2?  | No                   |  |  |

| Parameter                       | Result | Qualifier U | nits | RL  | MDL | Dilution Factor |
|---------------------------------|--------|-------------|------|-----|-----|-----------------|
| Petroleum Hydrocarbons in Air - |        |             |      |     |     | Diracon ruotor  |
|                                 |        |             |      |     |     |                 |
| 1,3-Butadiene                   | ND     | ug          | j/m3 | 2.0 |     | 1               |
| Methyl tert butyl ether         | ND     | ug          | g/m3 | 2.0 |     | 1               |
| Benzene                         | ND     | ug          | g/m3 | 2.0 |     | 1               |
| Toluene                         | ND     | ug          | g/m3 | 2.0 |     | 1               |
| C5-C8 Aliphatics, Adjusted      | 32     | uç          | g/m3 | 12  |     | 1               |
| Ethylbenzene                    | ND     | ug          | g/m3 | 2.0 |     | 1               |
| p/m-Xylene                      | ND     | ug          | g/m3 | 4.0 |     | 1               |
| o-Xylene                        | ND     | uç          | g/m3 | 2.0 |     | 1               |
| Naphthalene                     | ND     | ug          | j/m3 | 2.0 |     | 1               |
| C9-C12 Aliphatics, Adjusted     | 32     | ug          | j/m3 | 14  |     | 1               |
| C9-C10 Aromatics Total          | ND     | uc          | ı/m3 | 10  |     | 1               |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 100        |           | 50-200                 |
| Bromochloromethane  | 68         |           | 50-200                 |
| Chlorobenzene-d5    | 93         |           | 50-200                 |



| Serial_No | :09151016:45 |
|-----------|--------------|
| Number:   | L1013912     |

Lab Number: Report Date:

## Project Name: CFI WASHINGTON AVE

Project Number: 1047

| Lab ID:            | L1013912-07 D  | Date Collected: | 09/07/10 09:58 |
|--------------------|----------------|-----------------|----------------|
| Client ID:         | SG-8           | Date Received:  | 09/08/10       |
| Sample Location:   | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:            | Soil_Vapor     |                 |                |
| Analytical Method: | 96,APH         |                 |                |
| Analytical Date:   | 09/12/10 04:24 |                 |                |
| Analyst:           | AJ             |                 |                |
|                    |                |                 |                |

| Quality Control Information                                                     |                      |
|---------------------------------------------------------------------------------|----------------------|
| Sample Type:                                                                    | 200 ml/min Composite |
| Sample Container Type:                                                          | Canister - 2.7 Liter |
| Sampling Flow Controller:                                                       | Mechanical           |
| Sampling Zone:                                                                  | Unknown              |
| Sampling Flow Meter RPD of pre & post-sampling calibration check:               | <=20%                |
| Were all QA/QC procedures REQUIRED by the method followed?                      | Yes                  |
| Were all performance/acceptance standards for the required procedures achieved? | Yes                  |
| Were significant modifications made to the method as specified in Sect 11.1.2?  | No                   |
|                                                                                 |                      |

| Parameter                       | Result        | Qualifier Unit | s RL    | MDL | Dilution Factor |
|---------------------------------|---------------|----------------|---------|-----|-----------------|
| Petroleum Hydrocarbons in Air - | Mansfield Lab |                |         |     |                 |
| 1,3-Butadiene                   | ND            | ug/m           | 3 4400  |     | 2200            |
| Methyl tert butyl ether         | ND            | ug/m           | 3 4400  |     | 2200            |
| Benzene                         | ND            | ug/m           | 3 4400  |     | 2200            |
| Toluene                         | ND            | ug/m           | 3 4400  |     | 2200            |
| C5-C8 Aliphatics, Adjusted      | 1200000       | ug/m           | 3 26000 |     | 2200            |
| Ethylbenzene                    | ND            | ug/m           | 3 4400  |     | 2200            |
| p/m-Xylene                      | ND            | ug/m           | 3 8800  |     | 2200            |
| o-Xylene                        | ND            | ug/m           | 3 4400  |     | 2200            |
| Naphthalene                     | ND            | ug/m           | 3 4400  |     | 2200            |
| C9-C12 Aliphatics, Adjusted     | ND            | ug/m           | 3 31000 |     | 2200            |
| C9-C10 Aromatics Total          | ND            | ug/m           | 3 22000 |     | 2200            |

|                     |            |           | Acceptance |
|---------------------|------------|-----------|------------|
| Internal Standard   | % Recovery | Qualifier | Criteria   |
| 1,4-Difluorobenzene | 113        |           | 50-200     |
| Bromochloromethane  | 125        |           | 50-200     |
| Chlorobenzene-d5    | 111        |           | 50-200     |



L1013912

09/15/10

Lab Number:

Report Date:

Project Name: CFI WASHINGTON AVE

Project Number:

1047

### Method Blank Analysis Batch Quality Control

Analytical Method:96,APHAnalytical Date:09/11/10 12:57Analyst:AJ

| arameter                       | Result        | Qualifier      | Units | RL           | MDL   |
|--------------------------------|---------------|----------------|-------|--------------|-------|
| etroleum Hydrocarbons in Air - | Mansfield Lab | for sample(s): | 01-07 | Batch: WG431 | 975-4 |
| 1,3-Butadiene                  | ND            |                | ug/m3 | 2.0          |       |
| Methyl tert butyl ether        | ND            |                | ug/m3 | 2.0          |       |
| Benzene                        | ND            |                | ug/m3 | 2.0          |       |
| Toluene                        | ND            |                | ug/m3 | 2.0          |       |
| C5-C8 Aliphatics, Adjusted     | ND            |                | ug/m3 | 12           |       |
| Ethylbenzene                   | ND            |                | ug/m3 | 2.0          |       |
| p/m-Xylene                     | ND            |                | ug/m3 | 4.0          |       |
| o-Xylene                       | ND            |                | ug/m3 | 2.0          |       |
| Naphthalene                    | ND            |                | ug/m3 | 2.0          |       |
| C9-C12 Aliphatics, Adjusted    | ND            |                | ug/m3 | 14           |       |
| C9-C10 Aromatics Total         | ND            |                | ug/m3 | 10           |       |



## Lab Control Sample Analysis Batch Quality Control

**Project Name:** CFI WASHINGTON AVE

Project Number: 1047

Lab Number: L1013912 Report Date: 09/15/10

| arameter                                      | LCS<br>%Recovery | Qual      |       | -CSD<br>ecovery | Qual       | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|-----------------------------------------------|------------------|-----------|-------|-----------------|------------|---------------------|-----|------|------------|
| Petroleum Hydrocarbons in Air - Mansfield Lat | Associated sa    | ample(s): | 01-07 | Batch:          | WG431975-3 | 3                   |     |      |            |
| 1,3-Butadiene                                 | 90               |           |       | -               |            | 70-130              | -   |      |            |
| Methyl tert butyl ether                       | 98               |           |       | -               |            | 70-130              | -   |      |            |
| Benzene                                       | 102              |           |       | -               |            | 70-130              | -   |      |            |
| Toluene                                       | 116              |           |       | -               |            | 70-130              | -   |      |            |
| C5-C8 Aliphatics, Adjusted                    | 107              |           |       | -               |            | 70-130              | -   |      |            |
| Ethylbenzene                                  | 108              |           |       | -               |            | 70-130              | -   |      |            |
| p/m-Xylene                                    | 108              |           |       | -               |            | 70-130              | -   |      |            |
| o-Xylene                                      | 112              |           |       | -               |            | 70-130              | -   |      |            |
| Naphthalene                                   | 138              |           |       | -               |            | 50-150              | -   |      |            |
| C9-C12 Aliphatics, Adjusted                   | 118              |           |       | -               |            | 70-130              | -   |      |            |
| C9-C10 Aromatics Total                        | 101              |           |       | -               |            | 70-130              | -   |      |            |



### Lab Duplicate Analysis **Batch Quality Control**

ND

ug/m3

NC

**Project Name:** CFI WASHINGTON AVE

Project Number: 1047

Sample

Lab Number: Report Date:

L1013912 09/15/10

Parameter Native Sample **Duplicate Sample** Units RPD Qual **RPD** Limits Petroleum Hydrocarbons in Air - Mansfield Lab Associated sample(s): 01-07 QC Batch ID: WG431975-5 QC Sample: L1013911-01 Client ID: DUP ND ug/m3 NC 30 1,3-Butadiene ND Methyl tert butyl ether NC 30 ND ND ug/m3 NC 30 ND ND ug/m3 Benzene NC Toluene ND ND ug/m3 30 C5-C8 Aliphatics, Adjusted 59 57 ug/m3 3 30 Ethylbenzene ND ND ug/m3 NC 30 p/m-Xylene ND ND ug/m3 NC 30 o-Xylene ND ND ug/m3 NC 30 Naphthalene ND ND ug/m3 NC 30 C9-C12 Aliphatics, Adjusted 120 100 ug/m3 18 30

ND



30

C9-C10 Aromatics Total

**Report Date:** 09/15/10

Project Number: 1047

### **Canister and Flow Controller Information**

|           |                                                                                                              |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                  |
|-----------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client ID | Media ID                                                                                                     | Media Type                                                                                                                                                                                                                                                   | Cleaning<br>Batch ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pressure<br>(in. Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow Out<br>mL/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow In<br>mL/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | % RSD                                                                                                                                                                                                                                            |
| SG-1      | 0468                                                                                                         | #90 SV                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                |
| SG-1      | 480                                                                                                          | 2.7L Can                                                                                                                                                                                                                                                     | L1012544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -29.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                |
| SG-2      | 0327                                                                                                         | #90 SV                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                |
| SG-2      | 366                                                                                                          | 2.7L Can                                                                                                                                                                                                                                                     | L1012544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -29.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                |
| SG-3      | 0301                                                                                                         | #90 SV                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                |
| SG-3      | 1734                                                                                                         | 2.7L Can                                                                                                                                                                                                                                                     | L1012727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -29.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                |
| SG-5      | 0116                                                                                                         | #90 SV                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                |
| SG-5      | 558                                                                                                          | 2.7L Can                                                                                                                                                                                                                                                     | L1012544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                |
| SG-6      | 0369                                                                                                         | #90 SV                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                |
| SG-6      | 190                                                                                                          | 2.7L Can                                                                                                                                                                                                                                                     | L1012727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -29.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                |
| SG-7      | 0059                                                                                                         | #90 SV                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                |
| SG-7      | 207                                                                                                          | 2.7L Can                                                                                                                                                                                                                                                     | L1012544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -29.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                |
| SG-8      | 0426                                                                                                         | #90 SV                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                |
| SG-8      | 337                                                                                                          | 2.7L Can                                                                                                                                                                                                                                                     | L1012544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                |
|           | SG-1         SG-2         SG-2         SG-3         SG-3         SG-5         SG-6         SG-7         SG-8 | SG-1       0468         SG-1       480         SG-2       0327         SG-2       366         SG-3       0301         SG-3       0301         SG-5       0116         SG-5       558         SG-6       0369         SG-7       0059         SG-8       0426 | Client ID         Media ID            SG-1         0468         #90 SV           SG-1         480         2.7L Can           SG-2         0327         #90 SV           SG-2         366         2.7L Can           SG-3         0301         #90 SV           SG-3         0301         #90 SV           SG-3         0301         #90 SV           SG-3         0116         #90 SV           SG-5         558         2.7L Can           SG-6         0369         #90 SV           SG-6         190         2.7L Can           SG-7         0059         #90 SV           SG-7         207         2.7L Can           SG-8         0426         #90 SV | Client ID         Media ID         Batch ID           SG-1         0468         #90 SV           SG-1         480         2.7L Can         L1012544           SG-2         0327         #90 SV         1012544           SG-2         366         2.7L Can         L1012544           SG-3         0301         #90 SV         1012544           SG-3         0301         #90 SV         1012544           SG-3         0301         #90 SV         1012727           SG-3         0116         #90 SV         1012544           SG-5         0116         #90 SV         1012544           SG-6         0369         #90 SV         1012544           SG-6         0369         #90 SV         1012727           SG-6         0369         #90 SV         1012727           SG-7         0059         #90 SV         1012727           SG-7         207         2.7L Can         L1012544           SG-8         0426         #90 SV         1012544 | Client ID         Media ID         Media ID         Batch ID         (in. Hg)           SG-1         0468         #90 SV         -           SG-1         480         2.7L Can         L1012544         -29.5           SG-2         0327         #90 SV         -         -           SG-3         0301         #90 SV         -         -           SG-3         0301         #90 SV         -         -           SG-3         1734         2.7L Can         L1012727         -29.5           SG-5         558         2.7L Can         L1012544         -29.4           SG-6         190         2.7L Can         L1012727         -29.5           SG-7         0059         #90 SV         -         -           SG-67         0059         #90 SV         -         -           SG-7         207         2.7L Can         L1012544         < | Client ID         Media ID         Media Type         Cleaning Batch ID         Pressure (n. Hg)         on Receipt (n. Hg)           S6-1         0468         #90 SV         -         -         -           S6-1         480         2.7L Can         L1012544         -29.5         -4.4           S6-2         0327         #90 SV         -         -         -           S6-2         0327         #90 SV         -         -         -           S6-2         0327         #90 SV         -         -         -           S6-3         0301         #90 SV         -         -         -           S6-3         0301         #90 SV         -         -         -           S6-3         0301         #90 SV         -         -         -           S6-3         0116         #90 SV         -         -         -           S6-5         0116         #90 SV         -         -         -           S6-6         0369         #90 SV         -         -         -           S6-7         0059         #90 SV         -         -         -           S6-7         207         2.7L Can         L10125 | Client ID         Media ID         Media Type         Cleaning Bach ID         Presure (n. Hg)         on Receip Media ID           SG-1         0468         #90 SV         -         -         200           SG-1         480         2.7L Can         L1012544         -29.50         -4.40         -200           SG-2         0327         #90 SV         -         -         -200         -         -           SG-2         0327         #90 SV         -         -         -         200           SG-2         0327         #90 SV         -         -         -         200           SG-2         0301         #90 SV         -         -         -         200           SG-3         0301         #90 SV         -         -         -         200           SG-3         0116         #90 SV         -         -         -         -         -           SG-4         016         #90 SV         -         -         -         -         -         -         -           SG-6         0369         #90 SV         -         -         -         -         -         -         -         -         -         - | Client IDMedia IDMedia TypeCleaningPressure(n. Hg)Flow OutFlow OutSG-10468#90 SV200200SG-14802.7L CanL1012544-29.50-4.4SG-20327#90 SV200203SG-20327#90 SV200203SG-20301#90 SVSG-30301#90 SV200203203SG-30301#90 SVSG-30301#90 SV <t< td=""></t<> |



## **Air Volatiles Can Certification**

| Project Name:   | BATCH CANISTER CERTIFICATION | Lab Number:  | L1012544 |
|-----------------|------------------------------|--------------|----------|
| Project Number: | CANISTER QC BAT              | Report Date: | 09/15/10 |

| Lab ID:           | L1012544-01     | Date Collected: | 08/13/10 00:00 |
|-------------------|-----------------|-----------------|----------------|
| Client ID:        | CAN 487 SHELF 1 | Date Received:  | 08/13/10       |
| Sample Location:  |                 | Field Prep:     | Not Specified  |
| Matrix:           | Air             |                 |                |
| Anaytical Method: | 48,TO-15        |                 |                |
| Analytical Date:  | 08/19/10 18:20  |                 |                |
| Analyst:          | RY              |                 |                |

|                                    | ppbVug/m3           |       |     |         |       |     | Dilution  |        |
|------------------------------------|---------------------|-------|-----|---------|-------|-----|-----------|--------|
| Parameter                          | Results             | RL    | MDL | Results | RL    | MDL | Qualifier | Factor |
| Volatile Organics in Air (Low Leve | el) - Mansfield Lab |       |     |         |       |     |           |        |
| Chlorodifluoromethane              | ND                  | 0.200 |     | ND      | 0.707 |     |           | 1      |
| Propylene                          | ND                  | 0.200 |     | ND      | 0.344 |     |           | 1      |
| Propane                            | ND                  | 0.200 |     | ND      | 0.606 |     |           | 1      |
| Dichlorodifluoromethane            | ND                  | 0.200 |     | ND      | 0.988 |     |           | 1      |
| Chloromethane                      | ND                  | 0.200 |     | ND      | 0.413 |     |           | 1      |
| Freon-114                          | ND                  | 0.200 |     | ND      | 1.40  |     |           | 1      |
| Methanol                           | ND                  | 5.00  |     | ND      | 6.55  |     |           | 1      |
| Vinyl chloride                     | ND                  | 0.200 |     | ND      | 0.511 |     |           | 1      |
| 1,3-Butadiene                      | ND                  | 0.200 |     | ND      | 0.442 |     |           | 1      |
| Butane                             | ND                  | 0.200 |     | ND      | 0.475 |     |           | 1      |
| Bromomethane                       | ND                  | 0.200 |     | ND      | 0.776 |     |           | 1      |
| Chloroethane                       | ND                  | 0.200 |     | ND      | 0.527 |     |           | 1      |
| Ethanol                            | ND                  | 2.50  |     | ND      | 4.71  |     |           | 1      |
| Dichlorofluoromethane              | ND                  | 0.200 |     | ND      | 0.841 |     |           | 1      |
| Vinyl bromide                      | ND                  | 0.200 |     | ND      | 0.874 |     |           | 1      |
| Acrolein                           | ND                  | 0.500 |     | ND      | 1.14  |     |           | 1      |
| Acetone                            | ND                  | 1.00  |     | ND      | 2.37  |     |           | 1      |
| Acetonitrile                       | ND                  | 0.200 |     | ND      | 0.336 |     |           | 1      |
| Trichlorofluoromethane             | ND                  | 0.200 |     | ND      | 1.12  |     |           | 1      |
| Isopropanol                        | ND                  | 0.500 |     | ND      | 1.23  |     |           | 1      |
| Acrylonitrile                      | ND                  | 0.200 |     | ND      | 0.434 |     |           | 1      |
| Pentane                            | ND                  | 0.200 |     | ND      | 0.590 |     |           | 1      |
| Ethyl ether                        | ND                  | 0.200 |     | ND      | 0.606 |     |           | 1      |
| 1,1-Dichloroethene                 | ND                  | 0.200 |     | ND      | 0.792 |     |           | 1      |
| Tertiary butyl Alcohol             | ND                  | 0.500 |     | ND      | 1.52  |     |           | 1      |



# Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1012544

 Report Date:
 09/15/10

| Parameter<br>Volatile Organics in A |                     |              | ppbV  |     |         | Field I<br>ug/m3 | icp. |           | Not Specified |
|-------------------------------------|---------------------|--------------|-------|-----|---------|------------------|------|-----------|---------------|
| -                                   |                     | Results      | RL    | MDL | Results | RL               | MDL  | Qualifier | _             |
|                                     | Air (Low Level) - M | ansfield Lab | )     |     |         |                  |      |           |               |
| Methylene chloride                  |                     | ND           | 1.00  |     | ND      | 3.47             |      |           | 1             |
| 3-Chloropropene                     |                     | ND           | 0.200 |     | ND      | 0.626            |      |           | 1             |
| Carbon disulfide                    |                     | ND           | 0.200 |     | ND      | 0.622            |      |           | 1             |
| Freon-113                           |                     | ND           | 0.200 |     | ND      | 1.53             |      |           | 1             |
| trans-1,2-Dichloroethene            | 9                   | ND           | 0.200 |     | ND      | 0.792            |      |           | 1             |
| 1,1-Dichloroethane                  |                     | ND           | 0.200 |     | ND      | 0.809            |      |           | 1             |
| Methyl tert butyl ether             |                     | ND           | 0.200 |     | ND      | 0.720            |      |           | 1             |
| Vinyl acetate                       |                     | ND           | 0.200 |     | ND      | 0.704            |      |           | 1             |
| 2-Butanone                          |                     | ND           | 0.200 |     | ND      | 0.589            |      |           | 1             |
| cis-1,2-Dichloroethene              |                     | ND           | 0.200 |     | ND      | 0.792            |      |           | 1             |
| Ethyl Acetate                       |                     | ND           | 0.500 |     | ND      | 1.80             |      |           | 1             |
| Chloroform                          |                     | ND           | 0.200 |     | ND      | 0.976            |      |           | 1             |
| Tetrahydrofuran                     |                     | ND           | 0.200 |     | ND      | 0.589            |      |           | 1             |
| 2,2-Dichloropropane                 |                     | ND           | 0.200 |     | ND      | 0.923            |      |           | 1             |
| 1,2-Dichloroethane                  |                     | ND           | 0.200 |     | ND      | 0.809            |      |           | 1             |
| n-Hexane                            |                     | ND           | 0.200 |     | ND      | 0.704            |      |           | 1             |
| Diisopropyl ether                   |                     | ND           | 0.200 |     | ND      | 0.835            |      |           | 1             |
| tert-Butyl Ethyl Ether              |                     | ND           | 0.200 |     | ND      | 0.835            |      |           | 1             |
| 1,1,1-Trichloroethane               |                     | ND           | 0.200 |     | ND      | 1.09             |      |           | 1             |
| 1,1-Dichloropropene                 |                     | ND           | 0.200 |     | ND      | 0.907            |      |           | 1             |
| Benzene                             |                     | ND           | 0.200 |     | ND      | 0.638            |      |           | 1             |
| Carbon tetrachloride                |                     | ND           | 0.200 |     | ND      | 1.26             |      |           | 1             |
| Cyclohexane                         |                     | ND           | 0.200 |     | ND      | 0.688            |      |           | 1             |
| tert-Amyl Methyl Ether              |                     | ND           | 0.200 |     | ND      | 0.835            |      |           | 1             |
| Dibromomethane                      |                     | ND           | 0.200 |     | ND      | 1.42             |      |           | 1             |
| 1,2-Dichloropropane                 |                     | ND           | 0.200 |     | ND      | 0.924            |      |           | 1             |
| Bromodichloromethane                |                     | ND           | 0.200 |     | ND      | 1.34             |      |           | 1             |
| 1,4-Dioxane                         |                     | ND           | 0.200 |     | ND      | 0.720            |      |           | 1             |



# Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1012544

 Report Date:
 09/15/10

| Lab ID:<br>Client ID:<br>Sample Location: | L1012544-01<br>CAN 487 SHELF | 1<br>ррbV |       |     |         | Date Collected:<br>Date Received:<br>Field Prep:<br>ug/m3 |     |           | 08/13/10 00:0<br>08/13/10<br>Not Specified<br>Dilution<br>Factor |
|-------------------------------------------|------------------------------|-----------|-------|-----|---------|-----------------------------------------------------------|-----|-----------|------------------------------------------------------------------|
| Parameter                                 | -                            | Results   | RL    | MDL | Results | RL                                                        | MDL | Qualifier |                                                                  |
| Volatile Organics in A                    | ir (Low Level) - Ma          |           |       |     |         |                                                           |     |           |                                                                  |
| Trichloroethene                           |                              | ND        | 0.200 |     | ND      | 1.07                                                      |     |           | 1                                                                |
| 2,2,4-Trimethylpentane                    |                              | ND        | 0.200 |     | ND      | 0.934                                                     |     |           | 1                                                                |
| Heptane                                   |                              | ND        | 0.200 |     | ND      | 0.819                                                     |     |           | 1                                                                |
| 2,4,4-trimethyl-1-pentene                 |                              | ND        | 0.500 |     | ND      | 2.29                                                      |     |           | 1                                                                |
| cis-1,3-Dichloropropene                   |                              | ND        | 0.200 |     | ND      | 0.907                                                     |     |           | 1                                                                |
| 4-Methyl-2-pentanone                      |                              | ND        | 0.200 |     | ND      | 0.819                                                     |     |           | 1                                                                |
| 2,4,4-trimethyl-2-pentene                 |                              | ND        | 0.500 |     | ND      | 2.29                                                      |     |           | 1                                                                |
| trans-1,3-Dichloropropen                  | e                            | ND        | 0.200 |     | ND      | 0.907                                                     |     |           | 1                                                                |
| 1,1,2-Trichloroethane                     |                              | ND        | 0.200 |     | ND      | 1.09                                                      |     |           | 1                                                                |
| Toluene                                   |                              | ND        | 0.200 |     | ND      | 0.753                                                     |     |           | 1                                                                |
| 1,3-Dichloropropane                       |                              | ND        | 0.200 |     | ND      | 0.923                                                     |     |           | 1                                                                |
| 2-Hexanone                                |                              | ND        | 0.200 |     | ND      | 0.819                                                     |     |           | 1                                                                |
| Dibromochloromethane                      |                              | ND        | 0.200 |     | ND      | 1.70                                                      |     |           | 1                                                                |
| 1,2-Dibromoethane                         |                              | ND        | 0.200 |     | ND      | 1.54                                                      |     |           | 1                                                                |
| Butyl acetate                             |                              | ND        | 0.500 |     | ND      | 2.37                                                      |     |           | 1                                                                |
| Octane                                    |                              | ND        | 0.200 |     | ND      | 0.934                                                     |     |           | 1                                                                |
| Tetrachloroethene                         |                              | ND        | 0.200 |     | ND      | 1.36                                                      |     |           | 1                                                                |
| 1,1,1,2-Tetrachloroethane                 | 9                            | ND        | 0.200 |     | ND      | 1.37                                                      |     |           | 1                                                                |
| Chlorobenzene                             |                              | ND        | 0.200 |     | ND      | 0.920                                                     |     |           | 1                                                                |
| Ethylbenzene                              |                              | ND        | 0.200 |     | ND      | 0.868                                                     |     |           | 1                                                                |
| p/m-Xylene                                |                              | ND        | 0.400 |     | ND      | 1.74                                                      |     |           | 1                                                                |
| Bromoform                                 |                              | ND        | 0.200 |     | ND      | 2.06                                                      |     |           | 1                                                                |
| Styrene                                   |                              | ND        | 0.200 |     | ND      | 0.851                                                     |     |           | 1                                                                |
| 1,1,2,2-Tetrachloroethane                 | 9                            | ND        | 0.200 |     | ND      | 1.37                                                      |     |           | 1                                                                |
| o-Xylene                                  |                              | ND        | 0.200 |     | ND      | 0.868                                                     |     |           | 1                                                                |
| 1,2,3-Trichloropropane                    |                              | ND        | 0.200 |     | ND      | 1.20                                                      |     |           | 1                                                                |
| Nonane                                    |                              | ND        | 0.200 |     | ND      | 1.05                                                      |     |           | 1                                                                |
| Isopropylbenzene                          |                              | ND        | 0.200 |     | ND      | 0.982                                                     |     |           | 1                                                                |



# Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1012544

 Report Date:
 09/15/10

| Lab ID:<br>Client ID:<br>Sample Location: | L1012544-01<br>CAN 487 SHELI | F 1     |       |     |         |       | Collecte<br>Receive<br>Prep: |          | 08/13/10 00:00<br>08/13/10<br>Not Specified |
|-------------------------------------------|------------------------------|---------|-------|-----|---------|-------|------------------------------|----------|---------------------------------------------|
|                                           |                              |         | ppbV  |     |         | ug/m3 |                              |          | Dilution<br>Factor                          |
| Parameter                                 |                              | Results | RL    | MDL | Results | RL    | MDL                          | Qualifie |                                             |
| Volatile Organics in                      | All (LOW Level) - IM         |         |       |     |         |       |                              |          |                                             |
| Bromobenzene                              |                              | ND      | 0.200 |     | ND      | 1.28  |                              |          | 1                                           |
| 2-Chlorotoluene                           |                              | ND      | 0.200 |     | ND      | 1.03  |                              |          | 1                                           |
| n-Propylbenzene                           |                              | ND      | 0.200 |     | ND      | 0.982 |                              |          | 1                                           |
| 4-Chlorotoluene                           |                              | ND      | 0.200 |     | ND      | 1.03  |                              |          | 1                                           |
| 4-Ethyltoluene                            |                              | ND      | 0.200 |     | ND      | 0.982 |                              |          | 1                                           |
| 1,3,5-Trimethybenzene                     |                              | ND      | 0.200 |     | ND      | 0.982 |                              |          | 1                                           |
| tert-Butylbenzene                         |                              | ND      | 0.200 |     | ND      | 1.10  |                              |          | 1                                           |
| 1,2,4-Trimethylbenzene                    |                              | ND      | 0.200 |     | ND      | 0.982 |                              |          | 1                                           |
| Decane                                    |                              | ND      | 0.200 |     | ND      | 1.16  |                              |          | 1                                           |
| Benzyl chloride                           |                              | ND      | 0.200 |     | ND      | 1.03  |                              |          | 1                                           |
| 1,3-Dichlorobenzene                       |                              | ND      | 0.200 |     | ND      | 1.20  |                              |          | 1                                           |
| 1,4-Dichlorobenzene                       |                              | ND      | 0.200 |     | ND      | 1.20  |                              |          | 1                                           |
| sec-Butylbenzene                          |                              | ND      | 0.200 |     | ND      | 1.10  |                              |          | 1                                           |
| p-Isopropyltoluene                        |                              | ND      | 0.200 |     | ND      | 1.10  |                              |          | 1                                           |
| 1,2-Dichlorobenzene                       |                              | ND      | 0.200 |     | ND      | 1.20  |                              |          | 1                                           |
| n-Butylbenzene                            |                              | ND      | 0.200 |     | ND      | 1.10  |                              |          | 1                                           |
| 1,2-Dibromo-3-chloropro                   | opane                        | ND      | 0.200 |     | ND      | 1.93  |                              |          | 1                                           |
| Undecane                                  |                              | ND      | 0.200 |     | ND      | 1.28  |                              |          | 1                                           |
| Dodecane                                  |                              | ND      | 0.200 |     | ND      | 1.39  |                              |          | 1                                           |
| 1,2,4-Trichlorobenzene                    |                              | ND      | 0.200 |     | ND      | 1.48  |                              |          | 1                                           |
| Naphthalene                               |                              | ND      | 0.200 |     | ND      | 1.05  |                              |          | 1                                           |
| 1,2,3-Trichlorobenzene                    |                              | ND      | 0.200 |     | ND      | 1.48  |                              |          | 1                                           |
| Hexachlorobutadiene                       |                              | ND      | 0.200 |     | ND      | 2.13  |                              |          | 1                                           |
|                                           |                              |         |       |     |         |       |                              |          |                                             |



|                      |                      |              |           |             |           |        | Serial    | _No:091  | 51016:45       |
|----------------------|----------------------|--------------|-----------|-------------|-----------|--------|-----------|----------|----------------|
| Project Name:        | BATCH CANISTE        | R CERTIFI    | ICATION   |             |           | Lab I  | Number    | :        | L1012544       |
| Project Number:      | CANISTER QC B        | AT           |           |             |           | Repo   | ort Date  | :        | 09/15/10       |
|                      |                      | Air C        | anister C | ertificatio | n Results |        |           |          |                |
| Lab ID:              | L1012544-01          |              |           |             |           | Date ( | Collected | d:       | 08/13/10 00:00 |
| Client ID:           | CAN 487 SHELF        | 1            |           |             |           | Date I | Receive   | d:       | 08/13/10       |
| Sample Location:     |                      |              |           |             |           | Field  | Prep:     |          | Not Specified  |
|                      |                      |              | ppbV      |             |           | ug/m3  |           |          | Dilution       |
| Parameter            |                      | Results      | RL        | MDL         | Results   | RL     | MDL       | Qualifie | r Factor       |
| Volatile Organics in | Air (Low Level) - Ma | ansfield Lat | C         |             |           |        |           |          |                |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 93         |           | 60-140                 |
| Bromochloromethane  | 104        |           | 60-140                 |
| chlorobenzene-d5    | 101        |           | 60-140                 |



L1012544

09/15/10

| Project Name:   | BATCH CANISTER CERTIFICATION | Lab Number:  |
|-----------------|------------------------------|--------------|
| Project Number: | CANISTER QC BAT              | Report Date: |

| Lab ID:           | L1012544-01     | Date Collected: | 08/13/10 00:00 |
|-------------------|-----------------|-----------------|----------------|
| Client ID:        | CAN 487 SHELF 1 | Date Received:  | 08/13/10       |
| Sample Location:  |                 | Field Prep:     | Not Specified  |
| Matrix:           | Air             |                 |                |
| Anaytical Method: | 48,TO-15-SIM    |                 |                |
| Analytical Date:  | 08/19/10 18:20  |                 |                |
| Analyst:          | RY              |                 |                |

|                                 |                 | ррьV  |     |         | ug/m3 |     | Dilution  |        |
|---------------------------------|-----------------|-------|-----|---------|-------|-----|-----------|--------|
| Parameter                       | Results         | RL    | MDL | Results | RL    | MDL | Qualifier | Factor |
| Volatile Organics in Air by SIM | - Mansfield Lab |       |     |         |       |     |           |        |
| Dichlorodifluoromethane         | ND              | 0.050 |     | ND      | 0.247 |     |           | 1      |
| Chloromethane                   | ND              | 0.500 |     | ND      | 1.03  |     |           | 1      |
| Freon-114                       | ND              | 0.050 |     | ND      | 0.349 |     |           | 1      |
| Vinyl chloride                  | ND              | 0.020 |     | ND      | 0.051 |     |           | 1      |
| 1,3-Butadiene                   | ND              | 0.020 |     | ND      | 0.044 |     |           | 1      |
| Bromomethane                    | ND              | 0.020 |     | ND      | 0.078 |     |           | 1      |
| Chloroethane                    | ND              | 0.020 |     | ND      | 0.053 |     |           | 1      |
| Acetone                         | ND              | 2.00  |     | ND      | 4.75  |     |           | 1      |
| Trichlorofluoromethane          | ND              | 0.050 |     | ND      | 0.281 |     |           | 1      |
| Acrylonitrile                   | ND              | 0.500 |     | ND      | 1.08  |     |           | 1      |
| 1,1-Dichloroethene              | ND              | 0.020 |     | ND      | 0.079 |     |           | 1      |
| Methylene chloride              | ND              | 1.00  |     | ND      | 3.47  |     |           | 1      |
| Freon-113                       | ND              | 0.050 |     | ND      | 0.383 |     |           | 1      |
| Halothane                       | ND              | 0.050 |     | ND      | 0.403 |     |           | 1      |
| trans-1,2-Dichloroethene        | ND              | 0.020 |     | ND      | 0.079 |     |           | 1      |
| 1,1-Dichloroethane              | ND              | 0.020 |     | ND      | 0.081 |     |           | 1      |
| Methyl tert butyl ether         | ND              | 0.020 |     | ND      | 0.072 |     |           | 1      |
| 2-Butanone                      | ND              | 0.500 |     | ND      | 1.47  |     |           | 1      |
| cis-1,2-Dichloroethene          | ND              | 0.020 |     | ND      | 0.079 |     |           | 1      |
| Chloroform                      | ND              | 0.020 |     | ND      | 0.098 |     |           | 1      |
| 1,2-Dichloroethane              | ND              | 0.020 |     | ND      | 0.081 |     |           | 1      |
| 1,1,1-Trichloroethane           | ND              | 0.020 |     | ND      | 0.109 |     |           | 1      |
| Benzene                         | ND              | 0.100 |     | ND      | 0.319 |     |           | 1      |
| Carbon tetrachloride            | ND              | 0.020 |     | ND      | 0.126 |     |           | 1      |
| 1,2-Dichloropropane             | ND              | 0.020 |     | ND      | 0.092 |     |           | 1      |



# Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1012544

 Report Date:
 09/15/10

| Lab ID:L1012544-0Client ID:CAN 487 SHSample Location: |                     | F 1<br>ррьV |       |     | Date Collected:<br>Date Received:<br>Field Prep:<br>ug/m3 |       |     | 08/13/10 00:00<br>08/13/10<br>Not Specified<br>Dilution |          |
|-------------------------------------------------------|---------------------|-------------|-------|-----|-----------------------------------------------------------|-------|-----|---------------------------------------------------------|----------|
| Parameter                                             |                     | Results     | RL    | MDL | Results                                                   | RL    | MDL | Qualifier                                               | <b>F</b> |
| Volatile Organics in A                                | ir by SIM - Mansfie | eld Lab     |       |     |                                                           |       |     |                                                         |          |
| Bromodichloromethane                                  |                     | ND          | 0.020 |     | ND                                                        | 0.134 |     |                                                         | 1        |
| Trichloroethene                                       |                     | ND          | 0.020 |     | ND                                                        | 0.107 |     |                                                         | 1        |
| 1,4-Dioxane                                           |                     | ND          | 0.100 |     | ND                                                        | 0.360 |     |                                                         | 1        |
| cis-1,3-Dichloropropene                               |                     | ND          | 0.020 |     | ND                                                        | 0.091 |     |                                                         | 1        |
| 4-Methyl-2-pentanone                                  |                     | ND          | 0.500 |     | ND                                                        | 2.05  |     |                                                         | 1        |
| trans-1,3-Dichloropropene                             | e                   | ND          | 0.020 |     | ND                                                        | 0.091 |     |                                                         | 1        |
| 1,1,2-Trichloroethane                                 |                     | ND          | 0.020 |     | ND                                                        | 0.109 |     |                                                         | 1        |
| Toluene                                               |                     | ND          | 0.020 |     | ND                                                        | 0.075 |     |                                                         | 1        |
| Dibromochloromethane                                  |                     | ND          | 0.020 |     | ND                                                        | 0.170 |     |                                                         | 1        |
| 1,2-Dibromoethane                                     |                     | ND          | 0.020 |     | ND                                                        | 0.154 |     |                                                         | 1        |
| Tetrachloroethene                                     |                     | ND          | 0.020 |     | ND                                                        | 0.136 |     |                                                         | 1        |
| 1,1,1,2-Tetrachloroethane                             | e                   | ND          | 0.020 |     | ND                                                        | 0.137 |     |                                                         | 1        |
| Chlorobenzene                                         |                     | ND          | 0.020 |     | ND                                                        | 0.092 |     |                                                         | 1        |
| Ethylbenzene                                          |                     | ND          | 0.020 |     | ND                                                        | 0.087 |     |                                                         | 1        |
| p/m-Xylene                                            |                     | ND          | 0.040 |     | ND                                                        | 0.174 |     |                                                         | 1        |
| Bromoform                                             |                     | ND          | 0.020 |     | ND                                                        | 0.206 |     |                                                         | 1        |
| Styrene                                               |                     | ND          | 0.020 |     | ND                                                        | 0.085 |     |                                                         | 1        |
| 1,1,2,2-Tetrachloroethane                             | e                   | ND          | 0.020 |     | ND                                                        | 0.137 |     |                                                         | 1        |
| o-Xylene                                              |                     | ND          | 0.020 |     | ND                                                        | 0.087 |     |                                                         | 1        |
| Isopropylbenzene                                      |                     | ND          | 0.500 |     | ND                                                        | 2.46  |     |                                                         | 1        |
| 1,3,5-Trimethybenzene                                 |                     | ND          | 0.020 |     | ND                                                        | 0.098 |     |                                                         | 1        |
| 1,2,4-Trimethylbenzene                                |                     | ND          | 0.020 |     | ND                                                        | 0.098 |     |                                                         | 1        |
| 1,3-Dichlorobenzene                                   |                     | ND          | 0.020 |     | ND                                                        | 0.120 |     |                                                         | 1        |
| 1,4-Dichlorobenzene                                   |                     | ND          | 0.020 |     | ND                                                        | 0.120 |     |                                                         | 1        |
| sec-Butylbenzene                                      |                     | ND          | 0.500 |     | ND                                                        | 2.74  |     |                                                         | 1        |
| p-Isopropyltoluene                                    |                     | ND          | 0.500 |     | ND                                                        | 2.74  |     |                                                         | 1        |
| 1,2-Dichlorobenzene                                   |                     | ND          | 0.020 |     | ND                                                        | 0.120 |     |                                                         | 1        |
| n-Butylbenzene                                        |                     | ND          | 0.500 |     | ND                                                        | 2.74  |     |                                                         | 1        |



| Project Name:   | BATCH CANISTER CERTIFICATION |
|-----------------|------------------------------|
| Project Number: | CANISTER QC BAT              |

 Lab Number:
 L1012544

 Report Date:
 09/15/10

| Lab ID:L1012544-01Client ID:CAN 487 SHELF 1Sample Location:mak/ |                       |         |       |     | Date Collected:<br>Date Received:<br>Field Prep: |       |     | 08/13/10 00:00<br>08/13/10<br>Not Specified |            |  |
|-----------------------------------------------------------------|-----------------------|---------|-------|-----|--------------------------------------------------|-------|-----|---------------------------------------------|------------|--|
|                                                                 |                       | ppbV    |       |     |                                                  | ug/m3 |     |                                             | Dilution   |  |
| Parameter                                                       |                       | Results | RL    | MDL | Results                                          | RL    | MDL | Qualifier                                   | ier Factor |  |
| Volatile Organics i                                             | in Air by SIM - Mansf | eld Lab |       |     |                                                  |       |     |                                             |            |  |
| 1,2,4-Trichlorobenzer                                           | ne                    | ND      | 0.050 |     | ND                                               | 0.371 |     |                                             | 1          |  |
| Naphthalene                                                     |                       | ND      | 0.050 |     | ND                                               | 0.262 |     |                                             | 1          |  |
| 1,2,3-Trichlorobenzer                                           | ne                    | ND      | 0.050 |     | ND                                               | 0.371 |     |                                             | 1          |  |
| Hexachlorobutadiene                                             | 1                     | ND      | 0.050 |     | ND                                               | 0.533 |     |                                             | 1          |  |



|                  |                |          |           |             |            |         | Serial    | _No:0915  | 51016:45       |
|------------------|----------------|----------|-----------|-------------|------------|---------|-----------|-----------|----------------|
| Project Name:    | BATCH CANISTE  | R CERTIF | ICATION   |             |            | Lab N   | lumber    | : L       | .1012544       |
| Project Number:  | CANISTER QC BA | λT       |           |             |            | Repo    | rt Date   | : c       | 9/15/10        |
|                  |                | Air C    | anister C | ertificatio | on Results |         |           |           |                |
| Lab ID:          | L1012544-01    |          |           |             |            | Date (  | Collected | d:        | 08/13/10 00:00 |
| Client ID:       | CAN 487 SHELF  | 1        |           |             |            | Date F  | Receive   | d:        | 08/13/10       |
| Sample Location: |                |          |           |             |            | Field F | Prep:     |           | Not Specified  |
|                  |                |          | ppbV      |             |            | ug/m3   |           |           | Dilution       |
| Parameter        |                | Results  | RL        | MDL         | Results    | RL      | MDL       | Qualifier | Factor         |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-difluorobenzene | 90         |           | 60-140                 |
| bromochloromethane  | 101        |           | 60-140                 |
| chlorobenzene-d5    | 99         |           | 60-140                 |



| Project Name:   | BATCH CANISTER CERTIFICATION | Lab Number:  | L1012727 |
|-----------------|------------------------------|--------------|----------|
| Project Number: | CANISTER QC BAT              | Report Date: | 09/15/10 |
|                 |                              |              |          |

| Lab ID:           | L1012727-01     | Date Collected: | 08/18/10 00:00 |
|-------------------|-----------------|-----------------|----------------|
| Client ID:        | CAN 223 SHELF 2 | Date Received:  | 08/18/10       |
| Sample Location:  |                 | Field Prep:     | Not Specified  |
| Matrix:           | Air             |                 |                |
| Anaytical Method: | 48,TO-15        |                 |                |
| Analytical Date:  | 08/19/10 20:12  |                 |                |
| Analyst:          | RY              |                 |                |

|                                   |                      | ppbV  |     |         | ug/m3 |     | Dilution  |        |
|-----------------------------------|----------------------|-------|-----|---------|-------|-----|-----------|--------|
| Parameter                         | Results              | RL    | MDL | Results | RL    | MDL | Qualifier | Factor |
| Volatile Organics in Air (Low Lev | vel) - Mansfield Lab | ı.    |     |         |       |     |           |        |
| Chlorodifluoromethane             | ND                   | 0.200 |     | ND      | 0.707 |     |           | 1      |
| Propylene                         | ND                   | 0.200 |     | ND      | 0.344 |     |           | 1      |
| Propane                           | ND                   | 0.200 |     | ND      | 0.606 |     |           | 1      |
| Dichlorodifluoromethane           | ND                   | 0.200 |     | ND      | 0.988 |     |           | 1      |
| Chloromethane                     | ND                   | 0.200 |     | ND      | 0.413 |     |           | 1      |
| Freon-114                         | ND                   | 0.200 |     | ND      | 1.40  |     |           | 1      |
| Methanol                          | ND                   | 5.00  |     | ND      | 6.55  |     |           | 1      |
| Vinyl chloride                    | ND                   | 0.200 |     | ND      | 0.511 |     |           | 1      |
| 1,3-Butadiene                     | ND                   | 0.200 |     | ND      | 0.442 |     |           | 1      |
| Butane                            | ND                   | 0.200 |     | ND      | 0.475 |     |           | 1      |
| Bromomethane                      | ND                   | 0.200 |     | ND      | 0.776 |     |           | 1      |
| Chloroethane                      | ND                   | 0.200 |     | ND      | 0.527 |     |           | 1      |
| Ethanol                           | ND                   | 2.50  |     | ND      | 4.71  |     |           | 1      |
| Dichlorofluoromethane             | ND                   | 0.200 |     | ND      | 0.841 |     |           | 1      |
| Vinyl bromide                     | ND                   | 0.200 |     | ND      | 0.874 |     |           | 1      |
| Acrolein                          | ND                   | 0.500 |     | ND      | 1.14  |     |           | 1      |
| Acetone                           | ND                   | 1.00  |     | ND      | 2.37  |     |           | 1      |
| Acetonitrile                      | ND                   | 0.200 |     | ND      | 0.336 |     |           | 1      |
| Trichlorofluoromethane            | ND                   | 0.200 |     | ND      | 1.12  |     |           | 1      |
| Isopropanol                       | ND                   | 0.500 |     | ND      | 1.23  |     |           | 1      |
| Acrylonitrile                     | ND                   | 0.200 |     | ND      | 0.434 |     |           | 1      |
| Pentane                           | ND                   | 0.200 |     | ND      | 0.590 |     |           | 1      |
| Ethyl ether                       | ND                   | 0.200 |     | ND      | 0.606 |     |           | 1      |
| I,1-Dichloroethene                | ND                   | 0.200 |     | ND      | 0.792 |     |           | 1      |
| Tertiary butyl Alcohol            | ND                   | 0.500 |     | ND      | 1.52  |     |           | 1      |



# Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1012727

 Report Date:
 09/15/10

| Lab ID:<br>Client ID:<br>Sample Location: | L1012727-01<br>CAN 223 SHELI | = 2     | ppbV  |     |         | Date Collected:<br>Date Received:<br>Field Prep: |     |           | 08/18/10 00:00<br>08/18/10<br>Not Specified |
|-------------------------------------------|------------------------------|---------|-------|-----|---------|--------------------------------------------------|-----|-----------|---------------------------------------------|
| Parameter                                 |                              | Results | RL    | MDL | Results | ug/m3<br>RL                                      | MDL | Qualifier | Dilution<br>Factor                          |
| Volatile Organics in A                    | Air (Low Level) - M          |         |       | MDE |         |                                                  |     |           |                                             |
| Methylene chloride                        |                              | ND      | 1.00  |     | ND      | 3.47                                             |     |           | 1                                           |
| 3-Chloropropene                           |                              | ND      | 0.200 |     | ND      | 0.626                                            |     |           | 1                                           |
| Carbon disulfide                          |                              | ND      | 0.200 |     | ND      | 0.622                                            |     |           | 1                                           |
| Freon-113                                 |                              | ND      | 0.200 |     | ND      | 1.53                                             |     |           | 1                                           |
| trans-1,2-Dichloroethene                  |                              | ND      | 0.200 |     | ND      | 0.792                                            |     |           | 1                                           |
| 1,1-Dichloroethane                        |                              | ND      | 0.200 |     | ND      | 0.809                                            |     |           | 1                                           |
| Methyl tert butyl ether                   |                              | ND      | 0.200 |     | ND      | 0.720                                            |     |           | 1                                           |
| Vinyl acetate                             |                              | ND      | 0.200 |     | ND      | 0.704                                            |     |           | 1                                           |
| 2-Butanone                                |                              | ND      | 0.200 |     | ND      | 0.589                                            |     |           | 1                                           |
| cis-1,2-Dichloroethene                    |                              | ND      | 0.200 |     | ND      | 0.792                                            |     |           | 1                                           |
| Ethyl Acetate                             |                              | ND      | 0.500 |     | ND      | 1.80                                             |     |           | 1                                           |
| Chloroform                                |                              | ND      | 0.200 |     | ND      | 0.976                                            |     |           | 1                                           |
| Tetrahydrofuran                           |                              | ND      | 0.200 |     | ND      | 0.589                                            |     |           | 1                                           |
| 2,2-Dichloropropane                       |                              | ND      | 0.200 |     | ND      | 0.923                                            |     |           | 1                                           |
| 1,2-Dichloroethane                        |                              | ND      | 0.200 |     | ND      | 0.809                                            |     |           | 1                                           |
| n-Hexane                                  |                              | ND      | 0.200 |     | ND      | 0.704                                            |     |           | 1                                           |
| Diisopropyl ether                         |                              | ND      | 0.200 |     | ND      | 0.835                                            |     |           | 1                                           |
| tert-Butyl Ethyl Ether                    |                              | ND      | 0.200 |     | ND      | 0.835                                            |     |           | 1                                           |
| 1,1,1-Trichloroethane                     |                              | ND      | 0.200 |     | ND      | 1.09                                             |     |           | 1                                           |
| 1,1-Dichloropropene                       |                              | ND      | 0.200 |     | ND      | 0.907                                            |     |           | 1                                           |
| Benzene                                   |                              | ND      | 0.200 |     | ND      | 0.638                                            |     |           | 1                                           |
| Carbon tetrachloride                      |                              | ND      | 0.200 |     | ND      | 1.26                                             |     |           | 1                                           |
| Cyclohexane                               |                              | ND      | 0.200 |     | ND      | 0.688                                            |     |           | 1                                           |
| tert-Amyl Methyl Ether                    |                              | ND      | 0.200 |     | ND      | 0.835                                            |     |           | 1                                           |
| Dibromomethane                            |                              | ND      | 0.200 |     | ND      | 1.42                                             |     |           | 1                                           |
| 1,2-Dichloropropane                       |                              | ND      | 0.200 |     | ND      | 0.924                                            |     |           | 1                                           |
| Bromodichloromethane                      |                              | ND      | 0.200 |     | ND      | 1.34                                             |     |           | 1                                           |
| 1,4-Dioxane                               |                              | ND      | 0.200 |     | ND      | 0.720                                            |     |           | 1                                           |



# Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1012727

 Report Date:
 09/15/10

| Parameter<br>Volatile Organics in A<br>Trichloroethene<br>2,2,4-Trimethylpentane | Air (Low Level) - M | Results<br>Aansfield Lab | ppbV<br>RL | MDL |         | ug/m3 |     | Date Collected:<br>Date Received:<br>Field Prep:<br>ug/m3 |                    |  |
|----------------------------------------------------------------------------------|---------------------|--------------------------|------------|-----|---------|-------|-----|-----------------------------------------------------------|--------------------|--|
| Volatile Organics in A                                                           | Air (Low Level) - M | lansfield Lab            |            |     | Results | RL    | MDL | Qualifier                                                 | Dilution<br>Factor |  |
| Trichloroethene                                                                  |                     |                          | ,          | MDL |         |       |     |                                                           |                    |  |
| 2,2,4-Trimethylpentane                                                           |                     | ND                       | 0.200      |     | ND      | 1.07  |     |                                                           | 1                  |  |
|                                                                                  |                     | ND                       | 0.200      |     | ND      | 0.934 |     |                                                           | 1                  |  |
| Heptane                                                                          |                     | ND                       | 0.200      |     | ND      | 0.819 |     |                                                           | 1                  |  |
| 2,4,4-trimethyl-1-penten                                                         | e                   | ND                       | 0.500      |     | ND      | 2.29  |     |                                                           | 1                  |  |
| cis-1,3-Dichloropropene                                                          |                     | ND                       | 0.200      |     | ND      | 0.907 |     |                                                           | 1                  |  |
| 4-Methyl-2-pentanone                                                             |                     | ND                       | 0.200      |     | ND      | 0.819 |     |                                                           | 1                  |  |
| 2,4,4-trimethyl-2-penten                                                         | 9                   | ND                       | 0.500      |     | ND      | 2.29  |     |                                                           | 1                  |  |
| rans-1,3-Dichloroproper                                                          | ie                  | ND                       | 0.200      |     | ND      | 0.907 |     |                                                           | 1                  |  |
| 1,1,2-Trichloroethane                                                            |                     | ND                       | 0.200      |     | ND      | 1.09  |     |                                                           | 1                  |  |
| Toluene                                                                          |                     | ND                       | 0.200      |     | ND      | 0.753 |     |                                                           | 1                  |  |
| 1,3-Dichloropropane                                                              |                     | ND                       | 0.200      |     | ND      | 0.923 |     |                                                           | 1                  |  |
| 2-Hexanone                                                                       |                     | ND                       | 0.200      |     | ND      | 0.819 |     |                                                           | 1                  |  |
| Dibromochloromethane                                                             |                     | ND                       | 0.200      |     | ND      | 1.70  |     |                                                           | 1                  |  |
| 1,2-Dibromoethane                                                                |                     | ND                       | 0.200      |     | ND      | 1.54  |     |                                                           | 1                  |  |
| Butyl acetate                                                                    |                     | ND                       | 0.500      |     | ND      | 2.37  |     |                                                           | 1                  |  |
| Octane                                                                           |                     | ND                       | 0.200      |     | ND      | 0.934 |     |                                                           | 1                  |  |
| Tetrachloroethene                                                                |                     | ND                       | 0.200      |     | ND      | 1.36  |     |                                                           | 1                  |  |
| 1,1,1,2-Tetrachloroethar                                                         | e                   | ND                       | 0.200      |     | ND      | 1.37  |     |                                                           | 1                  |  |
| Chlorobenzene                                                                    |                     | ND                       | 0.200      |     | ND      | 0.920 |     |                                                           | 1                  |  |
| Ethylbenzene                                                                     |                     | ND                       | 0.200      |     | ND      | 0.868 |     |                                                           | 1                  |  |
| o/m-Xylene                                                                       |                     | ND                       | 0.400      |     | ND      | 1.74  |     |                                                           | 1                  |  |
| Bromoform                                                                        |                     | ND                       | 0.200      |     | ND      | 2.06  |     |                                                           | 1                  |  |
| Styrene                                                                          |                     | ND                       | 0.200      |     | ND      | 0.851 |     |                                                           | 1                  |  |
| 1,1,2,2-Tetrachloroethar                                                         | e                   | ND                       | 0.200      |     | ND      | 1.37  |     |                                                           | 1                  |  |
| o-Xylene                                                                         |                     | ND                       | 0.200      |     | ND      | 0.868 |     |                                                           | 1                  |  |
| 1,2,3-Trichloropropane                                                           |                     | ND                       | 0.200      |     | ND      | 1.20  |     |                                                           | 1                  |  |
| Nonane                                                                           |                     | ND                       | 0.200      |     | ND      | 1.05  |     |                                                           | 1                  |  |
| sopropylbenzene                                                                  |                     | ND                       | 0.200      |     | ND      | 0.982 |     |                                                           | 1                  |  |



# Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1012727

 Report Date:
 09/15/10

| Lab ID:L1012727-07Client ID:CAN 223 SHSample Location:CAN 223 SH |                     | F 2     |       |     |         | Date Collected<br>Date Received<br>Field Prep: |     |          | 08/18/10 00:00<br>08/18/10<br>Not Specified |
|------------------------------------------------------------------|---------------------|---------|-------|-----|---------|------------------------------------------------|-----|----------|---------------------------------------------|
|                                                                  |                     |         | ppbV  |     |         | ug/m3                                          |     |          | Dilution<br>Factor                          |
| Parameter<br>Volatile Organics in                                | Air (Low Lovel)     | Results | RL    | MDL | Results | RL                                             | MDL | Qualifie |                                             |
|                                                                  | All (LOW Level) - M |         |       |     |         |                                                |     |          |                                             |
| Bromobenzene                                                     |                     | ND      | 0.200 |     | ND      | 1.28                                           |     |          | 1                                           |
| 2-Chlorotoluene                                                  |                     | ND      | 0.200 |     | ND      | 1.03                                           |     |          | 1                                           |
| n-Propylbenzene                                                  |                     | ND      | 0.200 |     | ND      | 0.982                                          |     |          | 1                                           |
| 4-Chlorotoluene                                                  |                     | ND      | 0.200 |     | ND      | 1.03                                           |     |          | 1                                           |
| 4-Ethyltoluene                                                   |                     | ND      | 0.200 |     | ND      | 0.982                                          |     |          | 1                                           |
| 1,3,5-Trimethybenzene                                            |                     | ND      | 0.200 |     | ND      | 0.982                                          |     |          | 1                                           |
| tert-Butylbenzene                                                |                     | ND      | 0.200 |     | ND      | 1.10                                           |     |          | 1                                           |
| 1,2,4-Trimethylbenzene                                           |                     | ND      | 0.200 |     | ND      | 0.982                                          |     |          | 1                                           |
| Decane                                                           |                     | ND      | 0.200 |     | ND      | 1.16                                           |     |          | 1                                           |
| Benzyl chloride                                                  |                     | ND      | 0.200 |     | ND      | 1.03                                           |     |          | 1                                           |
| 1,3-Dichlorobenzene                                              |                     | ND      | 0.200 |     | ND      | 1.20                                           |     |          | 1                                           |
| 1,4-Dichlorobenzene                                              |                     | ND      | 0.200 |     | ND      | 1.20                                           |     |          | 1                                           |
| sec-Butylbenzene                                                 |                     | ND      | 0.200 |     | ND      | 1.10                                           |     |          | 1                                           |
| p-Isopropyltoluene                                               |                     | ND      | 0.200 |     | ND      | 1.10                                           |     |          | 1                                           |
| 1,2-Dichlorobenzene                                              |                     | ND      | 0.200 |     | ND      | 1.20                                           |     |          | 1                                           |
| n-Butylbenzene                                                   |                     | ND      | 0.200 |     | ND      | 1.10                                           |     |          | 1                                           |
| 1,2-Dibromo-3-chloropro                                          | opane               | ND      | 0.200 |     | ND      | 1.93                                           |     |          | 1                                           |
| Undecane                                                         |                     | ND      | 0.200 |     | ND      | 1.28                                           |     |          | 1                                           |
| Dodecane                                                         |                     | ND      | 0.200 |     | ND      | 1.39                                           |     |          | 1                                           |
| 1,2,4-Trichlorobenzene                                           |                     | ND      | 0.200 |     | ND      | 1.48                                           |     |          | 1                                           |
| Naphthalene                                                      |                     | ND      | 0.200 |     | ND      | 1.05                                           |     |          | 1                                           |
| 1,2,3-Trichlorobenzene                                           |                     | ND      | 0.200 |     | ND      | 1.48                                           |     |          | 1                                           |
| Hexachlorobutadiene                                              |                     | ND      | 0.200 |     | ND      | 2.13                                           |     |          | 1                                           |
|                                                                  |                     |         |       |     |         | -                                              |     |          |                                             |



|                      |                      |              |           |             |           | Serial_ | _No:091   | 51016:45  |                |
|----------------------|----------------------|--------------|-----------|-------------|-----------|---------|-----------|-----------|----------------|
| Project Name:        | BATCH CANISTE        | R CERTIFIC   | CATION    |             |           | Lab N   | lumber    | : L       | 1012727        |
| Project Number:      | CANISTER QC B        | AT           |           |             |           | Repo    | rt Date:  | ' C       | 9/15/10        |
|                      |                      | Air Ca       | anister C | ertificatio | n Results |         |           |           |                |
| Lab ID:              | L1012727-01          |              |           |             |           | Date (  | Collected | l:        | 08/18/10 00:00 |
| Client ID:           | CAN 223 SHELF        | 2            |           |             |           | Date F  | Received  | 1:        | 08/18/10       |
| Sample Location:     |                      |              |           |             |           | Field I | Prep:     |           | Not Specified  |
|                      |                      |              | ppbV      |             |           | ug/m3   |           |           | Dilution       |
| Parameter            |                      | Results      | RL        | MDL         | Results   | RL      | MDL       | Qualifier | Factor         |
| Volatile Organics in | Air (Low Level) - Ma | ansfield Lab |           |             |           |         |           |           |                |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 106        |           | 60-140                 |
| Bromochloromethane  | 113        |           | 60-140                 |
| chlorobenzene-d5    | 110        |           | 60-140                 |



L1012727 09/15/10

| Project Name:   | BATCH CANISTER CERTIFICATION | Lab Number:  |
|-----------------|------------------------------|--------------|
| Project Number: | CANISTER QC BAT              | Report Date: |

| Lab ID:           | L1012727-01     | Date Collected: | 08/18/10 00:00 |
|-------------------|-----------------|-----------------|----------------|
| Client ID:        | CAN 223 SHELF 2 | Date Received:  | 08/18/10       |
| Sample Location:  |                 | Field Prep:     | Not Specified  |
| Matrix:           | Air             |                 |                |
| Anaytical Method: | 48,TO-15-SIM    |                 |                |
| Analytical Date:  | 08/19/10 20:12  |                 |                |
| Analyst:          | RY              |                 |                |

|                                 |                 | ug/m3 |     |         |       | Dilution |           |        |
|---------------------------------|-----------------|-------|-----|---------|-------|----------|-----------|--------|
| Parameter                       | Results         | RL    | MDL | Results | RL    | MDL      | Qualifier | Factor |
| Volatile Organics in Air by SIM | - Mansfield Lab |       |     |         |       |          |           |        |
| Dichlorodifluoromethane         | ND              | 0.050 |     | ND      | 0.247 |          |           | 1      |
| Chloromethane                   | ND              | 0.500 |     | ND      | 1.03  |          |           | 1      |
| Freon-114                       | ND              | 0.050 |     | ND      | 0.349 |          |           | 1      |
| Vinyl chloride                  | ND              | 0.020 |     | ND      | 0.051 |          |           | 1      |
| 1,3-Butadiene                   | ND              | 0.020 |     | ND      | 0.044 |          |           | 1      |
| Bromomethane                    | ND              | 0.020 |     | ND      | 0.078 |          |           | 1      |
| Chloroethane                    | ND              | 0.020 |     | ND      | 0.053 |          |           | 1      |
| Acetone                         | ND              | 2.00  |     | ND      | 4.75  |          |           | 1      |
| Trichlorofluoromethane          | ND              | 0.050 |     | ND      | 0.281 |          |           | 1      |
| Acrylonitrile                   | ND              | 0.500 |     | ND      | 1.08  |          |           | 1      |
| 1,1-Dichloroethene              | ND              | 0.020 |     | ND      | 0.079 |          |           | 1      |
| Methylene chloride              | ND              | 1.00  |     | ND      | 3.47  |          |           | 1      |
| Freon-113                       | ND              | 0.050 |     | ND      | 0.383 |          |           | 1      |
| Halothane                       | ND              | 0.050 |     | ND      | 0.403 |          |           | 1      |
| trans-1,2-Dichloroethene        | ND              | 0.020 |     | ND      | 0.079 |          |           | 1      |
| 1,1-Dichloroethane              | ND              | 0.020 |     | ND      | 0.081 |          |           | 1      |
| Methyl tert butyl ether         | ND              | 0.020 |     | ND      | 0.072 |          |           | 1      |
| 2-Butanone                      | ND              | 0.500 |     | ND      | 1.47  |          |           | 1      |
| cis-1,2-Dichloroethene          | ND              | 0.020 |     | ND      | 0.079 |          |           | 1      |
| Chloroform                      | ND              | 0.020 |     | ND      | 0.098 |          |           | 1      |
| 1,2-Dichloroethane              | ND              | 0.020 |     | ND      | 0.081 |          |           | 1      |
| 1,1,1-Trichloroethane           | ND              | 0.020 |     | ND      | 0.109 |          |           | 1      |
| Benzene                         | ND              | 0.100 |     | ND      | 0.319 |          |           | 1      |
| Carbon tetrachloride            | ND              | 0.020 |     | ND      | 0.126 |          |           | 1      |
| 1,2-Dichloropropane             | ND              | 0.020 |     | ND      | 0.092 |          |           | 1      |



# Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1012727

 Report Date:
 09/15/10

| Lab ID:L1012727-01Client ID:CAN 223 SHESample Location:CAN 223 SHE |                    |         |            |     |         | Date Collected:<br>Date Received:<br>Field Prep: |     |           | 08/18/10 00:00<br>08/18/10<br>Not Specified |
|--------------------------------------------------------------------|--------------------|---------|------------|-----|---------|--------------------------------------------------|-----|-----------|---------------------------------------------|
| Parameter                                                          |                    | Results | ppbV<br>RL | MDL | Results | ug/m3<br>RL                                      | MDL | Qualifier | Dilution<br>Factor                          |
| Volatile Organics in A                                             | ir by SIM - Mansfi |         |            |     |         |                                                  |     |           |                                             |
| Bromodichloromethane                                               |                    | ND      | 0.020      |     | ND      | 0.134                                            |     |           | 1                                           |
| Trichloroethene                                                    |                    | ND      | 0.020      |     | ND      | 0.107                                            |     |           | 1                                           |
| 1,4-Dioxane                                                        |                    | ND      | 0.100      |     | ND      | 0.360                                            |     |           | 1                                           |
| cis-1,3-Dichloropropene                                            |                    | ND      | 0.020      |     | ND      | 0.091                                            |     |           | 1                                           |
| 4-Methyl-2-pentanone                                               |                    | ND      | 0.500      |     | ND      | 2.05                                             |     |           | 1                                           |
| trans-1,3-Dichloropropen                                           | e                  | ND      | 0.020      |     | ND      | 0.091                                            |     |           | 1                                           |
| 1,1,2-Trichloroethane                                              |                    | ND      | 0.020      |     | ND      | 0.109                                            |     |           | 1                                           |
| Toluene                                                            |                    | ND      | 0.020      |     | ND      | 0.075                                            |     |           | 1                                           |
| Dibromochloromethane                                               |                    | ND      | 0.020      |     | ND      | 0.170                                            |     |           | 1                                           |
| 1,2-Dibromoethane                                                  |                    | ND      | 0.020      |     | ND      | 0.154                                            |     |           | 1                                           |
| Tetrachloroethene                                                  |                    | ND      | 0.020      |     | ND      | 0.136                                            |     |           | 1                                           |
| 1,1,1,2-Tetrachloroethane                                          | e                  | ND      | 0.020      |     | ND      | 0.137                                            |     |           | 1                                           |
| Chlorobenzene                                                      |                    | ND      | 0.020      |     | ND      | 0.092                                            |     |           | 1                                           |
| Ethylbenzene                                                       |                    | ND      | 0.020      |     | ND      | 0.087                                            |     |           | 1                                           |
| p/m-Xylene                                                         |                    | ND      | 0.040      |     | ND      | 0.174                                            |     |           | 1                                           |
| Bromoform                                                          |                    | ND      | 0.020      |     | ND      | 0.206                                            |     |           | 1                                           |
| Styrene                                                            |                    | ND      | 0.020      |     | ND      | 0.085                                            |     |           | 1                                           |
| 1,1,2,2-Tetrachloroethane                                          | e                  | ND      | 0.020      |     | ND      | 0.137                                            |     |           | 1                                           |
| o-Xylene                                                           |                    | ND      | 0.020      |     | ND      | 0.087                                            |     |           | 1                                           |
| Isopropylbenzene                                                   |                    | ND      | 0.500      |     | ND      | 2.46                                             |     |           | 1                                           |
| 1,3,5-Trimethybenzene                                              |                    | ND      | 0.020      |     | ND      | 0.098                                            |     |           | 1                                           |
| 1,2,4-Trimethylbenzene                                             |                    | ND      | 0.020      |     | ND      | 0.098                                            |     |           | 1                                           |
| 1,3-Dichlorobenzene                                                |                    | ND      | 0.020      |     | ND      | 0.120                                            |     |           | 1                                           |
| 1,4-Dichlorobenzene                                                |                    | ND      | 0.020      |     | ND      | 0.120                                            |     |           | 1                                           |
| sec-Butylbenzene                                                   |                    | ND      | 0.500      |     | ND      | 2.74                                             |     |           | 1                                           |
| p-Isopropyltoluene                                                 |                    | ND      | 0.500      |     | ND      | 2.74                                             |     |           | 1                                           |
| 1,2-Dichlorobenzene                                                |                    | ND      | 0.020      |     | ND      | 0.120                                            |     |           | 1                                           |
| n-Butylbenzene                                                     |                    | ND      | 0.500      |     | ND      | 2.74                                             |     |           | 1                                           |



| Project Name:   | BATCH CANISTER CERTIFICATION |
|-----------------|------------------------------|
| Project Number: | CANISTER QC BAT              |

 Lab Number:
 L1012727

 Report Date:
 09/15/10

# **Air Canister Certification Results**

| Lab ID:<br>Client ID:<br>Sample Location: | L1012727-01<br>CAN 223 SHELF | = 2     | ppbV  |     |         | 2 410 | Collecte<br>Receive<br>Prep: |          | 08/18/10 00:00<br>08/18/10<br>Not Specified |
|-------------------------------------------|------------------------------|---------|-------|-----|---------|-------|------------------------------|----------|---------------------------------------------|
| Parameter                                 |                              | Results | RL    | MDL | Results | RL    | MDL                          | Qualifie | Dilution<br>Factor                          |
| Volatile Organics in                      | Air by SIM - Mansfi          | eld Lab |       |     |         |       |                              |          |                                             |
| 1,2,4-Trichlorobenzene                    | e                            | ND      | 0.050 |     | ND      | 0.371 |                              |          | 1                                           |
| Naphthalene                               |                              | ND      | 0.050 |     | ND      | 0.262 |                              |          | 1                                           |
| 1,2,3-Trichlorobenzene                    | 9                            | ND      | 0.050 |     | ND      | 0.371 |                              |          | 1                                           |
| Hexachlorobutadiene                       |                              | ND      | 0.050 |     | ND      | 0.533 |                              |          | 1                                           |



| Parameter        | -              | Results  | RL         | MDL         | Results   | RL      | MDL       | Qualifier | Faster         |
|------------------|----------------|----------|------------|-------------|-----------|---------|-----------|-----------|----------------|
|                  |                |          | ppbV       |             |           | ug/m3   |           |           | Dilution       |
| Sample Location: |                |          |            |             |           | Field I | Prep:     |           | Not Specified  |
| Client ID:       | CAN 223 SHELF  | 2        |            |             |           | Date F  | Receive   | d:        | 08/18/10       |
| Lab ID:          | L1012727-01    |          |            |             |           | Date (  | Collected | d:        | 08/18/10 00:00 |
|                  |                | Air C    | anister Co | ertificatio | n Results |         |           |           |                |
| Project Number:  | CANISTER QC BA | T        |            |             |           | Repo    | rt Date   | : (       | 09/15/10       |
| Project Name:    | BATCH CANISTER | R CERTIF | ICATION    |             |           | Lab N   | lumber    | : 1       | L1012727       |
|                  |                |          |            |             |           |         | Serial    | _No:091   | 51016:45       |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-difluorobenzene | 105        |           | 60-140                 |
| bromochloromethane  | 112        |           | 60-140                 |
| chlorobenzene-d5    | 109        |           | 60-140                 |



# **AIR Petro Can Certification**

|                    |                   |                              | Serial_No:0     | 9151016:45     |
|--------------------|-------------------|------------------------------|-----------------|----------------|
| Project Name:      | BATCH CANISTER CE | ERTIFICATION                 | Lab Number:     | L1012544       |
| Project Number:    | CANISTER QC BAT   |                              | Report Date:    | 09/15/10       |
|                    | Α                 | NR CAN CERTIFICATION RESULTS |                 |                |
| Lab ID:            | L1012544-01       |                              | Date Collected: | 08/13/10 00:00 |
| Client ID:         | CAN 487 SHELF 1   |                              | Date Received:  | 08/13/10       |
| Sample Location:   | Not Specified     |                              | Field Prep:     | Not Specified  |
| Matrix:            | Air               |                              |                 |                |
| Analytical Method: | 96,APH            |                              |                 |                |
| Analytical Date:   | 08/19/10 18:20    |                              |                 |                |
| Analyst:           | RY                |                              |                 |                |

| Result    | Qualifier                                                                                | Units                                                                  | RL                                                                                                                             | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dilution Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| field Lab |                                                                                          |                                                                        |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND        |                                                                                          | ug/m3                                                                  | 2.0                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND        | I                                                                                        | ug/m3                                                                  | 2.0                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND        | I                                                                                        | ug/m3                                                                  | 2.0                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND        | I                                                                                        | ug/m3                                                                  | 2.0                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND        | I                                                                                        | ug/m3                                                                  | 12                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND        | I                                                                                        | ug/m3                                                                  | 2.0                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND        | I                                                                                        | ug/m3                                                                  | 4.0                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND        | I                                                                                        | ug/m3                                                                  | 2.0                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND        | I                                                                                        | ug/m3                                                                  | 2.0                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND        |                                                                                          | ug/m3                                                                  | 14                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND        |                                                                                          | ug/m3                                                                  | 10                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | sfield Lab<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | sfield Lab<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3 | ND         ug/m3         2.0           ND         ug/m3         2.0           ND         ug/m3         2.0           ND         ug/m3         2.0           ND         ug/m3         2.0           ND         ug/m3         2.0           ND         ug/m3         2.0           ND         ug/m3         2.0           ND         ug/m3         4.0           ND         ug/m3         2.0           ND         ug/m3         14 | ND         ug/m3         2.0            ND         ug/m3         2.0            ND         ug/m3         2.0            ND         ug/m3         2.0            ND         ug/m3         2.0            ND         ug/m3         2.0            ND         ug/m3         2.0            ND         ug/m3         12            ND         ug/m3         2.0            ND         ug/m3         14 |



|                    |                         |                       | Serial_No:0     | 9151016:45     |
|--------------------|-------------------------|-----------------------|-----------------|----------------|
| Project Name:      | BATCH CANISTER CERTIFIC | ATION                 | Lab Number:     | L1012727       |
| Project Number:    | CANISTER QC BAT         |                       | Report Date:    | 09/15/10       |
|                    | AIR CAN                 | CERTIFICATION RESULTS |                 |                |
| Lab ID:            | L1012727-01             |                       | Date Collected: | 08/18/10 00:00 |
| Client ID:         | CAN 223 SHELF 2         |                       | Date Received:  | 08/18/10       |
| Sample Location:   | Not Specified           |                       | Field Prep:     | Not Specified  |
| Matrix:            | Air                     |                       |                 |                |
| Analytical Method: | 96,APH                  |                       |                 |                |
| Analytical Date:   | 08/19/10 20:12          |                       |                 |                |
| Analyst:           | RY                      |                       |                 |                |

| Parameter                            | Result     | Qualifier | Units | RL  | MDL | Dilution Factor |
|--------------------------------------|------------|-----------|-------|-----|-----|-----------------|
| Petroleum Hydrocarbons in Air - Mans | sfield Lab |           |       |     |     |                 |
| 1,3-Butadiene                        | ND         |           | ug/m3 | 2.0 |     | 1               |
| Methyl tert butyl ether              | ND         |           | ug/m3 | 2.0 |     | 1               |
| Benzene                              | ND         |           | ug/m3 | 2.0 |     | 1               |
| Toluene                              | ND         |           | ug/m3 | 2.0 |     | 1               |
| C5-C8 Aliphatics, Adjusted           | ND         |           | ug/m3 | 12  |     | 1               |
| Ethylbenzene                         | ND         |           | ug/m3 | 2.0 |     | 1               |
| p/m-Xylene                           | ND         |           | ug/m3 | 4.0 |     | 1               |
| o-Xylene                             | ND         |           | ug/m3 | 2.0 |     | 1               |
| Naphthalene                          | ND         |           | ug/m3 | 2.0 |     | 1               |
| C9-C12 Aliphatics, Adjusted          | ND         |           | ug/m3 | 14  |     | 1               |
| C9-C10 Aromatics Total               | ND         |           | ug/m3 | 10  |     | 1               |



# Project Name: CFI WASHINGTON AVE Project Number: 1047

Lab Number: L1013912 Report Date: 09/15/10

#### Sample Receipt and Container Information

Were project specific reporting limits specified? YES

### Reagent H2O Preserved Vials Frozen on: NA

# Cooler Information Custody Seal Cooler

N/A Present/Intact

| Container Info | rmation              |        |     | Temp  |      |                |                                       |
|----------------|----------------------|--------|-----|-------|------|----------------|---------------------------------------|
| Container ID   | Container Type       | Cooler | рН  | deg C | Pres | Seal           | Analysis(*)                           |
| L1013912-01A   | Canister - 2.7 Liter | N/A    | N/A |       | NA   | Present/Intact | APH-10(30),FIXGAS(30),TO15-<br>LL(30) |
| L1013912-02A   | Canister - 2.7 Liter | N/A    | N/A |       | NA   | Present/Intact | APH-10(30),FIXGAS(30),TO15-<br>LL(30) |
| L1013912-03A   | Canister - 2.7 Liter | N/A    | N/A |       | NA   | Present/Intact | APH-10(30),FIXGAS(30),TO15-<br>LL(30) |
| L1013912-04A   | Canister - 2.7 Liter | N/A    | N/A |       | NA   | Present/Intact | APH-10(30),FIXGAS(30),TO15-<br>LL(30) |
| L1013912-05A   | Canister - 2.7 Liter | N/A    | N/A |       | NA   | Present/Intact | APH-10(30),FIXGAS(30),TO15-<br>LL(30) |
| L1013912-06A   | Canister - 2.7 Liter | N/A    | N/A |       | NA   | Present/Intact | APH-10(30),FIXGAS(30),TO15-<br>LL(30) |
| L1013912-07A   | Canister - 2.7 Liter | N/A    | N/A |       | NA   | Present/Intact | APH-10(30),FIXGAS(30),TO15-<br>LL(30) |
|                |                      |        |     |       |      |                |                                       |



### Project Name: CFI WASHINGTON AVE

Project Number: 1047

# Lab Number: L1013912

## **Report Date:** 09/15/10

#### GLOSSARY

#### Acronyms

- EPA · Environmental Protection Agency.
- LCS · Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD · Laboratory Control Sample Duplicate: Refer to LCS.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD · Matrix Spike Sample Duplicate: Refer to MS.
- NA · Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI · Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

#### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

#### Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E · Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **H** The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- **Q** The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.

Report Format: Data Usability Report



# Project Name: CFI WASHINGTON AVE

Project Number: 1047

 Lab Number:
 L1013912

 Report Date:
 09/15/10

Data Qualifiers

- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report



Project Name: CFI WASHINGTON AVE Project Number: 1047 
 Lab Number:
 L1013912

 Report Date:
 09/15/10

#### REFERENCES

- 48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.
- 51 Determination of Carbon Dioxide, Methane, Nitrogen and Oxygen from Stationary Sources. Method 3C. Appendix A, Part 60, 40 CFR (Code of Federal Regulations). June 20, 1996.
- 96 Method for the Determination of Air-Phase Petroleum Hydrocarbons (APH), MassDEP, December 2009, Revision 1 with QC Requirements & Performance Standards for the Analysis of APH by GC/MS under the Massachusetts Contingency Plan, WSC-CAM-IXA, July 2010.

#### LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



# **Certificate/Approval Program Summary**

Last revised July 19, 2010 - Mansfield Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

#### Connecticut Department of Public Health Certificate/Lab ID: PH-0141.

*Wastewater/Non-Potable Water* (Inorganic Parameters: pH, Turbidity, Conductivity, Alkalinity, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Vanadium, Zinc, Total Residue (Solids), Total Suspended Solids (non-filterable), Total Cyanide. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables, Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, PAHs, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.)

*Solid Waste/Soil* (Inorganic Parameters: pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Organic Carbon, Total Cyanide, Corrosivity, TCLP 1311. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Volatile Organics, Acid Extractables, Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

#### Florida Department of Health Certificate/Lab ID: E87814. NELAP Accredited.

*Non-Potable Water* (Inorganic Parameters: SM2320B, EPA 120.1, SM2510B, EPA 245.1, EPA 150.1, EPA 160.2, SM2540D, EPA 335.2, SM2540G, EPA 180.1. <u>Organic Parameters</u>: EPA 625, 608.)

*Solid & Chemical Materials* (Inorganic Parameters: 6020, 7470, 7471, 9045, 9014. Organic Parameters: EPA 8260, 8270, 8082, 8081.)

Air & Emissions (EPA TO-15.)

#### Louisiana Department of Environmental Quality Certificate/Lab ID: 03090. NELAP Accredited.

*Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 120.1, 150.1, 160.2, 180.1, 200.8, 245.1, 310.1, 335.2, 608, 625, 1631, 3010, 3015, 3020, 6020, 9010, 9014, 9040, SM2320B, 2510B, 2540D, 2540G, 4500CN-E, 4500H-B, <u>Organic Parameters</u>: EPA 3510, 3580, 3630, 3640, 3660, 3665, 5030, 8015 (mod), 3570, 8081, 8082, 8260, 8270, )

Solid & Chemical Materials (Inorganic Parameters: 6020, 7196, 7470, 7471, 7474, 9010, 9014, 9040, 9045, 9060. <u>Organic Parameters</u>: EPA 8015 (mod), EPA 3570, 1311, 3050, 3051, 3060, 3580, 3630, 3640, 3660, 3665, 5035, 8081, 8082, 8260, 8270.)

Biological Tissue (Inorganic Parameters: EPA 6020. Organic Parameters: EPA 3570, 3510, 3610, 3630, 3640, 8270.)

#### Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA030.

Non-Potable Water (Inorganic Parameters: SM4500H+B. Organic Parameters: EPA 624.)

#### New Hampshire Department of Environmental Services Certificate/Lab ID: 2206. NELAP Accredited.

*Non-Potable Water* (Inorganic Parameters: EPA 200.8, 245.1, 1631E, 120.1, 150.1, 180.1, 310.1, 335.2, 160.2, SM2540D, 2540G, 4500CN-E, 4500H+B, 2320B, 2510B. <u>Organic Parameters</u>: EPA 625, 608.)

#### New Jersey Department of Environmental Protection Certificate/Lab ID: MA015. NELAP Accredited.

*Non-Potable Water* (<u>Inorganic Parameters</u>: SW-846 1312, 3010, 3020A, 3015, 6020, SM2320B, EPA 200.8, SM2540C, 2540D, 2540G, EPA 120.1, SM2510B, EPA 180.1, 245.1, 1631E, SW-846 9040B, 6020, 9010B, 9014 <u>Organic Parameters</u>: EPA 608, 625, SW-846 3510C, 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082 8260B, 8270C)

*Solid & Chemical Materials* (<u>Inorganic Parameters</u>: SW-846 6020, 9010B, 9014, 1311, 1312, 3050B, 3051, 3060A, 7196A, 7470A, 7471A, 9045C, 9060. <u>Organic Parameters</u>: SW-846 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082, 8260B, 8270C, 3570, 8015B.)

Atmospheric Organic Parameters (EPA TO-15)

Biological Tissue (Inorganic Parameters: SW-846 6020 Organic Parameters: SW-846 8270C, 3510C, 3570, 3610B, 3630C, 3640A)

#### New York Department of Health Certificate/Lab ID: 11627. NELAP Accredited.

*Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 310.1, SM2320B, EPA 365.2, 160.1, EPA 160.2, SM2540D, EPA 200.8, 6020, 1631E, 245.1, 335.2, 9014, 150.1, 9040B, 120.1, SM2510B, EPA 376.2, 180.1, 9010B. <u>Organic Parameters</u>: EPA 624, 8260B, 8270C, 608, 8081A, 625, 8082, 3510C, 3511, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 9040B, 9045C, SW-846 Ch7 Sec 7.3, EPA 6020, 7196A, 7471A, 7474, 9014, 9040B, 9045C, 9010B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8081A, DRO 8015B, 8082, 1311, 3050B, 3580, 3050B, 3035, 3570, 3051, 5035, 5030B.)

Air & Emissions (EPA TO-15.)

Rhode Island Department of Health Certificate/Lab ID: LAO00299. NELAP Accredited via LA-DEQ.

Refer to MA-DEP Certificate for Non-Potable Water.

Refer to LA-DEQ Certificate for Non-Potable Water.

Texas Commission of Environmental Quality Certificate/Lab ID: T104704419-08-TX. NELAP Accredited.

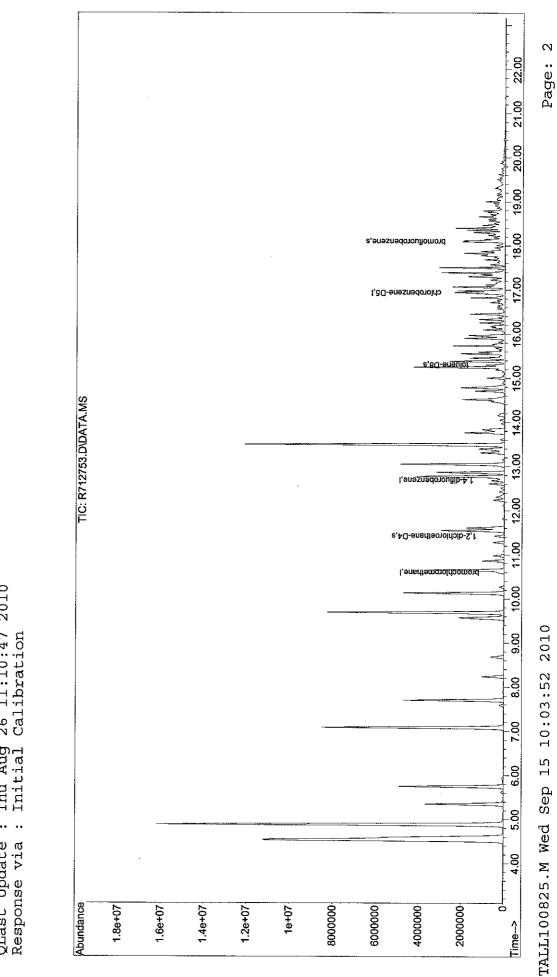
*Solid & Chemical Materials* (<u>Inorganic Parameters</u>: EPA 6020, 7470, 7471, 1311, 7196, 9014, 9040, 9045, 9060. <u>Organic Parameters</u>: EPA 8015, 8270, 8260, 8081, 8082.)

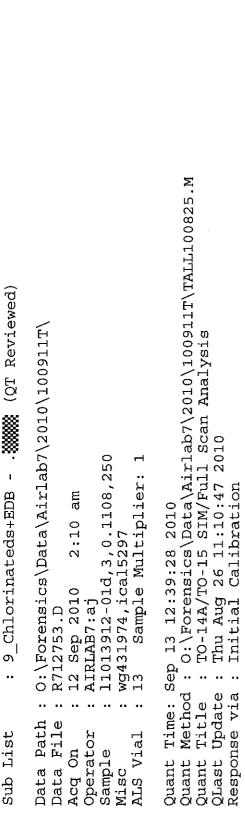
Air (Organic Parameters: EPA TO-15)

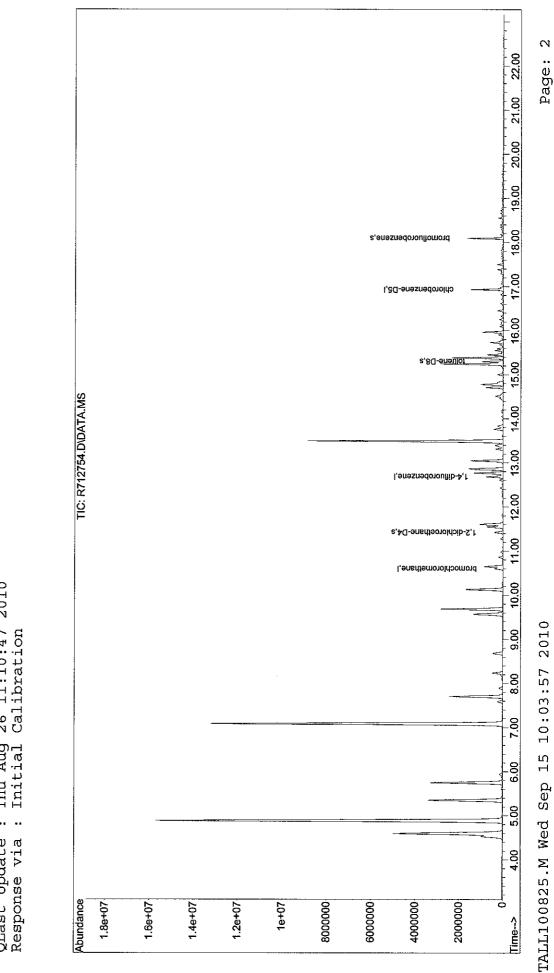
U.S. Army Corps of Engineers

Department of Defense Certificate/Lab ID: L2217.01.

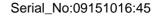
Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312,3051, 6020, 747A, 7474, 9045C,9060, SM 2540G, ASTM D422-63. <u>Organic Parameters</u>: EPA 3580, 3570, 3540C, 5035, 8260B, 8270C, 8270 Alk-PAH, 8082, 8081A, 8015 (SHC), 8015 (DRO).

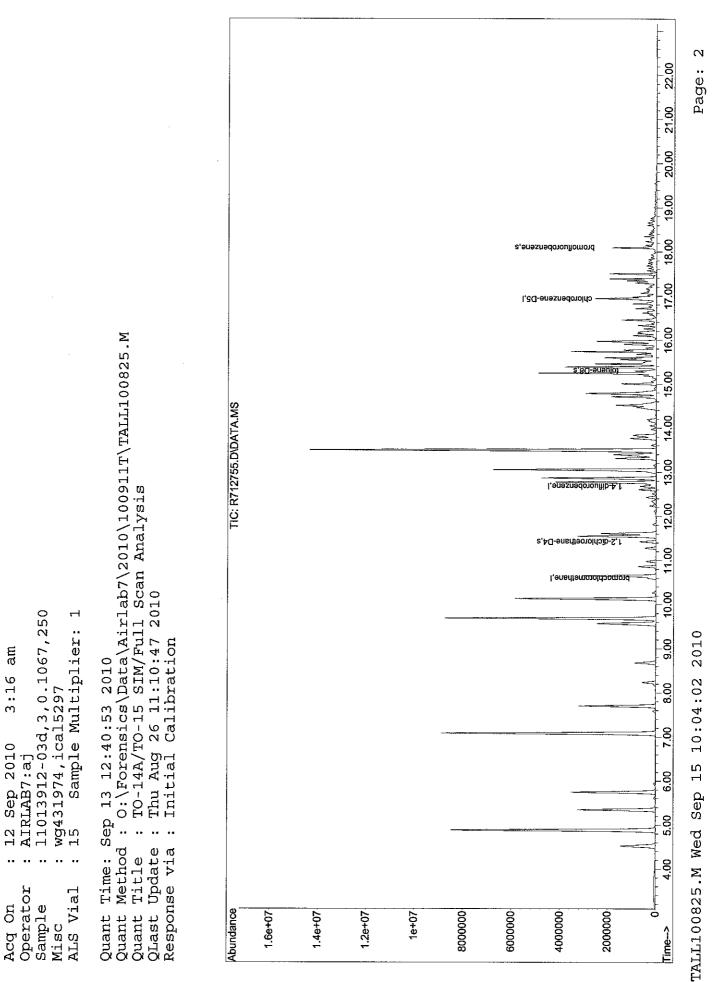

Air & Emissions (EPA TO-15.)


#### Analytes Not Accredited by NELAP


Certification is not available by NELAP for the following analytes: 8270C: Biphenyl.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | -               |                                                                    |                         |                                                |                              |                 |                                       |                        |                                                                                              |                                  |                                                                             | ui-09)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|--------------------------------------------------------------------|-------------------------|------------------------------------------------|------------------------------|-----------------|---------------------------------------|------------------------|----------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| See reverse side.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4/8/10 1610      | 1814            |                                                                    | Jel -                   | Man                                            | 010                          | a/10-1          | 4                                     |                        | Ups                                                                                          |                                  |                                                                             |           | Earm No: 101 00 /10 him 00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>n</b>               |
| submitted are subject to Alpha's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | *               |                                                                    | ips                     | ) A C                                          | 630                          | 01/17           | 9                                     | $\left  \right\rangle$ | ſ                                                                                            | 4 10                             |                                                                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| clock will not start until any ambi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date/Time:       | Da              |                                                                    | Received By:            | Re                                             | 0<br>)                       | pat/Time        |                                       | ,<br>T                 | vuished By:                                                                                  | / // ke/                         |                                                                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| Please print clearly, legibly and<br>completely. Samples can not be<br>logged in and turnaround time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                 | r Type                                                             | Container Type          |                                                | 11 como a                    |                 | oor)<br>VE                            | fill Gas/S             | Ambigat Air (Indo <del>en/Out</del> door)<br>Soil/Vapor/Landfill Gas/SVE<br>=/Ploase Precify | AA = Amt<br>SV = SoilOther = Ple | *SAMPLE MATRIX CODES                                                        | LE MA     | *SAMF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1210 XI II II II II II |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                 |                                                                    |                         | -                                              |                              |                 |                                       |                        |                                                                                              |                                  |                                                                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                 |                                                                    |                         |                                                |                              |                 |                                       |                        |                                                                                              |                                  |                                                                             |           | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                 |                                                                    |                         |                                                |                              |                 |                                       |                        |                                                                                              |                                  |                                                                             |           | A manufacture of the second second second second second second second second second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x<br>X           | tale X          | 337 Gyale                                                          |                         | ر<br>                                          | ~\                           | 0               | 926 -30                               |                        | a-16                                                                                         | R                                | 8-92                                                                        | ~         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x<br>X           | <u>267</u><br>入 | 207 0057                                                           |                         |                                                | 5                            | 0               | 932-30                                |                        | 920                                                                                          |                                  | 56-7                                                                        |           | -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X<br>X           | 3(d) N          | 190 0361                                                           |                         |                                                | 9                            | 20              | - 7160                                |                        | oqeo                                                                                         |                                  | 9-95                                                                        | 1         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ンソ               | He X            | 558 OILL                                                           |                         |                                                | ~\                           | -30 -0          | 845 -:                                |                        | 834                                                                                          |                                  | 26-2                                                                        | ιΛ        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | メイ               | 30) K           | 1734 0301                                                          |                         |                                                | ~\                           | Č<br>,          | 1018 -30                              |                        | ଟିଷ୍ଠ                                                                                        |                                  | 56-3                                                                        | S         | ا<br>دى                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | メズ               | 327 K           | 366 0327                                                           |                         |                                                |                              | Š<br>Z          | 1639 -30                              |                        | 1028                                                                                         | ,                                | 56-2                                                                        | 10        | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\times$         | 468 X           | 480 0468                                                           |                         | V 5B                                           | SV<br>SV                     | 5               | 1100 -30                              |                        | 10 1050                                                                                      | 9-7-10                           | 56-1                                                                        | S         | 0/3912-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/3                   |
| R / Sample Comments (i.e. PID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AD               | 10              | _                                                                  |                         | Matrix* Initials                               | -                            |                 | Start Time End Time Vacuum            | ime End                |                                                                                              | Date                             | Sample ID                                                                   |           | (Lab Use Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 13A TTC # 4 AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -15 SI           | 1D - Flow -14A  |                                                                    | amnler's Can            |                                                |                              |                 | Collection Final Sample S             |                        | Sutu                                                                                         |                                  |                                                                             |           | ALPHA Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |
| ASES<br>0.10<br>Imites<br>Per<br>Ked<br>Coz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ĪM               | by TO.          |                                                                    |                         |                                                | Stu<br>Stu                   | ξ               | TARARICA                              |                        | VA¢0                                                                                         |                                  |                                                                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| to 2,02<br>to 2,0 |                  | partal MEDER    | うちや                                                                | are po                  |                                                | Samples                      |                 | thed                                  | Þ                      | See                                                                                          | Comments:                        | Other Project Specific Requirements/Comments:                               | Specifi   | ther Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                      |
| - 15 D - 5 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                 |                                                                    |                         | Box .                                          |                              |                 | Time:                                 |                        | Due:                                                                                         | Alpha Date Due:                  | <                                                                           | lave been | These samples h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AN AN            | Shipping        | Second S                                                           | 3                       | 8-55 *                                         | √<br>*                       | , bie-abbioxeoù |                                       |                        |                                                                                              | Contrained                       | under OMANE.GU                                                              | 13° W     | Email: fete. M. Ecenda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ē                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60V              | O Maine Gou     | Metenziep                                                          | •                       | Dianal, M.                                     | ą                            | f nre-annmved!) | RUSH (notiv confirmed if nre-annoved) |                        | ndard                                                                                        | R Sta                            |                                                                             |           | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fax:                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MATUEY           |                 | ct Manager)                                                        | erent than Proje        | Report to: (if different than Project Manager) | <b>2</b> <sup><i>R</i></sup> |                 |                                       | Time                   | <b>Turn-Around Time</b>                                                                      |                                  | <b>~</b>                                                                    | 02-       | Phone: 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |
| Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | State/Fed        |                 | S:                                                                 | Deliverable             | Additional                                     |                              |                 |                                       |                        | ALPHA Quote #:                                                                               |                                  |                                                                             | in the    | Partland,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
| nents/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Regulato         |                 | report)                                                            | Indard pdf              | EMAIL (standard pdf report)                    |                              |                 | Peter Sign                            |                        | Project Manager:                                                                             |                                  | $\gamma$                                                                    | . Canco   | Address: 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | ndicated)       | (Default based on Regulatory Criteria Indicated)<br>Other Formats: | based on Reg<br>ormats: | (Default based on<br>Other Formats:            | 4                            | Present         | 1047 Paul                             | 5                      | 1#: LO                                                                                       | EP Project #:                    | mit A MEDEP                                                                 | -Ere      | client: Refer Eremit A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                 |                                                                    | Checker:                | Criteria Checker:                              | <u> </u>                     | ر<br>الل        | Pontland                              | R                      | Project Location:                                                                            | Projec                           |                                                                             | ion       | Client Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1016<br>ទ              |
| X Same as Client info PO #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>X</b> Same as |                 |                                                                    |                         | D FAX                                          | Æ                            | to              | WAShington                            | CFI                    | Project Name:                                                                                | Projec                           | 320 Forbes Blvd, Mansileid, MA 02046<br>TEL: 508-822-9300 FAX: 508-822-3288 | 00 FAX:   | 320 Forbes Blvd, Manstield, MA 02040<br>TEL: 508-822-9300 FAX: 508-822-32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
| Billing Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Billing Ir       | verables        | Information - Data Deliverables                                    | rmation -               | Report Info                                    | 70                           |                 |                                       | nation                 | Project Information                                                                          |                                  | CHAIN OF CUSTODY                                                            | C C       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                      |
| Job# ~1013912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALPHA Job #:     |                 |                                                                    | Lab:                    | Date Rec'd in Lab:                             | Da                           | ٩               | PAGE                                  | •••                    | SISA                                                                                         | AIR ANALYSIS                     | AIR                                                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                 |                                                                    |                         |                                                | -                            |                 |                                       |                        |                                                                                              |                                  |                                                                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                      |


# **TO-15**








Quant Method : O:\Forensics\Data\Airlab7\2010\100911T\TALL100825.M Quant Title : TO-14A/TO-15 SIM/Full Scan Analysis QLast Update : Thu Aug 26 11:10:47 2010 Response via : Initial Calibration (QT Reviewed) 0:\Forensics\Data\Airlab7\2010\100911T\ 11013912-02d,3,0.1229,250
wg431974,ica15297
14 Sample Multiplier: 1 Sample Multiplier: I 9 Chlorinateds+EDB an Quant Time: Sep 13 12:40:17 2010 2:43 12 Sep 2010 AIRLAB7:aj R712754.D •• Path Data File Operator ALS Vial Sub List Acq On Sample Data Misc





R712755.D

Path Data File

Data

(QT Reviewed)

ł

9\_Chlorinateds+EDB

••

Sub List

0:\Forensics\Data\Airlab7\2010\100911T\

 $\sim$ 

Page:

22.00

21.00

20,00

19.00

18.00

17.00

16.00

15.00

14.00

13.00

12.00

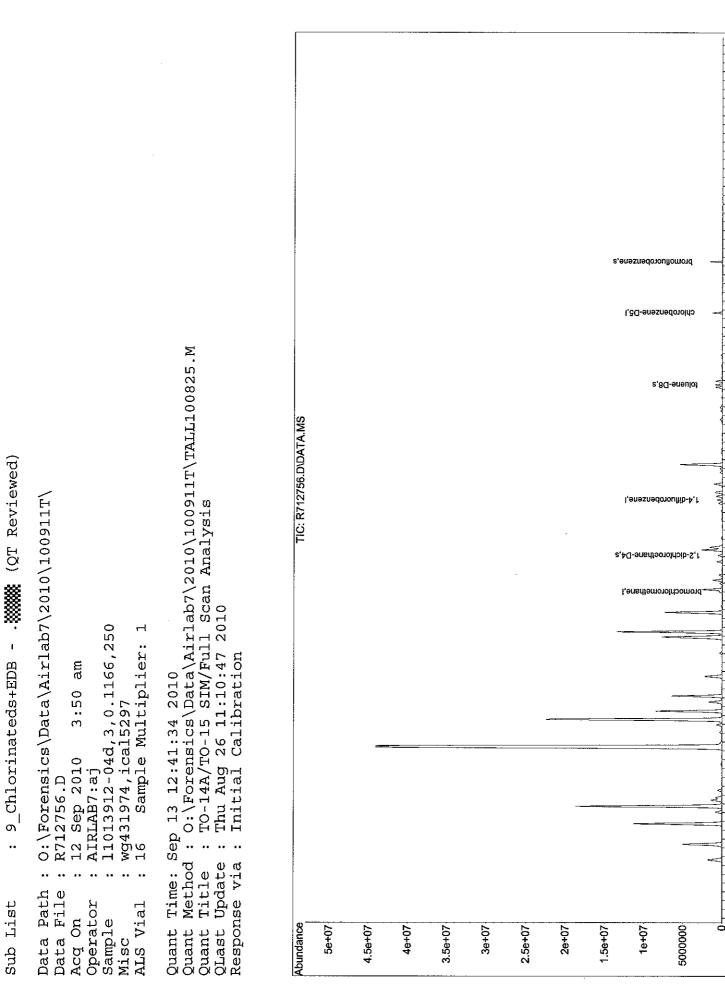
11.00

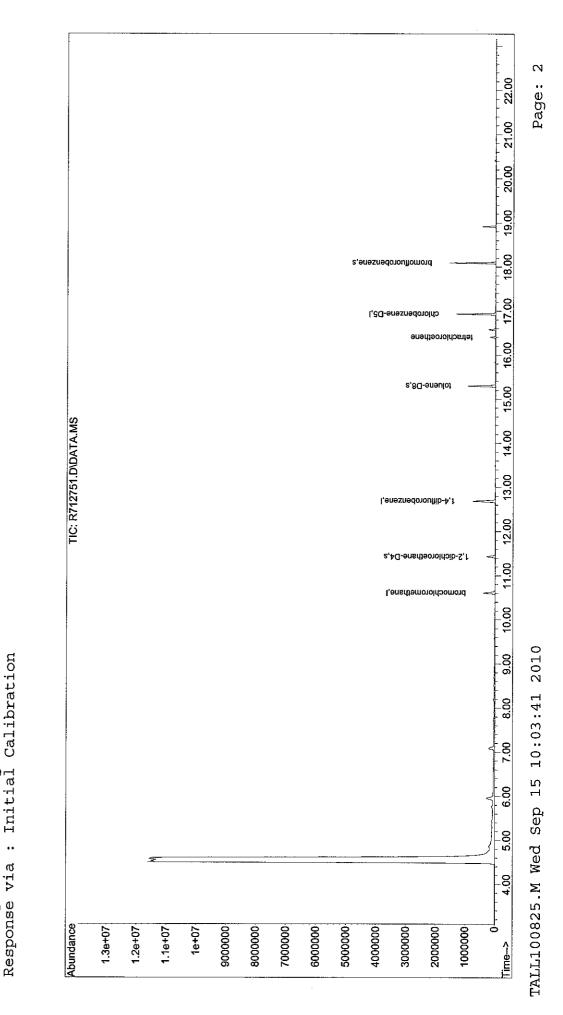
10.00

9.00

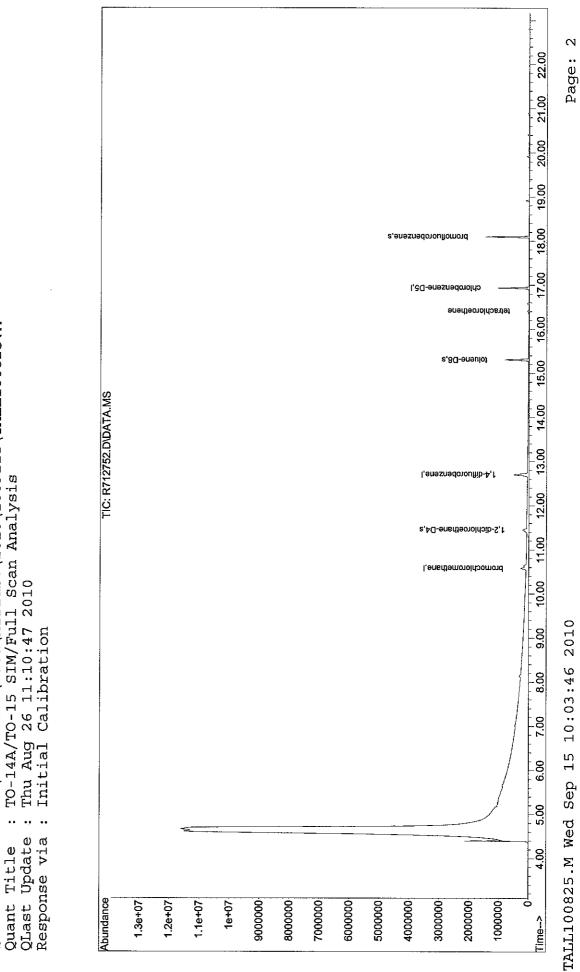
8.0

7.00


6.00


5.00

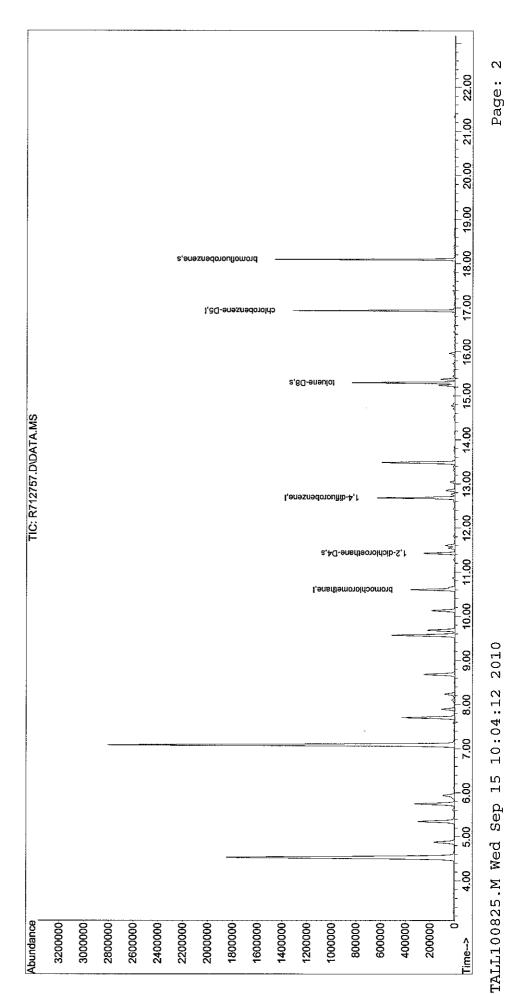
4.00


Time->

TALL100825.M Wed Sep 15 10:04:07 2010

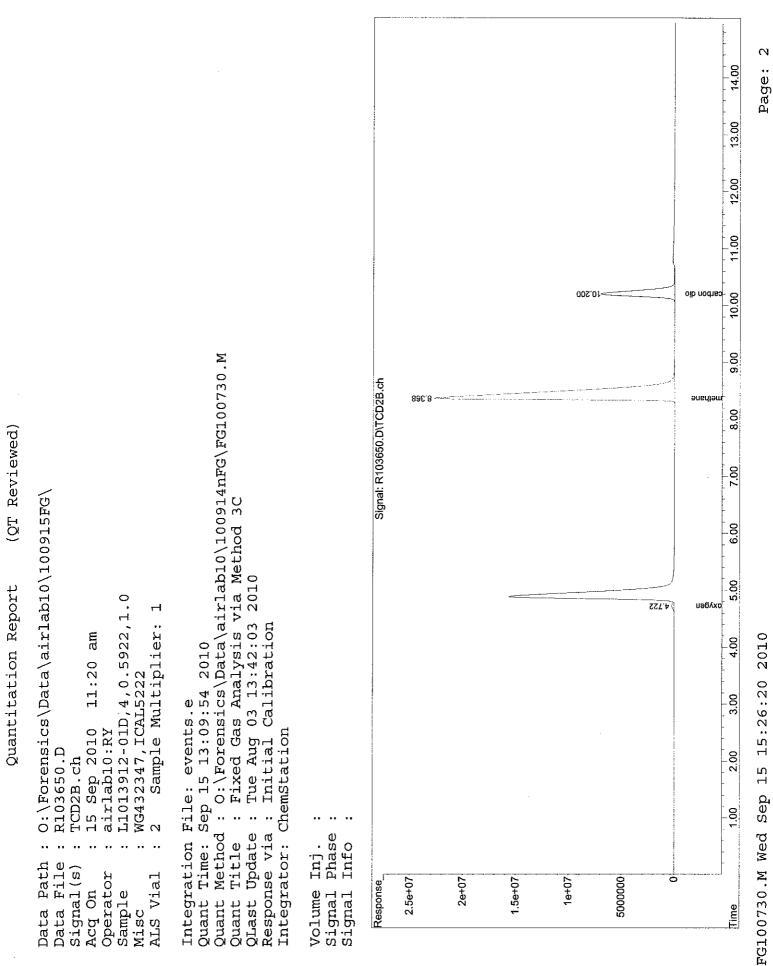


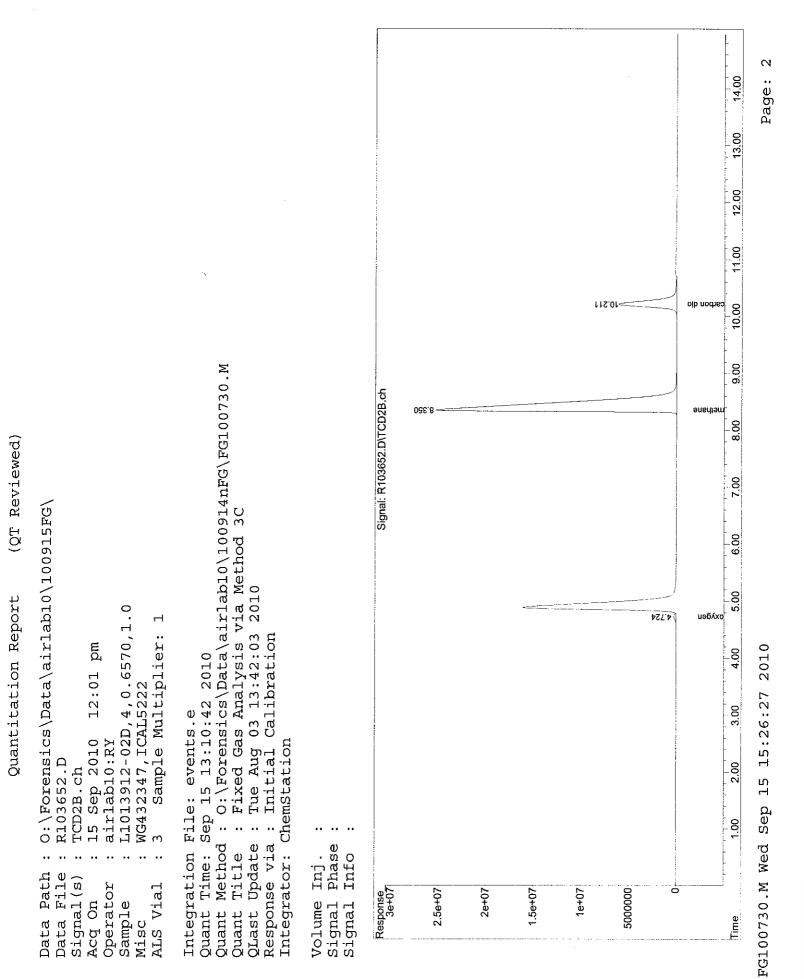



. 0: \Forensics\Data\Airlab7\2010\100911T\TALL100825.M . .... (QT Reviewed) 0:\Forensics\Data\Airlab7\2010\100911T<sup>\</sup> TO-14A/TO-15 SIM/Full Scan Analysis Thu Aug 26 11:10:47 2010 Initial Calibration <del>، ا</del> Sample Multiplier: ł 9\_Chlorinateds+EDB 11013912-05,3,250,250 wg431974,ica15297 11 Sample Multiplie: am Time: Sep 13 12:37:27 2010 1:0112 Sep 2010 AIRLAB7:aj R712751.D •• Quant Method QLast Update Title Data Path Data File Sub List Operator ALS Vial Acq On Sample Quant Quant Misc



. 0:\Forensics\Data\Airlab7\2010\100911T\TALL100825.M (QT Reviewed) 0:\Forensics\Data\Airlab7\2010\100911T\ TO-14A/TO-15 SIM/Full Scan Analysis **.** Ē t Sample Multiplier: 9\_Chlorinateds+EDB 11013912-06,3,250,250 wg431974,ica15297 12 Sample Multiplie am Time: Sep 13 10:21:50 2010 1:37 12 Sep 2010 AIRLAB7:aj R712752.D •• Quant Method Path Data File Sub List Operator ALS Vial Acq On Sample Quant Misc Data

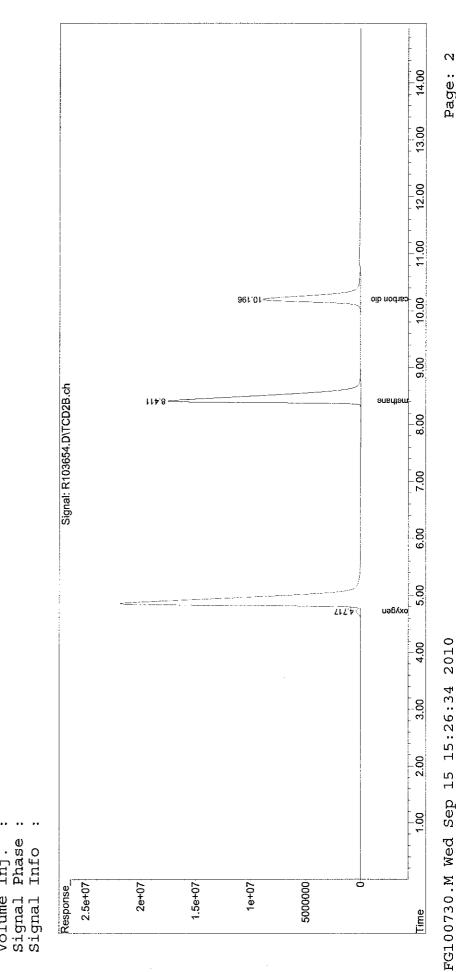

(QT Reviewed) 0:\Forensics\Data\Airlab7\2010\100911T\ **.** 11013912-07d,3,0.1130,250 wg431974,ica15297 Ч I Sample Multiplier: 9\_Chlorinateds+EDB am Time: Sep 13 10:24:17 2010 4:2412 Sep 2010 AIRLAB7:aj R712757.D ••• Title Data File Path Operator ALS Vial Sub List Acq On Sample Misc Data


Quant Method : 0:\Forensics\Data\Airlab7\2010\100911T\TALL100825.M TO-14A/TO-15 SIM/Full Scan Analysis Thu Aug 26 11:10:47 2010 Initial Calibration QLast Update Response via Quant Quant



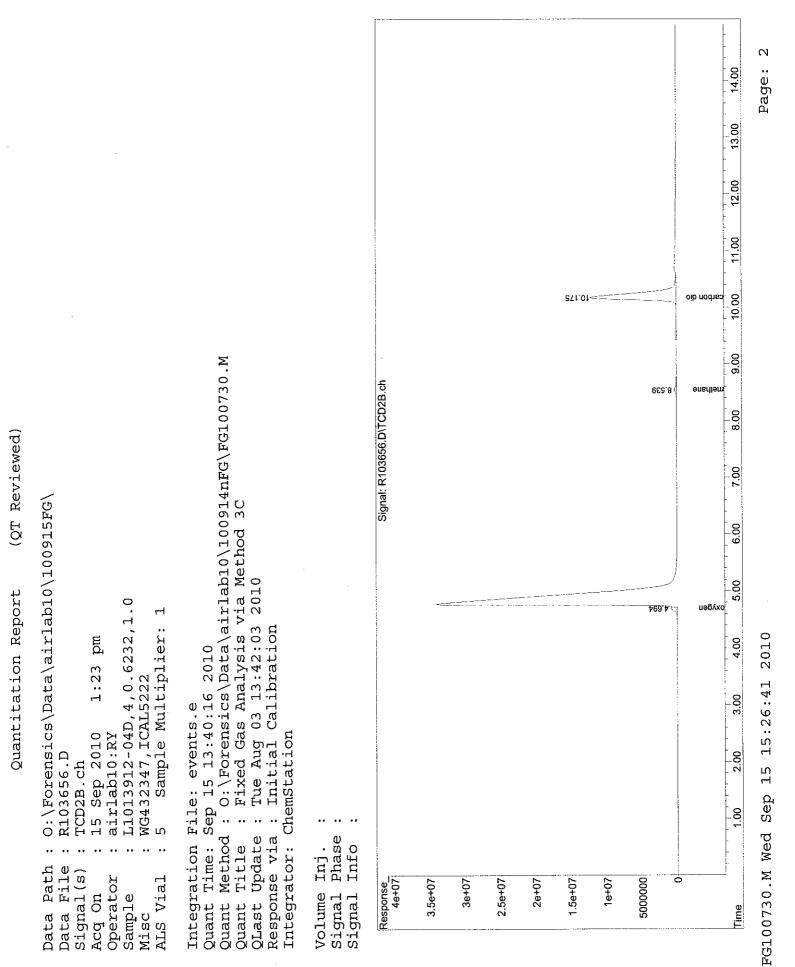
Page 75 of 91

# **Fixed Gases**

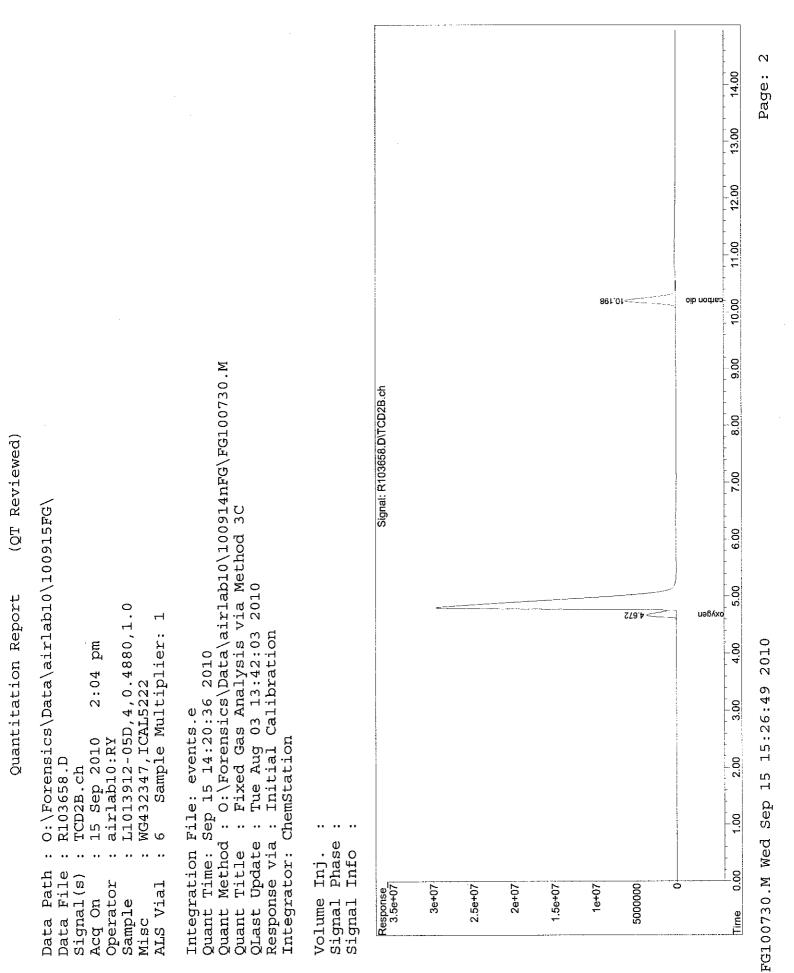





(QT Reviewed) Quantitation Report


Quant Method : 0:\Forensics\Data\airlab10\100914nFG\FG100730.M 0:\Forensics\Data\airlab10\100915FG\ Fixed Gas Analysis via Method 3C : Tue Aug 03 13:42:03 2010 : Initial Calibration airlablo:RY L1013912-03D,4,0.5700,1.0 WG432347,ICAL5222 Ч Sample Multiplier: 12:42 pm Quant Time: Sep 15 13:11:39 2010 Integration File: events.e 15 Sep 2010 Integrator: ChemStation R103654.D TCD2B.ch 4 QLast Update Response via Quant Title Data File Data Path Signal(s) Operator ALS Vial Acq On Sample Misc

Phase . [n] Info Volume Signal Signal




 $\sim$ 

Page:



Page 80 of 91



Page 81 of 91

Quant Method : 0:\Forensics\Data\airlab10\100914nFG\FG100730.M Signal: R103643.D\TCD2B.ch (QT Reviewed) 0:\Forensics\Data\airlab10\100914nFG\ : Fixed Gas Analysis via Method 3C : Tue Aug 03 13:42:03 2010 : Initial Calibration Quantitation Report Ll013912-06D,4,0.5144,1.0 Ч Sample Multiplier: 8:51 pm Quant Time: Sep 15 10:15:30 2010 WG432347, ICAL5222 Integration File: events.e 14 Sep 2010 airlab10:RY Integrator: ChemStation R103643.D TCD2B.ch ~ Response via Phase QLast Update Inj. Quant Title Info Data File Data Path Signal(s) Operator ALS Vial 3.5e+07 3e+07 Response\_ 2.5e+07 2e+07 1.5e+07 Volume Signal Acq On Sample Signal Misc

# Serial\_No:09151016:45

10.204

999.4

1e+07

500000

FG100730.M Wed Sep 15 15:27:06 2010

Page:

14.00

13.00

12.00

11.00

10.00

9.00

8.00

2.00

6.00

5.00

4.00

3.00

2.00

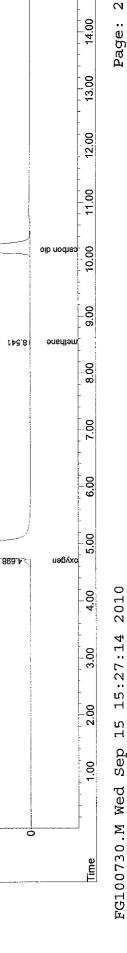
1.00

0.00

Time

ò

uə6/xo

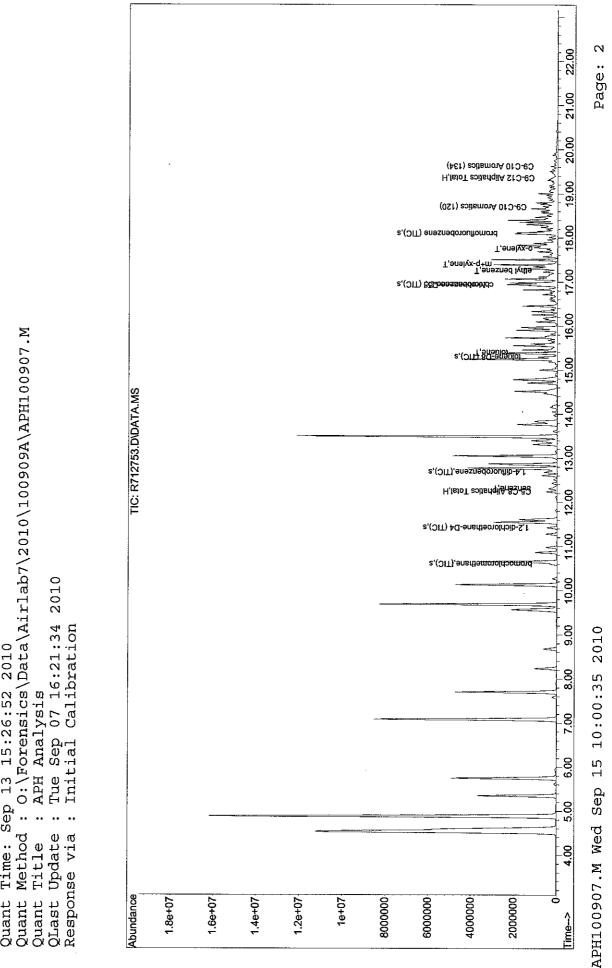

oib noche:

2

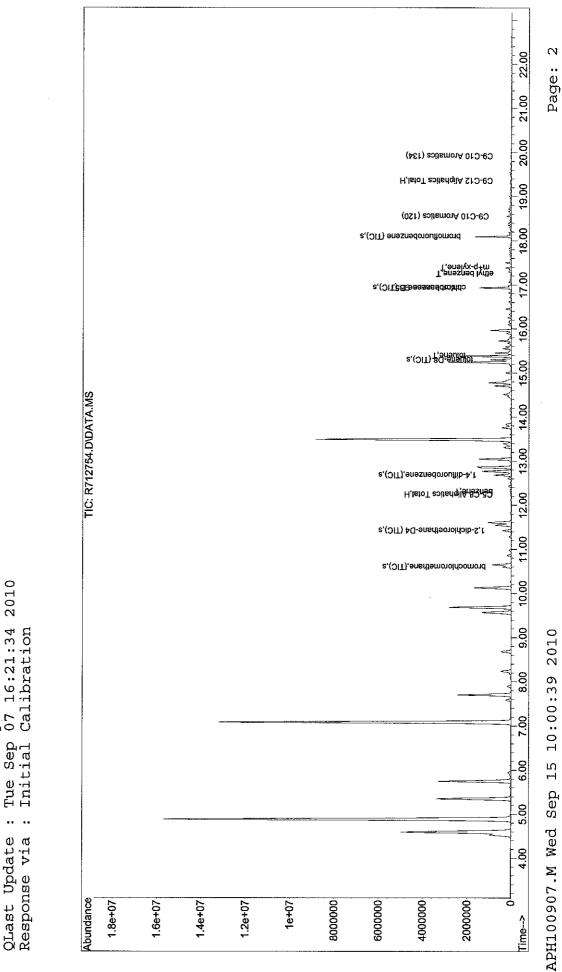
Page 82 of 91

191.01-Method : 0:\Forensics\Data\airlab10\100914nFG\FG100730.M Signal: R103645.D\TCD2B.ch (QT Reviewed) 0:\Forensics\Data\airlab10\100914nFG\ Fixed Gas Analysis via Method 3C : Tue Aug 03 13:42:03 2010 : Initial Calibration Quantitation Report L1013912-07D,4,0.6039,1.0 WG432347,ICAL5222 <del>с</del>-Н Sample Multiplier: 9:32 pm Sep 15 10:16:47 2010 Integration File: events.e 14 Sep 2010 Integrator: ChemStation airlab10:RY R103645.D TCD2B.ch ω QLast Update Response via Phase Inj. Quant Time: Title Info Data Path Data File Signal(s) Operator ALS Vial 2e+07 3e+07 1.5e+07 3.5e+07 2.5e+07 Response Volume Signal Acq On Signal Sample Quant Quant Misc

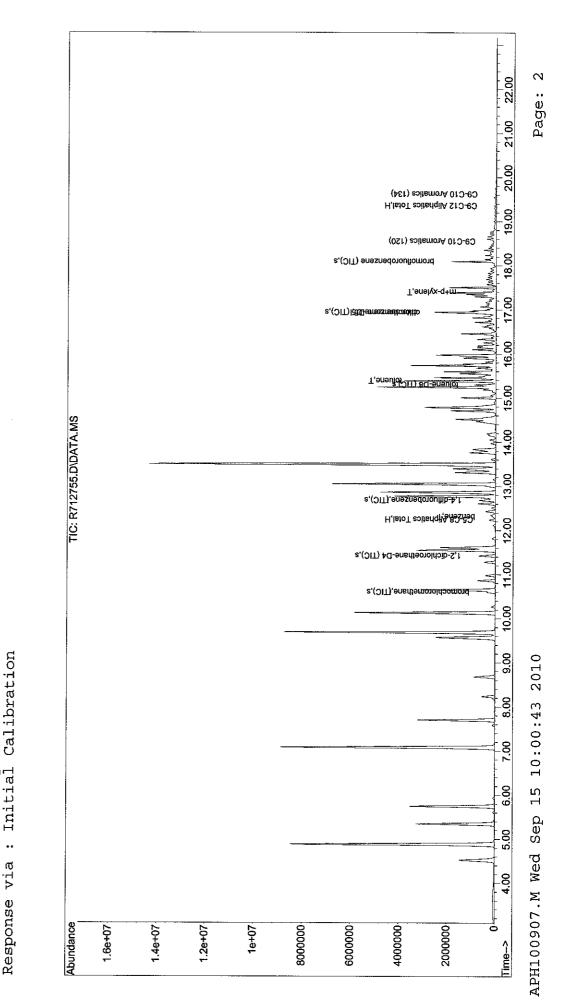
### Serial\_No:09151016:45




1e+07

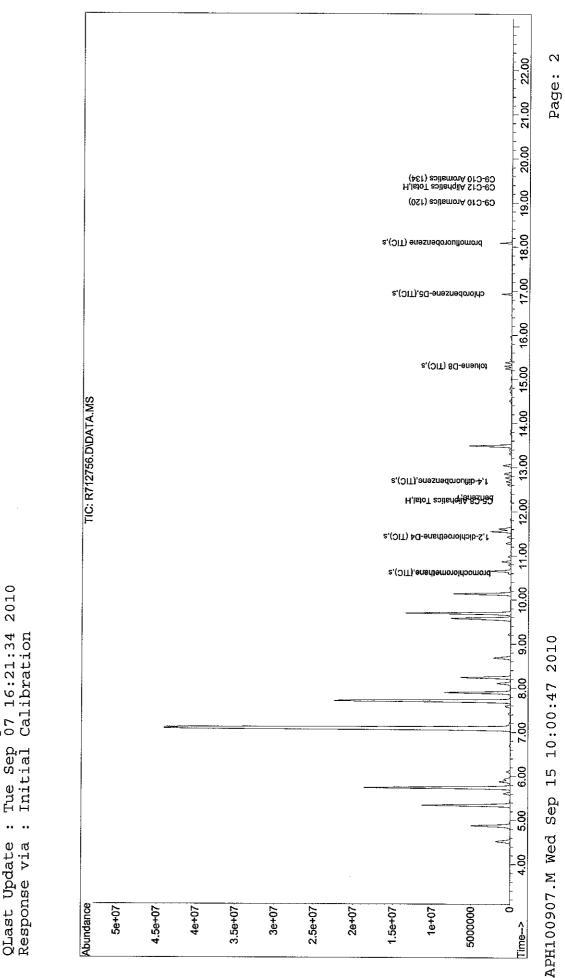

5000000

Page 83 of 91


# APH

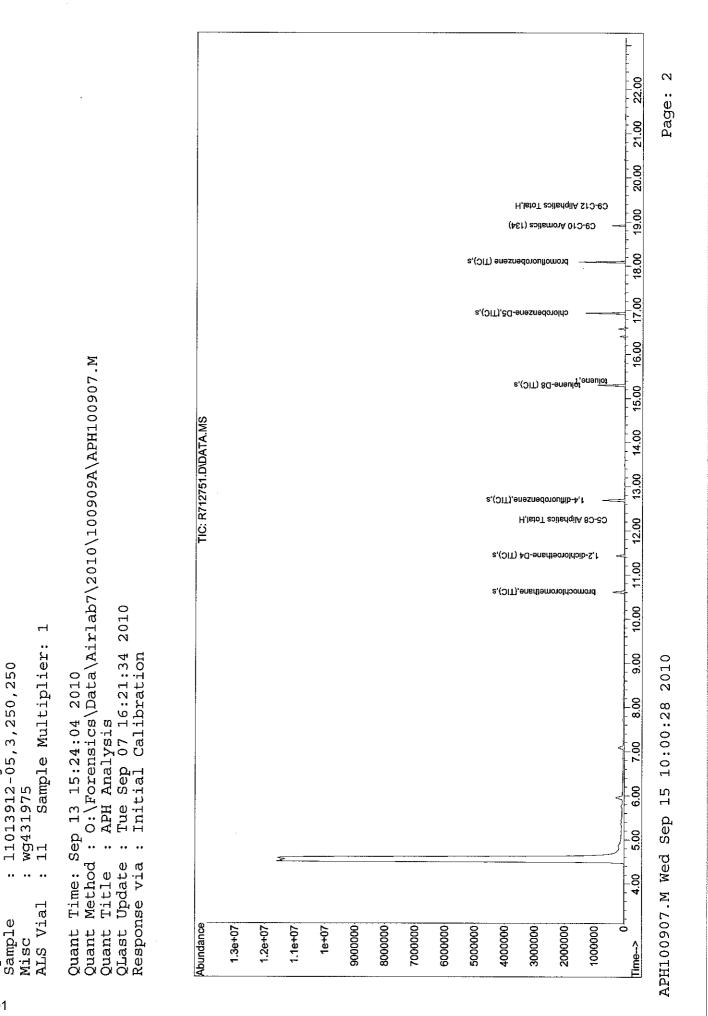


(QT Reviewed) 0:\Forensics\Data\Airlab7\2010\100911A\ . ...Report 11013912-01d, 3, 0.1108, 250 Sample Multiplier: am Quant Time: Sep 13 15:26:52 2010 2:10 1 : APH STD M 12 Sep 2010 AIRLAB7:aj R712753.D wg431975 13 Samo Data Path Data File Sub List Operator ALS Vial Acq On Sample Misc




: 0:\Forensics\Data\Airlab7\2010\100909A\APH100907.M (QT Reviewed) 0:\Forensics\Data\Airlab7\2010\100911A\ . ....Report ll013912-02d,3,0.1229,250 Ч Sample Multiplier: am Time: Sep 13 15:28:04 2010 2:43 APH Analysis ł : APH\_STD\_M 12 Sep 2010 AIRLAB7:aj R712754.D wg431975 14 Samn Method QLast Update Title Data Path Data File Operator Sub List ALS Vial Acq On Sample Quant Quant Quant Misc




: 0:\Forensics\Data\Airlab7\2010\100909A\APH100907.M (QT Reviewed) 0:\Forensics\Data\Airlab7\2010\100911A\ Tue Sep 07 16:21:34 2010 Initial Calibration . ...Report l1013912-03d, 3, 0.1067, 250 -Sample Multiplier: am Time: Sep 13 15:28:59 2010 3:16 : APH Analysis ł : APH STD M 12 Sep 2010 AIRLAB7:aj R712755.D wg431975 15 Samn Method QLast Update Title Data File Data Path Misc ALS Vial Operator Sub List Acq On Sample Quant Quant Quant

Page 87 of 91



: 0:\Forensics\Data\Airlab7\2010\100909A\APH100907.M (QT Reviewed) 0:\Forensics\Data\Airlab7\2010\100911A\ . ...Report l1013912-04d, 3, 0.1166, 250 Sample Multiplier: ащ Time: Sep 13 15:29:52 2010 3:50 APH Analysis I : APH\_STD\_M 12 Sep 2010 AIRLAB7:aj R712756.D wg431975 16 Samn Method QLast Update •• Title Data Path Data File Misc ALS Vial Sub List Operator Acq On Sample Quant Quant Quant

Page 88 of 91



Page 89 of 91

Data Path Data File

(QT Reviewed)

. ...Report

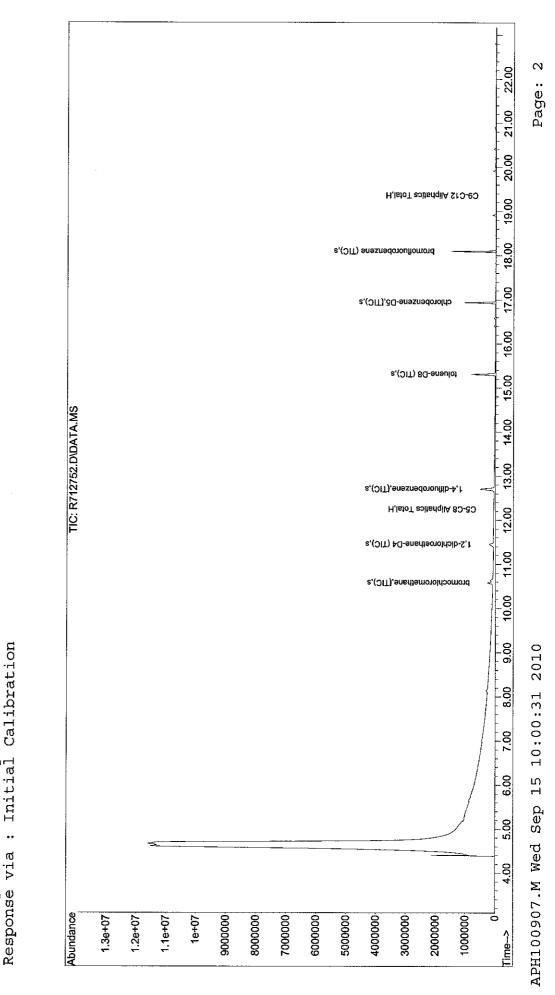
1

: APH\_STD\_M

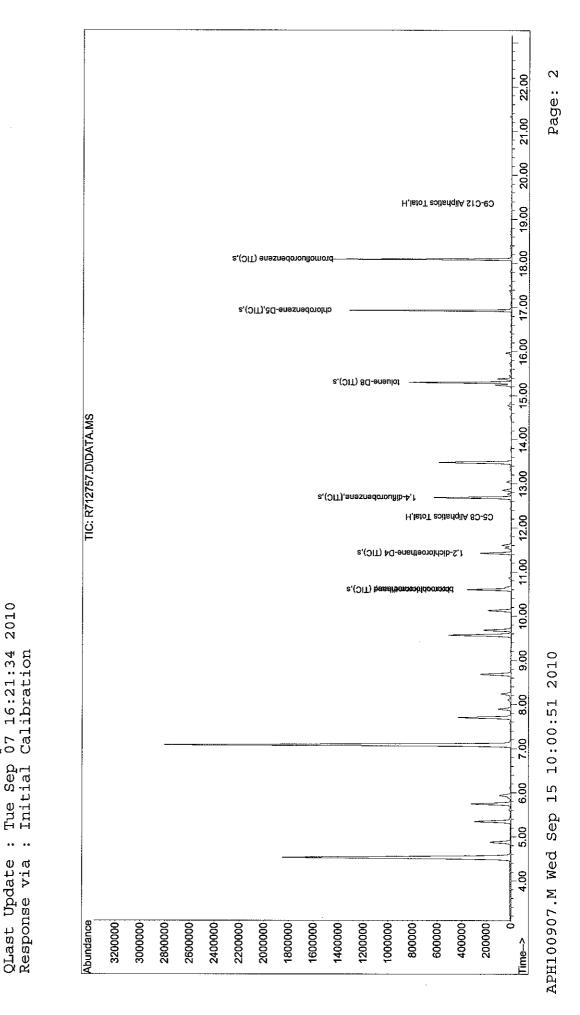
Sub List

0:\Forensics\Data\Airlab7\2010\100911A\

am


1:01

12 Sep 2010 AIRLAB7:aj R712751.D


Operator

Sample

Acq On



. 0:\Forensics\Data\Airlab7\2010\100909A\APH100907.M (QT Reviewed) 0:\Forensics\Data\Airlab7\2010\100911A\ Tue Sep 07 16:21:34 2010 Initial Calibration . ...Report Ч Sample Multiplier: 1:37 am 11013912-06,3,250,250 Time: Sep 13 15:25:43 2010 : APH Analysis I : APH\_STD\_M 12 Sep 2010 AIRLAB7:aj R712752.D wg431975 12 Samp .. Quant Method QLast Update Title Data Path Data File Sub List Operator ALS Vial Acq On Sample Quant Quant Misc



. O:\Forensics\Data\Airlab7\2010\100909A\APH100907.M (QT Reviewed) 0:\Forensics\Data\Airlab7\2010\100911A\ . ...Report 11013912-07d, 3, 0.1130, 250 Ч Sample Multiplier: am Sep 13 15:30:44 2010 4:24 APH Analysis T APH\_STD\_M 12 Sep 2010 AIRLAB7:aj R712757.D wg431975 .. H Method QLast Update Time: Title Data Path Data File Operator Sub List ALS Vial Acq On Sample Quant Quant Quant Misc



#### ANALYTICAL REPORT

| Lab Number:     | L1100113                             |
|-----------------|--------------------------------------|
| Client:         | Maine DEP-Div. of Technical Services |
|                 | Division of Technical Services       |
|                 | 312 Canco Road                       |
|                 | Portland, ME 04103                   |
| ATTN:           | Peter Eremita                        |
| Phone:          | (207) 592-0592                       |
| Project Name:   | CFI- WASHINGTON AVE.                 |
| Project Number: | 1047-3                               |
| Report Date:    | 01/19/11                             |
|                 |                                      |

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NY (11627), CT (PH-0141), NH (2206), NJ (MA015), RI (LAO00299), ME (MA0030), PA (Registration #68-02089), LA NELAC (03090), FL NELAC (E87814), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com



| Project Name:   | CFI- WASHINGTON AVE. |
|-----------------|----------------------|
| Project Number: | 1047-3               |

 Lab Number:
 L1100113

 Report Date:
 01/19/11

| Alpha<br>Sample ID | Client ID | Sample<br>Location | Collection<br>Date/Time |
|--------------------|-----------|--------------------|-------------------------|
| L1100113-01        | SG-5      | PORTLAND, ME       | 12/30/10 09:17          |
| L1100113-02        | SG-7      | PORTLAND, ME       | 12/30/10 08:52          |
| L1100113-03        | SG-12     | PORTLAND, ME       | 12/30/10 09:56          |
| L1100113-04        | SG-13     | PORTLAND, ME       | 12/30/10 09:34          |
| L1100113-05        | SG-15     | PORTLAND, ME       | 12/30/10 08:37          |
| L1100113-06        | CAN 451   | PORTLAND, ME       |                         |
| L1100113-07        | CAN 164   | PORTLAND, ME       |                         |



L1100113

**Project Name:** CFI- WASHINGTON AVE.

Report Date: 01/19/11

Lab Number:

Project Number: 1047-3

#### MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

| An af | firmative response to questions A through F is required for "Presumptive Certainty" status                                                                                                                                         |     |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| A     | Were all samples received in a condition consistent with those described on the Chain-of-<br>Custody, properly preserved (including temperature) in the field or laboratory, and<br>prepared/analyzed within method holding times? | YES |
| В     | Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?                                                                                                               | YES |
| С     | Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?                                               | YES |
| D     | Does the laboratory report comply with all the reporting requirements specified in CAM VII A,<br>"Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical<br>Data?"                       | YES |
| E a.  | VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).                                                        | YES |
| Eb.   | APH and TO-15 Methods only: Was the complete analyte list reported for each method?                                                                                                                                                | YES |
| F     | Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?                                          | YES |
| A res | ponse to questions G, H and I is required for "Presumptive Certainty" status                                                                                                                                                       |     |
| G     | Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?                                                                                                                          | YES |
| Н     | Were all QC performance standards specified in the CAM protocol(s) achieved?                                                                                                                                                       | YES |

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.



Project Name: CFI- WASHINGTON AVE. Project Number: 1047-3 
 Lab Number:
 L1100113

 Report Date:
 01/19/11

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

MCP Related Narratives

Canisters were released from the laboratory on December 15, 2010.

The canister certification data is provided as an addendum.

L1100113-01 The RPD of the pre- and post-flow controller calibration check (58% RPD) was outside acceptable limits (< or = 20% RPD).

L1100113-02 The RPD of the pre- and post-flow controller calibration check (22% RPD) was outside acceptable limits (< or = 20% RPD).

#### Volatile Organics in Air

L1100113-03 and -04 have elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.



Project Name: CFI- WASHINGTON AVE. Project Number: 1047-3

Lab Number: L1100113 Report Date: 01/19/11

#### **Case Narrative (continued)**

Fixed Gas

L1100113-01 through -05: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen in order to facilitate the transfer of sample to the Gas Chromatograph. The addition of Nitrogen resulted in a dilution of the sample. The reporting limits have been elevated accordingly.

Petroleum Hydrocarbons in Air

L1100113-01 through 05 and WG451548-5 Duplicate: have elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Kuhl M. ihin Kathleen O'Brien

Title: Technical Director/Representative

Date: 01/19/11



# AIR



L1100113

01/19/11

Lab Number:

Report Date:

### Project Name: CFI- WASHINGTON AVE.

Project Number: 1047-3

| Lab ID:           | L1100113-01    | Date Collected: | 12/30/10 09:17 |
|-------------------|----------------|-----------------|----------------|
| Client ID:        | SG-5           | Date Received:  | 01/05/11       |
| Sample Location:  | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:           | Soil_Vapor     |                 | -              |
| Anaytical Method: | 48,TO-15       |                 |                |
| Analytical Date:  | 01/08/11 18:05 |                 |                |
| Analyst:          | RY             |                 |                |

|                                  |                       | ppbV  |     | ug/m3   |       |     |           | Dilution |
|----------------------------------|-----------------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                        | Results               | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air (Low Le | evel) - Mansfield Lat | )     |     |         |       |     |           |          |
| Vinyl chloride                   | ND                    | 0.200 |     | ND      | 0.511 |     |           | 1        |
| 1,1-Dichloroethene               | ND                    | 0.200 |     | ND      | 0.792 |     |           | 1        |
| trans-1,2-Dichloroethene         | ND                    | 0.200 |     | ND      | 0.792 |     |           | 1        |
| 1,1-Dichloroethane               | ND                    | 0.200 |     | ND      | 0.809 |     |           | 1        |
| cis-1,2-Dichloroethene           | ND                    | 0.200 |     | ND      | 0.792 |     |           | 1        |
| 1,2-Dichloroethane               | ND                    | 0.200 |     | ND      | 0.809 |     |           | 1        |
| 1,1,1-Trichloroethane            | ND                    | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Trichloroethene                  | ND                    | 0.200 |     | ND      | 1.07  |     |           | 1        |
| 1,2-Dibromoethane                | ND                    | 0.200 |     | ND      | 1.54  |     |           | 1        |
| Tetrachloroethene                | 1.51                  | 0.200 |     | 10.2    | 1.36  |     |           | 1        |
|                                  |                       |       |     |         |       |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 75         |           | 60-140                 |
| Bromochloromethane  | 83         |           | 60-140                 |
| chlorobenzene-d5    | 78         |           | 60-140                 |



L1100113

01/19/11

Lab Number:

Report Date:

## Project Name: CFI- WASHINGTON AVE.

Project Number: 1047-3

| Lab ID:           | L1100113-02    | Date Collected: | 12/30/10 08:52 |
|-------------------|----------------|-----------------|----------------|
| Client ID:        | SG-7           | Date Received:  | 01/05/11       |
| Sample Location:  | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:           | Soil_Vapor     |                 | -              |
| Anaytical Method: | 48,TO-15       |                 |                |
| Analytical Date:  | 01/08/11 19:20 |                 |                |
| Analyst:          | RY             |                 |                |

|                                   |                      | ppbV  |     | ug/m3   |       |     |           | Dilution |
|-----------------------------------|----------------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                         | Results              | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air (Low Lev | vel) - Mansfield Lat | )     |     |         |       |     |           |          |
| Vinyl chloride                    | ND                   | 0.200 |     | ND      | 0.511 |     |           | 1        |
| 1,1-Dichloroethene                | ND                   | 0.200 |     | ND      | 0.792 |     |           | 1        |
| trans-1,2-Dichloroethene          | ND                   | 0.200 |     | ND      | 0.792 |     |           | 1        |
| 1,1-Dichloroethane                | ND                   | 0.200 |     | ND      | 0.809 |     |           | 1        |
| cis-1,2-Dichloroethene            | ND                   | 0.200 |     | ND      | 0.792 |     |           | 1        |
| 1,2-Dichloroethane                | ND                   | 0.200 |     | ND      | 0.809 |     |           | 1        |
| 1,1,1-Trichloroethane             | ND                   | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Trichloroethene                   | ND                   | 0.200 |     | ND      | 1.07  |     |           | 1        |
| 1,2-Dibromoethane                 | ND                   | 0.200 |     | ND      | 1.54  |     |           | 1        |
| Tetrachloroethene                 | ND                   | 0.200 |     | ND      | 1.36  |     |           | 1        |
|                                   |                      |       |     |         |       |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 79         |           | 60-140                 |
| Bromochloromethane  | 78         |           | 60-140                 |
| chlorobenzene-d5    | 76         |           | 60-140                 |



L1100113

01/19/11

Lab Number:

Report Date:

Project Name: CFI- WASHINGTON AVE.

Project Number: 1047-3

| Lab ID:           | L1100113-03 D  | Date Collected: | 12/30/10 09:56 |
|-------------------|----------------|-----------------|----------------|
| Client ID:        | SG-12          | Date Received:  | 01/05/11       |
| Sample Location:  | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:           | Soil_Vapor     |                 |                |
| Anaytical Method: | 48,TO-15       |                 |                |
| Analytical Date:  | 01/10/11 18:49 |                 |                |
| Analyst:          | BS             |                 |                |

|                                  |                      | ppbV  |     | ug/m3   |      |     |           | Dilution |
|----------------------------------|----------------------|-------|-----|---------|------|-----|-----------|----------|
| Parameter                        | Results              | RL    | MDL | Results | RL   | MDL | Qualifier | Factor   |
| Volatile Organics in Air (Low Le | vel) - Mansfield Lab | )     |     |         |      |     |           |          |
| Vinyl chloride                   | ND                   | 0.400 |     | ND      | 1.02 |     |           | 2        |
| 1,1-Dichloroethene               | ND                   | 0.400 |     | ND      | 1.58 |     |           | 2        |
| trans-1,2-Dichloroethene         | ND                   | 0.400 |     | ND      | 1.58 |     |           | 2        |
| 1,1-Dichloroethane               | ND                   | 0.400 |     | ND      | 1.62 |     |           | 2        |
| cis-1,2-Dichloroethene           | ND                   | 0.400 |     | ND      | 1.58 |     |           | 2        |
| 1,2-Dichloroethane               | ND                   | 0.400 |     | ND      | 1.62 |     |           | 2        |
| 1,1,1-Trichloroethane            | ND                   | 0.400 |     | ND      | 2.18 |     |           | 2        |
| Trichloroethene                  | ND                   | 0.400 |     | ND      | 2.15 |     |           | 2        |
| 1,2-Dibromoethane                | ND                   | 0.400 |     | ND      | 3.07 |     |           | 2        |
| Tetrachloroethene                | ND                   | 0.400 |     | ND      | 2.71 |     |           | 2        |
|                                  |                      |       |     |         |      |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 108        |           | 60-140                 |
| Bromochloromethane  | 99         |           | 60-140                 |
| chlorobenzene-d5    | 111        |           | 60-140                 |



L1100113

01/19/11

Lab Number:

Report Date:

Project Name: CFI- WASHINGTON AVE.

Project Number: 1047-3

| Lab ID:           | L1100113-04 D  | Date Collected: | 12/30/10 09:34 |
|-------------------|----------------|-----------------|----------------|
| Client ID:        | SG-13          | Date Received:  | 01/05/11       |
| Sample Location:  | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:           | Soil_Vapor     |                 |                |
| Anaytical Method: | 48,TO-15       |                 |                |
| Analytical Date:  | 01/10/11 19:26 |                 |                |
| Analyst:          | BS             |                 |                |

|                                   |                      | ppbV  |     |         | ug/m3 |     |           | Dilution |
|-----------------------------------|----------------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                         | Results              | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air (Low Lev | /el) - Mansfield Lab | )     |     |         |       |     |           |          |
| Vinyl chloride                    | ND                   | 0.400 |     | ND      | 1.02  |     |           | 2        |
| 1,1-Dichloroethene                | ND                   | 0.400 |     | ND      | 1.58  |     |           | 2        |
| trans-1,2-Dichloroethene          | ND                   | 0.400 |     | ND      | 1.58  |     |           | 2        |
| 1,1-Dichloroethane                | ND                   | 0.400 |     | ND      | 1.62  |     |           | 2        |
| cis-1,2-Dichloroethene            | ND                   | 0.400 |     | ND      | 1.58  |     |           | 2        |
| 1,2-Dichloroethane                | ND                   | 0.400 |     | ND      | 1.62  |     |           | 2        |
| 1,1,1-Trichloroethane             | ND                   | 0.400 |     | ND      | 2.18  |     |           | 2        |
| Trichloroethene                   | ND                   | 0.400 |     | ND      | 2.15  |     |           | 2        |
| 1,2-Dibromoethane                 | ND                   | 0.400 |     | ND      | 3.07  |     |           | 2        |
| Tetrachloroethene                 | ND                   | 0.400 |     | ND      | 2.71  |     |           | 2        |
|                                   |                      |       |     |         |       |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 102        |           | 60-140                 |
| Bromochloromethane  | 95         |           | 60-140                 |
| chlorobenzene-d5    | 101        |           | 60-140                 |



L1100113

01/19/11

Lab Number:

Report Date:

### Project Name: CFI- WASHINGTON AVE.

Project Number: 1047-3

| Lab ID:           | L1100113-05    | Date Collected: | 12/30/10 08:37 |
|-------------------|----------------|-----------------|----------------|
| Client ID:        | SG-15          | Date Received:  | 01/05/11       |
| Sample Location:  | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:           | Soil_Vapor     |                 | ·              |
| Anaytical Method: | 48,TO-15       |                 |                |
| Analytical Date:  | 01/08/11 21:14 |                 |                |
| Analyst:          | RY             |                 |                |

|                                  |                       | ppbV  |     |         | ug/m3 |     |           | Dilution |
|----------------------------------|-----------------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                        | Results               | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air (Low Le | evel) - Mansfield Lab | )     |     |         |       |     |           |          |
| Vinyl chloride                   | ND                    | 0.200 |     | ND      | 0.511 |     |           | 1        |
| 1,1-Dichloroethene               | ND                    | 0.200 |     | ND      | 0.792 |     |           | 1        |
| trans-1,2-Dichloroethene         | ND                    | 0.200 |     | ND      | 0.792 |     |           | 1        |
| 1,1-Dichloroethane               | ND                    | 0.200 |     | ND      | 0.809 |     |           | 1        |
| cis-1,2-Dichloroethene           | ND                    | 0.200 |     | ND      | 0.792 |     |           | 1        |
| 1,2-Dichloroethane               | ND                    | 0.200 |     | ND      | 0.809 |     |           | 1        |
| 1,1,1-Trichloroethane            | ND                    | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Trichloroethene                  | 0.418                 | 0.200 |     | 2.24    | 1.07  |     |           | 1        |
| 1,2-Dibromoethane                | ND                    | 0.200 |     | ND      | 1.54  |     |           | 1        |
| Tetrachloroethene                | 0.280                 | 0.200 |     | 1.90    | 1.36  |     |           | 1        |
|                                  |                       |       |     |         |       |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 72         |           | 60-140                 |
| Bromochloromethane  | 74         |           | 60-140                 |
| chlorobenzene-d5    | 82         |           | 60-140                 |



L1100113 Report Date: 01/19/11

Lab Number:

# Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 01/08/11 14:40

|                                      |               | ppbV       |          |          | ug/m3     |         |           | Dilution |
|--------------------------------------|---------------|------------|----------|----------|-----------|---------|-----------|----------|
| Parameter                            | Results       | RL         | MDL      | Results  | RL        | MDL     | Qualifier | Factor   |
| Volatile Organics in Air (Low Level) | - Mansfield I | _ab for sa | mple(s): | 01-02,05 | Batch: WG | 6450777 | 7-4       |          |
| Propylene                            | ND            | 0.500      |          | ND       | 0.860     |         |           | 1        |
| Dichlorodifluoromethane              | ND            | 0.200      |          | ND       | 0.988     |         |           | 1        |
| Chloromethane                        | ND            | 0.200      |          | ND       | 0.413     |         |           | 1        |
| Freon-114                            | ND            | 0.200      |          | ND       | 1.40      |         |           | 1        |
| Vinyl chloride                       | ND            | 0.200      |          | ND       | 0.511     |         |           | 1        |
| 1,3-Butadiene                        | ND            | 0.200      |          | ND       | 0.442     |         |           | 1        |
| Bromomethane                         | ND            | 0.200      |          | ND       | 0.776     |         |           | 1        |
| Chloroethane                         | ND            | 0.200      |          | ND       | 0.527     |         |           | 1        |
| Ethanol                              | ND            | 2.50       |          | ND       | 4.71      |         |           | 1        |
| Vinyl bromide                        | ND            | 0.200      |          | ND       | 0.874     |         |           | 1        |
| Acetone                              | ND            | 1.00       |          | ND       | 2.37      |         |           | 1        |
| Trichlorofluoromethane               | ND            | 0.200      |          | ND       | 1.12      |         |           | 1        |
| Isopropanol                          | ND            | 0.500      |          | ND       | 1.23      |         |           | 1        |
| 1,1-Dichloroethene                   | ND            | 0.200      |          | ND       | 0.792     |         |           | 1        |
| Methylene chloride                   | ND            | 1.00       |          | ND       | 3.47      |         |           | 1        |
| 3-Chloropropene                      | ND            | 0.200      |          | ND       | 0.626     |         |           | 1        |
| Carbon disulfide                     | ND            | 0.200      |          | ND       | 0.622     |         |           | 1        |
| Freon-113                            | ND            | 0.200      |          | ND       | 1.53      |         |           | 1        |
| trans-1,2-Dichloroethene             | ND            | 0.200      |          | ND       | 0.792     |         |           | 1        |
| 1,1-Dichloroethane                   | ND            | 0.200      |          | ND       | 0.809     |         |           | 1        |
| Methyl tert butyl ether              | ND            | 0.200      |          | ND       | 0.720     |         |           | 1        |
| Vinyl acetate                        | ND            | 0.200      |          | ND       | 0.704     |         |           | 1        |
| 2-Butanone                           | ND            | 0.200      |          | ND       | 0.589     |         |           | 1        |
| cis-1,2-Dichloroethene               | ND            | 0.200      |          | ND       | 0.792     |         |           | 1        |
| Ethyl Acetate                        |               |            |          |          |           |         |           |          |



 Lab Number:
 L1100113

 Report Date:
 01/19/11

### Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 01/08/11 14:40

| ParameterResultsRLMDLResultsRLMDLResultsRLMDLResultsRLMDLQualitiesPChorolormND0.200ND0.976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |               | ppbV       |          | ug/m3    |           |         |           | Dilution |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------|------------|----------|----------|-----------|---------|-----------|----------|
| Chloroform         ND         0.200          ND         0.976            Tetrahydroluran         ND         0.200          ND         0.589            1.2-Dichloroethane         ND         0.200          ND         0.809            n-Hexane         ND         0.200          ND         0.704            1.1.1-Trichloroethane         ND         0.200          ND         0.638            Benzene         ND         0.200          ND         0.688            Cydohexane         ND         0.200          ND         0.688            1.2-Dichloropropane         ND         0.200          ND         0.888            1.4-Dioxane         ND         0.200          ND         0.924            1.4-Dioxane         ND         0.200          ND         0.720            1.4-Dioxane         ND         0.200          ND         0.934            1.4-Dioxane         ND         0.200          <                                                                                                                                                             | Parameter                            | Results       | RL         | MDL      | Results  | RL        | MDL     | Qualifier | Factor   |
| ND         0.200          ND         0.589            1.2-Dichloroethane         ND         0.200          ND         0.809            n-Hexane         ND         0.200          ND         0.704            1.1,1-Trichloroethane         ND         0.200          ND         0.704            Benzene         ND         0.200          ND         0.638            Cyclohexane         ND         0.200          ND         0.688            12-Dichloropropane         ND         0.200          ND         0.688            12-Dichloropropane         ND         0.200          ND         0.824            Bromodichloromethane         ND         0.200          ND         0.924            1.4-Dioxane         ND         0.200          ND         0.720            1.4-Dioxane         ND         0.200          ND         0.934            1.4-Dioxane         ND         0.200          ND                                                                                                                                                                   | Volatile Organics in Air (Low Level) | - Mansfield I | _ab for sa | mple(s): | 01-02,05 | Batch: WG | 6450777 | 7-4       |          |
| I.2-Dichloroethane         ND         0.200          ND         0.809            n-Hexane         ND         0.200          ND         0.704            1,1,1-Trichloroethane         ND         0.200          ND         0.704            Benzene         ND         0.200          ND         0.638            Carbon tetrachloride         ND         0.200          ND         0.638            Cyclohexane         ND         0.200          ND         0.688            1,2-Dichloropropane         ND         0.200          ND         0.924            Bromodichloromethane         ND         0.200          ND         0.924            1,4-Dioxane         ND         0.200          ND         0.720            1/4-Dioxane         ND         0.200          ND         0.934            1/4-Dioxane         ND         0.200          ND         0.937            1/4-Dioxane         ND         0.200         -                                                                                                                                              | Chloroform                           | ND            | 0.200      |          | ND       | 0.976     |         |           | 1        |
| n-Hexane         ND         0.200          ND         0.704            1,1,1-Trichloroethane         ND         0.200          ND         1.09            Benzene         ND         0.200          ND         0.638            Carbon tetrachloride         ND         0.200          ND         0.638            Cyclohexane         ND         0.200          ND         0.688            1,2-Dichloropropane         ND         0.200          ND         0.924            Bromodichloromethane         ND         0.200          ND         0.700            1,4-Dioxane         ND         0.200          ND         0.720            1,4-Dioxane         ND         0.200          ND         0.707            1,4-Dioxane         ND         0.200          ND         0.819            1,4-Dioxane         ND         0.200          ND         0.907            1,4-Dioxane         ND         0.200                                                                                                                                                                | Tetrahydrofuran                      | ND            | 0.200      |          | ND       | 0.589     |         |           | 1        |
| 1,1,1-Trichloroethane       ND       0.200        ND       1.09          Benzene       ND       0.200        ND       0.638          Carbon tetrachloride       ND       0.200        ND       1.26          Cyclohexane       ND       0.200        ND       0.688          1,2-Dichloropropane       ND       0.200        ND       0.924          Bromodichloromethane       ND       0.200        ND       0.924          Bromodichloromethane       ND       0.200        ND       0.720          Trichloroethene       ND       0.200        ND       0.720          2,2,4-Trimethylpentane       ND       0.200        ND       0.934          Heptane       ND       0.200        ND       0.819          4-Methyl-2-pentanone       ND       0.200        ND       0.819          1,1,2-Trichloroethane       ND       0.200        ND       0.819          1,12-Trichloroethane                                                                                                                                                                                     | 1,2-Dichloroethane                   | ND            | 0.200      |          | ND       | 0.809     |         |           | 1        |
| ND         0.200          ND         0.638            Benzene         ND         0.200          ND         1.26            Carbon tetrachloride         ND         0.200          ND         0.638            Cyclohexane         ND         0.200          ND         0.688            1,2-Dichloropropane         ND         0.200          ND         0.924            Bromodichloromethane         ND         0.200          ND         0.720            1,4-Dioxane         ND         0.200          ND         0.720            1,4-Dioxane         ND         0.200          ND         0.720            1,4-Dioxane         ND         0.200          ND         0.934            2,2,4-Trimethylpentane         ND         0.200          ND         0.819            4Methyl-2-pentanone         ND         0.200          ND         0.907         -           1,1,2-Trichloropropene         ND         0.200                                                                                                                                                    | n-Hexane                             | ND            | 0.200      |          | ND       | 0.704     |         |           | 1        |
| ND         0.200          ND         1.26            Carbon tetrachloride         ND         0.200          ND         0.688            Cyclohexane         ND         0.200          ND         0.688            1,2-Dichloropropane         ND         0.200          ND         0.924            Bromodichloromethane         ND         0.200          ND         1.34            1,4-Dioxane         ND         0.200          ND         0.720            1,4-Dioxane         ND         0.200          ND         0.720            2,2,4-Trimethylpentane         ND         0.200          ND         0.934            Heptane         ND         0.200          ND         0.819            cis-1,3-Dichloropropene         ND         0.200          ND         0.907            1,1,2-Trichloroethane         ND         0.200          ND         0.907            1,1,2-Trichloropropene         ND         0.200                                                                                                                                                | 1,1,1-Trichloroethane                | ND            | 0.200      |          | ND       | 1.09      |         |           | 1        |
| Cyclohexane         ND         0.200          ND         0.688            1,2-Dichloropropane         ND         0.200          ND         0.924            Bromodichloromethane         ND         0.200          ND         1.34            1,4-Dioxane         ND         0.200          ND         0.720            Trichloroethene         ND         0.200          ND         0.720            2,2,4-Trimethylpentane         ND         0.200          ND         0.934            Heptane         ND         0.200          ND         0.819            cis-1,3-Dichloropropene         ND         0.200          ND         0.907            trans-1,3-Dichloropropene         ND         0.200          ND         0.907            1,1,2-Trichloroethane         ND         0.200          ND         0.907            1,1,2-Trichloroethane         ND         0.200          ND         0.907         -           1,12-Dichloropropene <td< td=""><td>Benzene</td><td>ND</td><td>0.200</td><td></td><td>ND</td><td>0.638</td><td></td><td></td><td>1</td></td<> | Benzene                              | ND            | 0.200      |          | ND       | 0.638     |         |           | 1        |
| 1,2-Dichloropropane       ND       0.200        ND       0.924          Bromodichloromethane       ND       0.200        ND       1.34          1,4-Dioxane       ND       0.200        ND       0.720          Trichloroethene       ND       0.200        ND       0.720          2,2,4-Trimethylpentane       ND       0.200        ND       0.934          Heptane       ND       0.200        ND       0.819          cis-1,3-Dichloropropene       ND       0.200        ND       0.907          4-Methyl-2-pentanone       ND       0.200        ND       0.907          1,1,2-Trichloroptopene       ND       0.200        ND       0.907          1,1,2-Trichloroethane       ND       0.200        ND       0.907          Toluene       ND       0.200        ND       0.907          2-Hexanone       ND       0.200        ND       0.819          Dibromochloromethane                                                                                                                                                                                          | Carbon tetrachloride                 | ND            | 0.200      |          | ND       | 1.26      |         |           | 1        |
| Indext       ND       0.200        ND       1.34          1,4-Dioxane       ND       0.200        ND       0.720          Trichloroethene       ND       0.200        ND       1.07          2,2,4-Trimethylpentane       ND       0.200        ND       0.934          Heptane       ND       0.200        ND       0.819          cis-1,3-Dichloropropene       ND       0.200        ND       0.907          4-Methyl-2-pentanone       ND       0.200        ND       0.819          1,1,2-Trichloroptopene       ND       0.200        ND       0.907          1,1,2-Trichloroethane       ND       0.200        ND       0.907          Toluene       ND       0.200        ND       0.907          2-Hexanone       ND       0.200        ND       0.907          Dibromochloromethane       ND       0.200        ND       0.753          1,2-Dibromochloromethane       ND <td>Cyclohexane</td> <td>ND</td> <td>0.200</td> <td></td> <td>ND</td> <td>0.688</td> <td></td> <td></td> <td>1</td>                                                                       | Cyclohexane                          | ND            | 0.200      |          | ND       | 0.688     |         |           | 1        |
| 1,4-Dioxane       ND       0.200        ND       0.720          Trichloroethene       ND       0.200        ND       1.07          2,2,4-Trimethylpentane       ND       0.200        ND       0.934          Heptane       ND       0.200        ND       0.819          cis-1,3-Dichloropropene       ND       0.200        ND       0.907          4-Methyl-2-pentanone       ND       0.200        ND       0.819          trans-1,3-Dichloropropene       ND       0.200        ND       0.907          1,1,2-Trichloroethane       ND       0.200        ND       0.907          Toluene       ND       0.200        ND       0.907          2-Hexanone       ND       0.200        ND       0.907          Dibromochloromethane       ND       0.200        ND       0.753          2-Hexanone       ND       0.200        ND       1.70          1,2-Dibromochloromethane <t< td=""><td>1,2-Dichloropropane</td><td>ND</td><td>0.200</td><td></td><td>ND</td><td>0.924</td><td></td><td></td><td>1</td></t<>                                                          | 1,2-Dichloropropane                  | ND            | 0.200      |          | ND       | 0.924     |         |           | 1        |
| Trichloroethene       ND       0.200        ND       1.07          2,2,4-Trimethylpentane       ND       0.200        ND       0.934          Heptane       ND       0.200        ND       0.819          cis-1,3-Dichloropropene       ND       0.200        ND       0.907          4-Methyl-2-pentanone       ND       0.200        ND       0.819          trans-1,3-Dichloropropene       ND       0.200        ND       0.907          1,1,2-Trichloroethane       ND       0.200        ND       0.907          Toluene       ND       0.200        ND       0.907          2-Hexanone       ND       0.200        ND       0.753          Dibromochloromethane       ND       0.200        ND       0.819          1,2-Dibromoethane       ND       0.200        ND       0.753          1,2-Dibromoethane       ND       0.200        ND       1.70          1,2-Dibromoethane                                                                                                                                                                                       | Bromodichloromethane                 | ND            | 0.200      |          | ND       | 1.34      |         |           | 1        |
| 2,2,4-Trimethylpentane       ND       0.200        ND       0.934          Heptane       ND       0.200        ND       0.819          cis-1,3-Dichloropropene       ND       0.200        ND       0.907          4-Methyl-2-pentanone       ND       0.200        ND       0.819          trans-1,3-Dichloropropene       ND       0.200        ND       0.907          1,1,2-Trichloroptopene       ND       0.200        ND       0.907          1,1,2-Trichloroptopene       ND       0.200        ND       0.907          1,1,2-Trichloropthane       ND       0.200        ND       0.907          Toluene       ND       0.200        ND       0.753          2-Hexanone       ND       0.200        ND       0.819          Dibromochloromethane       ND       0.200        ND       1.70          1,2-Dibromoethane       ND       0.200        ND       1.54          Tetrachloroet                                                                                                                                                                               | 1,4-Dioxane                          | ND            | 0.200      |          | ND       | 0.720     |         |           | 1        |
| Heptane       ND       0.200        ND       0.819          cis-1,3-Dichloropropene       ND       0.200        ND       0.907          4-Methyl-2-pentanone       ND       0.200        ND       0.819          trans-1,3-Dichloropropene       ND       0.200        ND       0.907          1,1,2-Trichloroethane       ND       0.200        ND       1.09          Toluene       ND       0.200        ND       0.753          2-Hexanone       ND       0.200        ND       0.819          Dibromochloromethane       ND       0.200        ND       0.753          1,2-Dibromoethane       ND       0.200        ND       0.819          1,2-Dibromoethane       ND       0.200        ND       1.54          1,2-Dibromoethane       ND       0.200        ND       1.36                                                                                                                                                                                                                                                                                            | Trichloroethene                      | ND            | 0.200      |          | ND       | 1.07      |         |           | 1        |
| Line       ND       O.200        ND       O.907          4-Methyl-2-pentanone       ND       O.200        ND       O.819          trans-1,3-Dichloropropene       ND       O.200        ND       O.907          1,1,2-Trichloropthane       ND       O.200        ND       1.09          Toluene       ND       O.200        ND       0.753          2-Hexanone       ND       O.200        ND       0.819          Dibromochloromethane       ND       O.200        ND       0.819          1,2-Dibromoethane       ND       O.200        ND       0.819          1,2-Dibromoethane       ND       O.200        ND       1.70          1,2-Dibromoethane       ND       O.200        ND       1.54          Tetrachloroethene       ND       O.200        ND       1.36                                                                                                                                                                                                                                                                                                      | 2,2,4-Trimethylpentane               | ND            | 0.200      |          | ND       | 0.934     |         |           | 1        |
| 4-Methyl-2-pentanone       ND       0.200        ND       0.819          trans-1,3-Dichloropropene       ND       0.200        ND       0.907          1,1,2-Trichloroethane       ND       0.200        ND       1.09          Toluene       ND       0.200        ND       0.753          2-Hexanone       ND       0.200        ND       0.819          Dibromochloromethane       ND       0.200        ND       0.819          1,2-Dibromoethane       ND       0.200        ND       1.70          1,2-Dibromoethane       ND       0.200        ND       1.54          Tetrachloroethene       ND       0.200        ND       1.36                                                                                                                                                                                                                                                                                                                                                                                                                                     | Heptane                              | ND            | 0.200      |          | ND       | 0.819     |         |           | 1        |
| trans-1,3-Dichloropropene       ND       0.200        ND       0.907          1,1,2-Trichloroethane       ND       0.200        ND       1.09          Toluene       ND       0.200        ND       0.753          2-Hexanone       ND       0.200        ND       0.819          Dibromochloromethane       ND       0.200        ND       1.70          1,2-Dibromoethane       ND       0.200        ND       1.70          1,2-Dibromoethane       ND       0.200        ND       1.54          1,2-Dibromoethane       ND       0.200        ND       1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cis-1,3-Dichloropropene              | ND            | 0.200      |          | ND       | 0.907     |         |           | 1        |
| 1,1,2-Trichloroethane       ND       0.200        ND       1.09          Toluene       ND       0.200        ND       0.753          2-Hexanone       ND       0.200        ND       0.819          Dibromochloromethane       ND       0.200        ND       1.70          1,2-Dibromoethane       ND       0.200        ND       1.54          Tetrachloroethene       ND       0.200        ND       1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4-Methyl-2-pentanone                 | ND            | 0.200      |          | ND       | 0.819     |         |           | 1        |
| Toluene       ND       0.200        ND       0.753          2-Hexanone       ND       0.200        ND       0.819          Dibromochloromethane       ND       0.200        ND       1.70          1,2-Dibromoethane       ND       0.200        ND       1.54          Tetrachloroethene       ND       0.200        ND       1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | trans-1,3-Dichloropropene            | ND            | 0.200      |          | ND       | 0.907     |         |           | 1        |
| 2-Hexanone         ND         0.200          ND         0.819            Dibromochloromethane         ND         0.200          ND         1.70            1,2-Dibromoethane         ND         0.200          ND         1.54            Tetrachloroethene         ND         0.200          ND         1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1,2-Trichloroethane                | ND            | 0.200      |          | ND       | 1.09      |         |           | 1        |
| ND         0.200          ND         1.70            1,2-Dibromoethane         ND         0.200          ND         1.54            Tetrachloroethene         ND         0.200          ND         1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Toluene                              | ND            | 0.200      |          | ND       | 0.753     |         |           | 1        |
| ND         0.200          ND         1.54            1,2-Dibromoethane         ND         0.200          ND         1.54            Tetrachloroethene         ND         0.200          ND         1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-Hexanone                           | ND            | 0.200      |          | ND       | 0.819     |         |           | 1        |
| Tetrachloroethene         ND         0.200          ND         1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dibromochloromethane                 | ND            | 0.200      |          | ND       | 1.70      |         |           | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2-Dibromoethane                    | ND            | 0.200      |          | ND       | 1.54      |         |           | 1        |
| Chlorobenzene         ND         0.200          ND         0.920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tetrachloroethene                    | ND            | 0.200      |          | ND       | 1.36      |         |           | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chlorobenzene                        | ND            | 0.200      |          | ND       | 0.920     |         |           | 1        |
| Ethylbenzene ND 0.200 ND 0.868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ethylbenzene                         | ND            | 0.200      |          | ND       | 0.868     |         |           | 1        |



 Lab Number:
 L1100113

 Report Date:
 01/19/11

### Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 01/08/11 14:40

|                                               |                | ppbV       |          |          | ug/m3     |         |           | Dilution |
|-----------------------------------------------|----------------|------------|----------|----------|-----------|---------|-----------|----------|
| Parameter                                     | Results        | RL         | MDL      | Results  | RL        | MDL     | Qualifier | Factor   |
| Volatile Organics in Air (Low Leve            | I) - Mansfield | Lab for sa | mple(s): | 01-02,05 | Batch: WG | G450777 | 7-4       |          |
| p/m-Xylene                                    | ND             | 0.400      |          | ND       | 1.74      |         |           | 1        |
| Bromoform                                     | ND             | 0.200      |          | ND       | 2.06      |         |           | 1        |
| Styrene                                       | ND             | 0.200      |          | ND       | 0.851     |         |           | 1        |
| 1,1,2,2-Tetrachloroethane                     | ND             | 0.200      |          | ND       | 1.37      |         |           | 1        |
| o-Xylene                                      | ND             | 0.200      |          | ND       | 0.868     |         |           | 1        |
| 4-Ethyltoluene                                | ND             | 0.200      |          | ND       | 0.982     |         |           | 1        |
| 1,3,5-Trimethybenzene                         | ND             | 0.200      |          | ND       | 0.982     |         |           | 1        |
| 1,2,4-Trimethylbenzene                        | ND             | 0.200      |          | ND       | 0.982     |         |           | 1        |
| Benzyl chloride                               | ND             | 0.200      |          | ND       | 1.03      |         |           | 1        |
| 1,3-Dichlorobenzene                           | ND             | 0.200      |          | ND       | 1.20      |         |           | 1        |
| 1,4-Dichlorobenzene                           | ND             | 0.200      |          | ND       | 1.20      |         |           | 1        |
| 1,2-Dichlorobenzene                           | ND             | 0.200      |          | ND       | 1.20      |         |           | 1        |
| 1,2,4-Trichlorobenzene                        | ND             | 0.200      |          | ND       | 1.48      |         |           | 1        |
| Hexachlorobutadiene                           | ND             | 0.200      |          | ND       | 2.13      |         |           | 1        |
| 1,2,4-Trichlorobenzene<br>Hexachlorobutadiene |                |            |          |          |           |         |           |          |



L1100113 Report Date: 01/19/11

Lab Number:

# Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 01/10/11 18:13

| Parameter<br>Volatile Organics in Air (Low Level)<br>Dichlorodifluoromethane<br>Chloromethane<br>Freon-114 | Results<br>) - Mansfield L<br>ND |       | MDL<br>mple(s): | Results     | RL      | MDL    | Qualifier | Factor |
|------------------------------------------------------------------------------------------------------------|----------------------------------|-------|-----------------|-------------|---------|--------|-----------|--------|
| Dichlorodifluoromethane                                                                                    |                                  |       | mple(s):        |             |         |        | Qualifier | Factor |
| Chloromethane                                                                                              | ND                               |       |                 | 03-04 Batch | n: WG45 | 1055-4 |           |        |
|                                                                                                            |                                  | 0.200 |                 | ND          | 0.988   |        |           | 1      |
| Freon-114                                                                                                  | ND                               | 0.200 |                 | ND          | 0.413   |        |           | 1      |
|                                                                                                            | ND                               | 0.200 |                 | ND          | 1.40    |        |           | 1      |
| Vinyl chloride                                                                                             | ND                               | 0.200 |                 | ND          | 0.511   |        |           | 1      |
| 1,3-Butadiene                                                                                              | ND                               | 0.200 |                 | ND          | 0.442   |        |           | 1      |
| Bromomethane                                                                                               | ND                               | 0.200 |                 | ND          | 0.776   |        |           | 1      |
| Chloroethane                                                                                               | ND                               | 0.200 |                 | ND          | 0.527   |        |           | 1      |
| Vinyl bromide                                                                                              | ND                               | 0.200 |                 | ND          | 0.874   |        |           | 1      |
| Acetone                                                                                                    | ND                               | 1.00  |                 | ND          | 2.37    |        |           | 1      |
| Trichlorofluoromethane                                                                                     | ND                               | 0.200 |                 | ND          | 1.12    |        |           | 1      |
| 1,1-Dichloroethene                                                                                         | ND                               | 0.200 |                 | ND          | 0.792   |        |           | 1      |
| Methylene chloride                                                                                         | ND                               | 1.00  |                 | ND          | 3.47    |        |           | 1      |
| 3-Chloropropene                                                                                            | ND                               | 0.200 |                 | ND          | 0.626   |        |           | 1      |
| Carbon disulfide                                                                                           | ND                               | 0.200 |                 | ND          | 0.622   |        |           | 1      |
| Freon-113                                                                                                  | ND                               | 0.200 |                 | ND          | 1.53    |        |           | 1      |
| trans-1,2-Dichloroethene                                                                                   | ND                               | 0.200 |                 | ND          | 0.792   |        |           | 1      |
| 1,1-Dichloroethane                                                                                         | ND                               | 0.200 |                 | ND          | 0.809   |        |           | 1      |
| Methyl tert butyl ether                                                                                    | ND                               | 0.200 |                 | ND          | 0.720   |        |           | 1      |
| 2-Butanone                                                                                                 | ND                               | 0.200 |                 | ND          | 0.589   |        |           | 1      |
| cis-1,2-Dichloroethene                                                                                     | ND                               | 0.200 |                 | ND          | 0.792   |        |           | 1      |
| Chloroform                                                                                                 | ND                               | 0.200 |                 | ND          | 0.976   |        |           | 1      |
| 1,2-Dichloroethane                                                                                         | ND                               | 0.200 |                 | ND          | 0.809   |        |           | 1      |
| n-Hexane                                                                                                   | ND                               | 0.200 |                 | ND          | 0.704   |        |           | 1      |
| 1,1,1-Trichloroethane                                                                                      | ND                               | 0.200 |                 | ND          | 1.09    |        |           | 1      |
| Benzene                                                                                                    | ND                               | 0.200 |                 | ND          | 0.638   |        |           | 1      |



L1100113 Report Date: 01/19/11

Lab Number:

# Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 01/10/11 18:13

|                                    |                 | ppbV      |          |              | ug/m3 |        |           | Dilution |
|------------------------------------|-----------------|-----------|----------|--------------|-------|--------|-----------|----------|
| Parameter                          | Results         | RL        | MDL      | Results      | RL    | MDL    | Qualifier | Factor   |
| Volatile Organics in Air (Low Leve | ) - Mansfield L | ab for sa | mple(s): | 03-04 Batch: | WG45  | 1055-4 |           |          |
| Carbon tetrachloride               | ND              | 0.200     |          | ND           | 1.26  |        |           | 1        |
| Cyclohexane                        | ND              | 0.200     |          | ND           | 0.688 |        |           | 1        |
| 1,2-Dichloropropane                | ND              | 0.200     |          | ND           | 0.924 |        |           | 1        |
| Bromodichloromethane               | ND              | 0.200     |          | ND           | 1.34  |        |           | 1        |
| Trichloroethene                    | ND              | 0.200     |          | ND           | 1.07  |        |           | 1        |
| 2,2,4-Trimethylpentane             | ND              | 0.200     |          | ND           | 0.934 |        |           | 1        |
| Heptane                            | ND              | 0.200     |          | ND           | 0.819 |        |           | 1        |
| cis-1,3-Dichloropropene            | ND              | 0.200     |          | ND           | 0.907 |        |           | 1        |
| 4-Methyl-2-pentanone               | ND              | 0.200     |          | ND           | 0.819 |        |           | 1        |
| trans-1,3-Dichloropropene          | ND              | 0.200     |          | ND           | 0.907 |        |           | 1        |
| 1,1,2-Trichloroethane              | ND              | 0.200     |          | ND           | 1.09  |        |           | 1        |
| Toluene                            | ND              | 0.200     |          | ND           | 0.753 |        |           | 1        |
| Dibromochloromethane               | ND              | 0.200     |          | ND           | 1.70  |        |           | 1        |
| 1,2-Dibromoethane                  | ND              | 0.200     |          | ND           | 1.54  |        |           | 1        |
| Tetrachloroethene                  | ND              | 0.200     |          | ND           | 1.36  |        |           | 1        |
| Chlorobenzene                      | ND              | 0.200     |          | ND           | 0.920 |        |           | 1        |
| Ethylbenzene                       | ND              | 0.200     |          | ND           | 0.868 |        |           | 1        |
| p/m-Xylene                         | ND              | 0.400     |          | ND           | 1.74  |        |           | 1        |
| Bromoform                          | ND              | 0.200     |          | ND           | 2.06  |        |           | 1        |
| Styrene                            | ND              | 0.200     |          | ND           | 0.851 |        |           | 1        |
| 1,1,2,2-Tetrachloroethane          | ND              | 0.200     |          | ND           | 1.37  |        |           | 1        |
| o-Xylene                           | ND              | 0.200     |          | ND           | 0.868 |        |           | 1        |
| 4-Ethyltoluene                     | ND              | 0.200     |          | ND           | 0.982 |        |           | 1        |
| 1,3,5-Trimethybenzene              | ND              | 0.200     |          | ND           | 0.982 |        |           | 1        |
| 1,2,4-Trimethylbenzene             | ND              | 0.200     |          | ND           | 0.982 |        |           | 1        |
|                                    |                 |           |          |              |       |        |           |          |



**Report Date:** 01/19/11

### Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 01/10/11 18:13

|                                        |             | ppbV      |          |              | ug/m3 |        |           | Dilution |
|----------------------------------------|-------------|-----------|----------|--------------|-------|--------|-----------|----------|
| Parameter                              | Results     | RL        | MDL      | Results      | RL    | MDL    | Qualifier | Factor   |
| Volatile Organics in Air (Low Level) - | Mansfield L | ab for sa | mple(s): | 03-04 Batch: | WG45  | 1055-4 |           |          |
| 1,3-Dichlorobenzene                    | ND          | 0.200     |          | ND           | 1.20  |        |           | 1        |
| 1,4-Dichlorobenzene                    | ND          | 0.200     |          | ND           | 1.20  |        |           | 1        |
| 1,2-Dichlorobenzene                    | ND          | 0.200     |          | ND           | 1.20  |        |           | 1        |
| 1,2,4-Trichlorobenzene                 | ND          | 0.200     |          | ND           | 1.48  |        |           | 1        |
| Hexachlorobutadiene                    | ND          | 0.200     |          | ND           | 2.13  |        |           | 1        |



**Project Name:** CFI- WASHINGTON AVE.

Project Number: 1047-3

Lab Number: L1100113 Report Date: 01/19/11

| arameter                                       | LCS<br>%Recovery | Qual          | LCSD<br>%Recovery | Qual      | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|------------------------------------------------|------------------|---------------|-------------------|-----------|---------------------|-----|------|------------|
| /olatile Organics in Air (Low Level) - Mansfie | Id Lab Associate | ed sample(s): | 01-02,05          | Batch: WO | G450777-3           |     |      |            |
| Chlorodifluoromethane                          | 82               |               | -                 |           | 70-130              | -   |      |            |
| Propylene                                      | 74               |               | -                 |           | 70-130              | -   |      |            |
| Propane                                        | 84               |               | -                 |           | 70-130              | -   |      |            |
| Dichlorodifluoromethane                        | 88               |               | -                 |           | 70-130              | -   |      |            |
| Chloromethane                                  | 86               |               | -                 |           | 70-130              | -   |      |            |
| 1,2-Dichloro-1,1,2,2-tetrafluoroethane         | 89               |               | -                 |           | 70-130              | -   |      |            |
| Methanol                                       | 96               |               | -                 |           | 70-130              | -   |      |            |
| Vinyl chloride                                 | 87               |               | -                 |           | 70-130              | -   |      |            |
| 1,3-Butadiene                                  | 85               |               | -                 |           | 70-130              | -   |      |            |
| Butane                                         | 80               |               | -                 |           | 70-130              | -   |      |            |
| Bromomethane                                   | 83               |               | -                 |           | 70-130              | -   |      |            |
| Chloroethane                                   | 87               |               | -                 |           | 70-130              | -   |      |            |
| Ethyl Alcohol                                  | 97               |               | -                 |           | 70-130              | -   |      |            |
| Dichlorofluoromethane                          | 79               |               | -                 |           | 70-130              | -   |      |            |
| Vinyl bromide                                  | 82               |               | -                 |           | 70-130              | -   |      |            |
| Acrolein                                       | 83               |               | -                 |           | 70-130              | -   |      |            |
| Acetone                                        | 99               |               | -                 |           | 70-130              | -   |      |            |
| Acetonitrile                                   | 90               |               | -                 |           | 70-130              | -   |      |            |
| Trichlorofluoromethane                         | 94               |               | -                 |           | 70-130              | -   |      |            |
| iso-Propyl Alcohol                             | 63               | Q             | -                 |           | 70-130              | -   |      |            |
| Acrylonitrile                                  | 87               |               | -                 |           | 70-130              | -   |      |            |



### Lab Control Sample Analysis

Batch Quality Control

Project Name: CFI- WASHINGTON AVE.

Project Number: 1047-3

 Lab Number:
 L1100113

 Report Date:
 01/19/11

LCSD LCS %Recovery %Recovery Limits %Recovery Qual RPD **RPD** Limits Qual Qual Parameter Volatile Organics in Air (Low Level) - Mansfield Lab Associated sample(s): 01-02,05 Batch: WG450777-3 Pentane 87 70-130 --Ethyl ether 98 70-130 \_ -1.1-Dichloroethene 96 70-130 --Q tert-Butyl Alcohol 70-130 51 --Methylene chloride 102 70-130 --3-Chloropropene 92 70-130 \_ -70-130 Carbon disulfide 79 --1,1,2-Trichloro-1,2,2-Trifluoroethane 93 70-130 -trans-1.2-Dichloroethene 94 70-130 --1,1-Dichloroethane 98 70-130 --Methyl tert butyl ether 86 70-130 --Vinyl acetate 119 70-130 -2-Butanone 88 70-130 -cis-1.2-Dichloroethene 70-130 86 --Ethyl Acetate 70-130 82 --Chloroform 89 70-130 --Tetrahydrofuran 74 70-130 --70-130 2,2-Dichloropropane 85 --1.2-Dichloroethane 70-130 88 \_ n-Hexane 70-130 90 --Isopropyl Ether 88 70-130 --



### Lab Control Sample Analysis

Batch Quality Control

Project Name: CFI- WASHINGTON AVE.

Project Number: 1047-3

 Lab Number:
 L1100113

 Report Date:
 01/19/11

LCSD LCS %Recovery %Recovery %Recovery Qual Limits RPD **RPD** Limits Qual Qual Parameter Volatile Organics in Air (Low Level) - Mansfield Lab Associated sample(s): 01-02,05 Batch: WG450777-3 Ethyl-Tert-Butyl-Ether 84 70-130 --1,1,1-Trichloroethane 100 70-130 \_ -1,1-Dichloropropene 87 70-130 --70-130 Benzene 88 --Carbon tetrachloride 102 70-130 --Cyclohexane 70-130 85 \_ -Tertiary-Amyl Methyl Ether 80 70-130 --Dibromomethane 88 70-130 --70-130 1,2-Dichloropropane 91 --Bromodichloromethane 96 70-130 --1.4-Dioxane 88 70-130 --Trichloroethene 88 70-130 -2,2,4-Trimethylpentane 92 70-130 --Heptane 87 70-130 --2,4,4-Trimethyl-1-Pentene 70-130 80 -cis-1,3-Dichloropropene 95 70-130 --4-Methyl-2-pentanone 97 70-130 --2,4,4-Trimethyl-2-Pentene 93 70-130 -trans-1,3-Dichloropropene 70-130 84 \_ -1,1,2-Trichloroethane 70-130 98 --Toluene 87 70-130 --



**Project Name:** CFI- WASHINGTON AVE.

Project Number: 1047-3

Lab Number: L1100113 Report Date: 01/19/11

| arameter                                         | LCS<br>%Recovery | Qual          | LCSD<br>%Recovery | Qual     | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|--------------------------------------------------|------------------|---------------|-------------------|----------|---------------------|-----|------|------------|
| /olatile Organics in Air (Low Level) - Mansfield | Lab Associate    | ed sample(s): | 01-02,05          | Batch: \ | WG450777-3          |     |      |            |
| 1,3-Dichloropropane                              | 85               |               | -                 |          | 70-130              | -   |      |            |
| 2-Hexanone                                       | 89               |               | -                 |          | 70-130              | -   |      |            |
| Dibromochloromethane                             | 86               |               | -                 |          | 70-130              | -   |      |            |
| 1,2-Dibromoethane                                | 86               |               | -                 |          | 70-130              | -   |      |            |
| Butyl Acetate                                    | 87               |               | -                 |          | 70-130              | -   |      |            |
| Octane                                           | 80               |               | -                 |          | 70-130              | -   |      |            |
| Tetrachloroethene                                | 85               |               | -                 |          | 70-130              | -   |      |            |
| 1,1,1,2-Tetrachloroethane                        | 85               |               | -                 |          | 70-130              | -   |      |            |
| Chlorobenzene                                    | 84               |               | -                 |          | 70-130              | -   |      |            |
| Ethylbenzene                                     | 83               |               | -                 |          | 70-130              | -   |      |            |
| p/m-Xylene                                       | 86               |               | -                 |          | 70-130              | -   |      |            |
| Bromoform                                        | 86               |               | -                 |          | 70-130              | -   |      |            |
| Styrene                                          | 82               |               | -                 |          | 70-130              | -   |      |            |
| 1,1,2,2-Tetrachloroethane                        | 87               |               | -                 |          | 70-130              | -   |      |            |
| o-Xylene                                         | 94               |               | -                 |          | 70-130              | -   |      |            |
| 1,2,3-Trichloropropane                           | 75               |               | -                 |          | 70-130              | -   |      |            |
| Nonane (C9)                                      | 88               |               | -                 |          | 70-130              | -   |      |            |
| Isopropylbenzene                                 | 84               |               | -                 |          | 70-130              | -   |      |            |
| Bromobenzene                                     | 87               |               | -                 |          | 70-130              | -   |      |            |
| o-Chlorotoluene                                  | 80               |               | -                 |          | 70-130              | -   |      |            |
| n-Propylbenzene                                  | 81               |               | -                 |          | 70-130              | -   |      |            |



**Project Name:** CFI- WASHINGTON AVE.

Project Number: 1047-3

Lab Number: L1100113

Report Date: 01/19/11

| Parameter                                       | LCS<br>%Recovery | Qual         | LCSD<br>%Recovery | Qual      | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|-------------------------------------------------|------------------|--------------|-------------------|-----------|---------------------|-----|------|------------|
| Volatile Organics in Air (Low Level) - Mansfiel | d Lab Associa    | ed sample(s) | : 01-02,05        | Batch: WC | G450777-3           |     |      |            |
| p-Chlorotoluene                                 | 82               |              | -                 |           | 70-130              | -   |      |            |
| 4-Ethyltoluene                                  | 80               |              | -                 |           | 70-130              | -   |      |            |
| 1,3,5-Trimethylbenzene                          | 85               |              | -                 |           | 70-130              | -   |      |            |
| tert-Butylbenzene                               | 81               |              | -                 |           | 70-130              | -   |      |            |
| 1,2,4-Trimethylbenzene                          | 88               |              | -                 |           | 70-130              | -   |      |            |
| Decane (C10)                                    | 80               |              | -                 |           | 70-130              | -   |      |            |
| Benzyl chloride                                 | 81               |              | -                 |           | 70-130              | -   |      |            |
| 1,3-Dichlorobenzene                             | 87               |              | -                 |           | 70-130              | -   |      |            |
| 1,4-Dichlorobenzene                             | 85               |              | -                 |           | 70-130              | -   |      |            |
| sec-Butylbenzene                                | 82               |              | -                 |           | 70-130              | -   |      |            |
| p-Isopropyltoluene                              | 76               |              | -                 |           | 70-130              | -   |      |            |
| 1,2-Dichlorobenzene                             | 84               |              | -                 |           | 70-130              | -   |      |            |
| n-Butylbenzene                                  | 87               |              | -                 |           | 70-130              | -   |      |            |
| 1,2-Dibromo-3-chloropropane                     | 89               |              | -                 |           | 70-130              | -   |      |            |
| Undecane                                        | 87               |              | -                 |           | 70-130              | -   |      |            |
| Dodecane (C12)                                  | 75               |              | -                 |           | 70-130              | -   |      |            |
| 1,2,4-Trichlorobenzene                          | 81               |              | -                 |           | 70-130              | -   |      |            |
| Naphthalene                                     | 68               | Q            | -                 |           | 70-130              | -   |      |            |
| 1,2,3-Trichlorobenzene                          | 73               |              | -                 |           | 70-130              | -   |      |            |
| Hexachlorobutadiene                             | 102              |              | -                 |           | 70-130              | -   |      |            |



**Project Name:** CFI- WASHINGTON AVE.

Project Number: 1047-3

Lab Number: L1100113 Report Date: 01/19/11

| arameter                                      | LCS<br>%Recovery |                     | CSD<br>covery Qual | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|-----------------------------------------------|------------------|---------------------|--------------------|---------------------|-----|------|------------|
| olatile Organics in Air (Low Level) - Mansfie | eld Lab Associa  | ted sample(s): 03-0 | 04 Batch: WG4      | 51055-3             |     |      |            |
| Dichlorodifluoromethane                       | 98               |                     | -                  | 70-130              | -   |      |            |
| Chloromethane                                 | 96               |                     | -                  | 70-130              | -   |      |            |
| 1,2-Dichloro-1,1,2,2-tetrafluoroethane        | 83               |                     | -                  | 70-130              | -   |      |            |
| Vinyl chloride                                | 97               |                     | -                  | 70-130              | -   |      |            |
| 1,3-Butadiene                                 | 101              |                     | -                  | 70-130              | -   |      |            |
| Bromomethane                                  | 96               |                     | -                  | 70-130              | -   |      |            |
| Chloroethane                                  | 97               |                     | -                  | 70-130              | -   |      |            |
| Vinyl bromide                                 | 100              |                     | -                  | 70-130              | -   |      |            |
| Acetone                                       | 90               |                     | -                  | 70-130              | -   |      |            |
| Trichlorofluoromethane                        | 102              |                     | -                  | 70-130              | -   |      |            |
| 1,1-Dichloroethene                            | 100              |                     | -                  | 70-130              | -   |      |            |
| tert-Butyl Alcohol                            | 111              |                     | -                  | 70-130              | -   |      |            |
| Methylene chloride                            | 90               |                     | -                  | 70-130              | -   |      |            |
| 3-Chloropropene                               | 100              |                     | -                  | 70-130              | -   |      |            |
| Carbon disulfide                              | 94               |                     | -                  | 70-130              | -   |      |            |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane         | 101              |                     | -                  | 70-130              | -   |      |            |
| trans-1,2-Dichloroethene                      | 96               |                     | -                  | 70-130              | -   |      |            |
| 1,1-Dichloroethane                            | 96               |                     | -                  | 70-130              | -   |      |            |
| Methyl tert butyl ether                       | 106              |                     | -                  | 70-130              | -   |      |            |
| 2-Butanone                                    | 114              |                     | -                  | 70-130              | -   |      |            |
| cis-1,2-Dichloroethene                        | 99               |                     | -                  | 70-130              | -   |      |            |



**Project Name:** CFI- WASHINGTON AVE.

Project Number: 1047-3

Lab Number: L1100113 Report Date: 01/19/11

| arameter                                       | LCS<br>%Recovery | Qual        | LCSD<br>%Recovery | Qual   | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|------------------------------------------------|------------------|-------------|-------------------|--------|---------------------|-----|------|------------|
| olatile Organics in Air (Low Level) - Mansfiel | d Lab Associat   | ed sample(s | ): 03-04 Batch    | : WG45 | 1055-3              |     |      |            |
| Chloroform                                     | 99               |             | -                 |        | 70-130              | -   |      |            |
| 1,2-Dichloroethane                             | 108              |             | -                 |        | 70-130              | -   |      |            |
| n-Hexane                                       | 86               |             | -                 |        | 70-130              | -   |      |            |
| 1,1,1-Trichloroethane                          | 113              |             | -                 |        | 70-130              | -   |      |            |
| Benzene                                        | 104              |             | -                 |        | 70-130              | -   |      |            |
| Carbon tetrachloride                           | 112              |             | -                 |        | 70-130              | -   |      |            |
| Cyclohexane                                    | 103              |             | -                 |        | 70-130              | -   |      |            |
| 1,2-Dichloropropane                            | 95               |             | -                 |        | 70-130              | -   |      |            |
| Bromodichloromethane                           | 98               |             | -                 |        | 70-130              | -   |      |            |
| Trichloroethene                                | 100              |             | -                 |        | 70-130              | -   |      |            |
| 2,2,4-Trimethylpentane                         | 98               |             | -                 |        | 70-130              | -   |      |            |
| Heptane                                        | 91               |             | -                 |        | 70-130              | -   |      |            |
| cis-1,3-Dichloropropene                        | 104              |             | -                 |        | 70-130              | -   |      |            |
| 4-Methyl-2-pentanone                           | 121              |             | -                 |        | 70-130              | -   |      |            |
| trans-1,3-Dichloropropene                      | 90               |             | -                 |        | 70-130              | -   |      |            |
| 1,1,2-Trichloroethane                          | 94               |             | -                 |        | 70-130              | -   |      |            |
| Toluene                                        | 99               |             | -                 |        | 70-130              | -   |      |            |
| Dibromochloromethane                           | 110              |             | -                 |        | 70-130              | -   |      |            |
| 1,2-Dibromoethane                              | 104              |             | -                 |        | 70-130              | -   |      |            |
| Tetrachloroethene                              | 105              |             | -                 |        | 70-130              | -   |      |            |
| Chlorobenzene                                  | 101              |             | -                 |        | 70-130              | -   |      |            |



### Lab Control Sample Analysis

Batch Quality Control

Project Name: CFI- WASHINGTON AVE.

Project Number: 1047-3

Lab Number: L1100113 Report Date: 01/19/11

LCSD LCS %Recovery %Recovery %Recovery Limits Qual Qual RPD **RPD** Limits Parameter Qual Volatile Organics in Air (Low Level) - Mansfield Lab Associated sample(s): 03-04 Batch: WG451055-3 Ethylbenzene 102 70-130 --70-130 p/m-Xylene 103 --Bromoform 111 70-130 --Styrene 110 70-130 --1,1,2,2-Tetrachloroethane 114 70-130 -o-Xylene 70-130 106 -o-Chlorotoluene 70-130 107 --4-Ethyltoluene 116 70-130 --1,3,5-Trimethylbenzene 120 70-130 --1,2,4-Trimethylbenzene Q 70-130 132 --1,3-Dichlorobenzene 116 70-130 --70-130 1,4-Dichlorobenzene 117 --1.2-Dichlorobenzene 121 70-130 --1.2.4-Trichlorobenzene Q 70-130 135 --Hexachlorobutadiene 147 Q 70-130 --



### Lab Duplicate Analysis Batch Quality Control

Project Name: CFI- WASHINGTON AVE.

Project Number: 1047-3

Lab Number: Report Date:

 ber:
 L1100113

 ate:
 01/19/11

| arameter                                            | Native Sample            | Duplicate Sample      | Units      | RPD        | Qual RPD Limits           |
|-----------------------------------------------------|--------------------------|-----------------------|------------|------------|---------------------------|
| olatile Organics in Air (Low Level) - Mansfield Lab | Associated sample(s): 01 | -02,05 QC Batch ID: W | /G450777-5 | QC Sample: | L1100113-01 Client ID: SC |
| Vinyl chloride                                      | ND                       | ND                    | ppbV       | NC         | 25                        |
| 1,1-Dichloroethene                                  | ND                       | ND                    | ppbV       | NC         | 25                        |
| trans-1,2-Dichloroethene                            | ND                       | ND                    | ppbV       | NC         | 25                        |
| 1,1-Dichloroethane                                  | ND                       | ND                    | ppbV       | NC         | 25                        |
| cis-1,2-Dichloroethene                              | ND                       | ND                    | ppbV       | NC         | 25                        |
| 1,2-Dichloroethane                                  | ND                       | ND                    | ppbV       | NC         | 25                        |
| 1,1,1-Trichloroethane                               | ND                       | ND                    | ppbV       | NC         | 25                        |
| Trichloroethene                                     | ND                       | ND                    | ppbV       | NC         | 25                        |
| 1,2-Dibromoethane                                   | ND                       | ND                    | ppbV       | NC         | 25                        |
| Tetrachloroethene                                   | 1.51                     | 1.43                  | ppbV       | 5          | 25                        |



## Lab Duplicate Analysis

Project Name: CFI- WASHINGTON AVE.

Project Number: 1047-3

Batch Quality Control

 Lab Number:
 L1100113

 Report Date:
 01/19/11

**Native Sample Duplicate Sample** Units RPD **RPD** Limits Parameter Volatile Organics in Air (Low Level) - Mansfield Lab Associated sample(s): 03-04 QC Batch ID: WG451055-5 QC Sample: L1100384-01 Client ID: DUP Sample Dichlorodifluoromethane 0.490 0.470 25 ppbV 4 ND ND ppbV NC 25 Chloromethane 25 NC Freon-114 ND ND ppbV Vinyl chloride ND ND ppbV NC 25 1,3-Butadiene ND ND ppbV NC 25 ppbV Bromomethane ND ND NC 25 Chloroethane ND ND NC 25 ppbV Vinyl bromide ND ND NC 25 ppbV 2.04 10 25 Acetone 1.85 ppbV Trichlorofluoromethane 0.288 0.283 2 25 ppbV 1,1-Dichloroethene ND ND NC 25 ppbV ND ND NC 25 Methylene chloride ppbV 3-Chloropropene NC 25 ND ND ppbV Carbon disulfide ND ND NC 25 ppbV Freon-113 ND ND NC 25 ppbV 25 NC trans-1.2-Dichloroethene ND ND ppbV NC 25 1,1-Dichloroethane ND ND ppbV Methyl tert butyl ether ND ND NC 25 ppbV 25 2-Butanone ND ND NC ppbV



## Lab Duplicate Analysis

Project Name: CFI- WASHINGTON AVE.

Project Number: 1047-3

Batch Quality Control

 Lab Number:
 L1100113

 Report Date:
 01/19/11

**Native Sample Duplicate Sample** Units RPD **RPD Limits** Parameter Volatile Organics in Air (Low Level) - Mansfield Lab Associated sample(s): 03-04 QC Batch ID: WG451055-5 QC Sample: L1100384-01 Client ID: DUP Sample ND ND NC 25 cis-1.2-Dichloroethene ppbV ppbV 3 25 Chloroform 2.13 2.06 25 NC 1.2-Dichloroethane ND ND ppbV ppbV n-Hexane ND ND NC 25 1,1,1-Trichloroethane 0.299 0.274 ppbV 9 25 ND ND ppbV NC 25 Benzene Carbon tetrachloride ND ND NC 25 ppbV ND ND NC 25 Cyclohexane ppbV 1,2-Dichloropropane ND ND NC 25 ppbV Bromodichloromethane 0.273 0.276 25 ppbV 1 3.60 3.46 25 Trichloroethene ppbV 4 ND ND NC 25 2,2,4-Trimethylpentane ppbV NC 25 ND ND Heptane ppbV cis-1,3-Dichloropropene ND ND NC 25 ppbV ND ND NC 25 4-Methyl-2-pentanone ppbV 25 NC trans-1,3-Dichloropropene ND ND ppbV ND NC 25 1,1,2-Trichloroethane ND ppbV 0.269 0.266 25 Toluene ppbV 1 Dibromochloromethane 25 ND ND NC ppbV



## Lab Duplicate Analysis

Project Name: CFI- WASHINGTON AVE.

Project Number: 1047-3

Batch Quality Control

 Lab Number:
 L1100113

 Report Date:
 01/19/11

Native Sample **Duplicate Sample** Units RPD **RPD Limits** Parameter Volatile Organics in Air (Low Level) - Mansfield Lab Associated sample(s): 03-04 QC Batch ID: WG451055-5 QC Sample: L1100384-01 Client ID: DUP Sample ppbV 1,2-Dibromoethane ND ND NC 25 0.474 ppbV 25 Tetrachloroethene 0.457 4 25 ND ND NC Chlorobenzene ppbV Ethylbenzene ND ND ppbV NC 25 p/m-Xylene ND ND ppbV NC 25 Bromoform ND ND ppbV NC 25 ND ND ppbV NC 25 Styrene 1,1,2,2-Tetrachloroethane ND ND NC 25 ppbV ND ND NC 25 o-Xylene ppbV 4-Ethyltoluene ND ND NC 25 ppbV 1,3,5-Trimethybenzene ND ND NC 25 ppbV 0 25 1,2,4-Trimethylbenzene 0.461 0.463 ppbV NC 25 1.3-Dichlorobenzene ND ND ppbV ND ND NC 25 1,4-Dichlorobenzene ppbV NC 25 1,2-Dichlorobenzene ND ND ppbV NC 25 1,2,4-Trichlorobenzene ND ND ppbV 25 ND NC Hexachlorobutadiene ND ppbV



| Project Number: 1047-3 Report Date: 01/19/11 |
|----------------------------------------------|
|                                              |

.

- -

| I didificici                                            |                           | Dupiloute outliple offi |                       |                  |
|---------------------------------------------------------|---------------------------|-------------------------|-----------------------|------------------|
|                                                         |                           |                         |                       |                  |
| Volatile Organics in Air (Low Level) - Mansfield Lab As | sociated sample(s): 03-04 | QC Batch ID: WG451055-5 | QC Sample: L1100384-0 | 1 Client ID: DUP |
| Sample                                                  |                           |                         |                       |                  |



|                                                                                                            |                                                                                      |                | Serial_No:                                                             | 01191116:23                                 |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                              | CFI- WASHINGTON AVE                                                                  |                | Lab Number:                                                            | L1100113                                    |
| Project Number:                                                                                            | 1047-3                                                                               |                | Report Date:                                                           | 01/19/11                                    |
|                                                                                                            |                                                                                      | SAMPLE RESULTS |                                                                        |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | L1100113-01 [<br>SG-5<br>PORTLAND, ME<br>Soil_Vapor<br>51,3C<br>01/14/11 14:33<br>RY | )              | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Method: | 12/30/10 09:17<br>01/05/11<br>Not Specified |

| Parameter                         | Result | Qualifier | Units | RL    | MDL | <b>Dilution Factor</b> |
|-----------------------------------|--------|-----------|-------|-------|-----|------------------------|
| Fixed Gases by GC - Mansfield Lab |        |           |       |       |     |                        |
| Oxygen                            | 7.27   |           | %     | 2.32  |     | 2.322                  |
| Carbon Dioxide                    | 7.89   |           | %     | 0.232 |     | 2.322                  |
| Methane                           | ND     |           | %     | 0.232 |     | 2.322                  |



|                                                                                                            |                                                                                      | Serial_N                                                              | 0:01191116:23                                     |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|
| Project Name:                                                                                              | CFI- WASHINGTON AVE.                                                                 | Lab Number:                                                           | L1100113                                          |
| Project Number:                                                                                            | 1047-3                                                                               | Report Date:                                                          | 01/19/11                                          |
|                                                                                                            | S                                                                                    | SAMPLE RESULTS                                                        |                                                   |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | L1100113-02 D<br>SG-7<br>PORTLAND, ME<br>Soil_Vapor<br>51,3C<br>01/14/11 15:12<br>RY | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Method | 12/30/10 08:52<br>01/05/11<br>Not Specified<br>d: |

| Parameter                         | Result | Qualifier | Units | RL    | MDL | Dilution Factor |
|-----------------------------------|--------|-----------|-------|-------|-----|-----------------|
| Fixed Gases by GC - Mansfield Lab |        |           |       |       |     |                 |
| Oxygen                            | 14.8   |           | %     | 1.94  |     | 1.942           |
| Carbon Dioxide                    | 2.93   |           | %     | 0.194 |     | 1.942           |
| Methane                           | ND     |           | %     | 0.194 |     | 1.942           |



| Project Name:<br>Project Number:                                                                           | CFI- WASHINGTON AVE.<br>1047-3                                                        |                | Lab Number:<br>Report Date:                                            | L1100113<br>01/19/11                        |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------|---------------------------------------------|
|                                                                                                            |                                                                                       | SAMPLE RESULTS |                                                                        |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | L1100113-03 D<br>SG-12<br>PORTLAND, ME<br>Soil_Vapor<br>51,3C<br>01/14/11 15:51<br>RY |                | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Method: | 12/30/10 09:56<br>01/05/11<br>Not Specified |

| Parameter                         | Result | Qualifier | Units | RL    | MDL | <b>Dilution Factor</b> |
|-----------------------------------|--------|-----------|-------|-------|-----|------------------------|
| Fixed Gases by GC - Mansfield Lab |        |           |       |       |     |                        |
| Oxygen                            | 8.26   |           | %     | 2.62  |     | 2.623                  |
| Carbon Dioxide                    | 6.27   |           | %     | 0.262 |     | 2.623                  |
| Methane                           | ND     |           | %     | 0.262 |     | 2.623                  |



|                                                                                                            |                                                                                     |                | Serial_No:                                                             | 01191116:23                                 |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                              | CFI- WASHINGTON AV                                                                  | E.             | Lab Number:                                                            | L1100113                                    |
| Project Number:                                                                                            | 1047-3                                                                              |                | Report Date:                                                           | 01/19/11                                    |
|                                                                                                            |                                                                                     | SAMPLE RESULTS |                                                                        |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | L1100113-04<br>SG-13<br>PORTLAND, ME<br>Soil_Vapor<br>51,3C<br>01/14/11 16:30<br>RY | D              | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Method: | 12/30/10 09:34<br>01/05/11<br>Not Specified |

| Parameter                         | Result | Qualifier | Units | RL    | MDL | <b>Dilution Factor</b> |
|-----------------------------------|--------|-----------|-------|-------|-----|------------------------|
| Fixed Gases by GC - Mansfield Lab |        |           |       |       |     |                        |
| Oxygen                            | 5.31   |           | %     | 1.44  |     | 1.443                  |
| Carbon Dioxide                    | 5.74   |           | %     | 0.144 |     | 1.443                  |
| Methane                           | ND     |           | %     | 0.144 |     | 1.443                  |



|                                                                                                            |                                                                                     |                | Serial_No:                                                             | 01191116:23                                 |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                              | CFI- WASHINGTON AV                                                                  | E.             | Lab Number:                                                            | L1100113                                    |
| Project Number:                                                                                            | 1047-3                                                                              |                | Report Date:                                                           | 01/19/11                                    |
|                                                                                                            |                                                                                     | SAMPLE RESULTS |                                                                        |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | L1100113-05<br>SG-15<br>PORTLAND, ME<br>Soil_Vapor<br>51,3C<br>01/14/11 17:10<br>RY | D              | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Method: | 12/30/10 08:37<br>01/05/11<br>Not Specified |

| Parameter                         | Result | Qualifier | Units | RL    | MDL | <b>Dilution Factor</b> |
|-----------------------------------|--------|-----------|-------|-------|-----|------------------------|
| Fixed Gases by GC - Mansfield Lab |        |           |       |       |     |                        |
| Oxygen                            | 17.1   |           | %     | 1.77  |     | 1.772                  |
| Carbon Dioxide                    | 1.17   |           | %     | 0.177 |     | 1.772                  |
| Methane                           | ND     |           | %     | 0.177 |     | 1.772                  |

| Project Name:   | CFI- WASHINGTON AVE.  | Lab Number:  | L1100113 |
|-----------------|-----------------------|--------------|----------|
| Project Number: | 1047-3                | Report Date: | 01/19/11 |
|                 | Method Diank Analysia |              |          |

#### Method Blank Analysis Batch Quality Control

Analytical Method:51,3CAnalytical Date:01/14/11 14:10Analyst:RY

| Parameter                        | Result     | Qualifier  | Units  | s RL       | MDL |
|----------------------------------|------------|------------|--------|------------|-----|
| ixed Gases by GC - Mansfield Lab | for sample | (s): 01-05 | Batch: | WG451547-2 |     |
| Oxygen                           | ND         |            | %      | 1.00       |     |
| Carbon Dioxide                   | ND         |            | %      | 0.100      |     |
| Methane                          | ND         |            | %      | 0.100      | -   |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** CFI- WASHINGTON AVE.

Project Number: 1047-3 Lab Number: L1100113 Report Date: 01/19/11

| Parameter                         | LCS<br>%Recovery      | Qual  | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|-----------------------------------|-----------------------|-------|-------------------|------|---------------------|-----|------|------------|
| Fixed Gases by GC - Mansfield Lab | Associated sample(s): | 01-05 | Batch: WG451547-1 |      |                     |     |      |            |
| Oxygen                            | 99                    |       | -                 |      | 80-120              | -   |      |            |
| Carbon Dioxide                    | 108                   |       | -                 |      | 80-120              | -   |      |            |
| Methane                           | 105                   |       | -                 |      | 80-120              | -   |      |            |



# Lab Duplicate Analysis Batch Quality Control

Project Name: CFI- WASHINGTON AVE.

 Lab Number:
 L1100113

 Report Date:
 01/19/11

Project Number: 1047-3

| Parameter                         | Nativ                     | e Sample        | Duplicate Sa | nple Units      | RPD            | Qual     | <b>RPD Limits</b> |
|-----------------------------------|---------------------------|-----------------|--------------|-----------------|----------------|----------|-------------------|
| Fixed Gases by GC - Mansfield Lab | Associated sample(s): 01- | 05 QC Batch ID: | WG451547-3   | QC Sample: L110 | 0113-01 Clien  | t ID: SG | -5                |
| Oxygen                            |                           | 7.27            | 7.02         | %               | 3              |          | 5                 |
| Carbon Dioxide                    |                           | 7.89            | 8.11         | %               | 3              |          | 5                 |
| Methane                           |                           | ND              | ND           | %               | NC             |          | 5                 |
| Fixed Gases by GC - Mansfield Lab | Associated sample(s): 01- | 05 QC Batch ID: | : WG451547-4 | QC Sample: L110 | 0113-02 Clien  | t ID: SG | -7                |
| Oxygen                            |                           | 14.8            | 14.6         | %               | 1              |          | 5                 |
| Carbon Dioxide                    |                           | 2.93            | 2.93         | %               | 0              |          | 5                 |
| Methane                           |                           | ND              | ND           | %               | NC             |          | 5                 |
| Fixed Gases by GC - Mansfield Lab | Associated sample(s): 01- | 05 QC Batch ID: | : WG451547-5 | QC Sample: L110 | 0113-03 Clien  | t ID: SG | -12               |
| Oxygen                            |                           | 8.26            | 8.27         | %               | 0              |          | 5                 |
| Carbon Dioxide                    |                           | 6.27            | 6.27         | %               | 0              |          | 5                 |
| Methane                           |                           | ND              | ND           | %               | NC             |          | 5                 |
| Fixed Gases by GC - Mansfield Lab | Associated sample(s): 01- | 05 QC Batch ID: | : WG451547-6 | QC Sample: L110 | 00113-04 Clien | t ID: SG | -13               |
| Oxygen                            |                           | 5.31            | 5.15         | %               | 3              |          | 5                 |
| Carbon Dioxide                    |                           | 5.74            | 5.82         | %               | 1              |          | 5                 |
| Methane                           |                           | ND              | ND           | %               | NC             |          | 5                 |



# Lab Duplicate Analysis Batch Quality Control

Project Name: CFI- WASHINGTON AVE.

 Lab Number:
 L1100113

 Report Date:
 01/19/11

Project Number: 1047-3

| Parameter                              | Native Sample                       | Duplicate Sample | Units         | RPD              | RPD Limits |
|----------------------------------------|-------------------------------------|------------------|---------------|------------------|------------|
| Fixed Gases by GC - Mansfield Lab Asso | ociated sample(s): 01-05 QC Batch I | D: WG451547-7 QC | Sample: L1100 | 113-05 Client II | D: SG-15   |
| Oxygen                                 | 17.1                                | 17.1             | %             | 0                | 5          |
| Carbon Dioxide                         | 1.17                                | 1.17             | %             | 0                | 5          |
| Methane                                | ND                                  | ND               | %             | NC               | 5          |



|                                                                                                            |                                                                                       |                                | Serial_No                                                                   | :01191116:23                                |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                              | CFI- WASHINGTON AVE.                                                                  |                                | Lab Number:                                                                 | L1100113                                    |
| Project Number:                                                                                            | 1047-3                                                                                |                                | Report Date:                                                                | 01/19/11                                    |
|                                                                                                            |                                                                                       | SAMPLE RESULTS                 |                                                                             |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | L1100113-01 D<br>SG-5<br>PORTLAND, ME<br>Soil_Vapor<br>96,APH<br>01/14/11 12:32<br>RY |                                | Date Collected:<br>Date Received:<br>Field Prep:                            | 12/30/10 09:17<br>01/05/11<br>Not Specified |
|                                                                                                            | Qu                                                                                    | ality Control Information      |                                                                             |                                             |
| Were all QA/QC procedu<br>Were all performance/ac                                                          |                                                                                       | wed?<br>  procedures achieved? | 200 ml/mi<br>Canister -<br>Mechanic<br>Unknown<br><=20%<br>Yes<br>Yes<br>No |                                             |

| Parameter                       | Result        | Qualifier U | nits F | RL MDI | Dilution Factor |
|---------------------------------|---------------|-------------|--------|--------|-----------------|
| Petroleum Hydrocarbons in Air - | Mansfield Lab |             |        |        |                 |
| 1,3-Butadiene                   | ND            | ug          | /m3 4  | l.6    | 2.3             |
| Methyl tert butyl ether         | ND            | ug          | /m3 4  | l.6    | 2.3             |
| Benzene                         | ND            | ug          | /m3 4  | l.6    | 2.3             |
| Toluene                         | ND            | ug          | /m3 4  | l.6    | 2.3             |
| C5-C8 Aliphatics, Adjusted      | 28            | ug          | /m3 2  | 28     | 2.3             |
| Ethylbenzene                    | ND            | ug          | /m3 4  | l.6    | 2.3             |
| p/m-Xylene                      | ND            | ug          | /m3 9  | 9.2    | 2.3             |
| o-Xylene                        | ND            | ug          | /m3 4  |        | 2.3             |
| Naphthalene                     | ND            | ug          | /m3 4  | l.6    | 2.3             |
| C9-C12 Aliphatics, Adjusted     | ND            | ug          | /m3 3  | 32     | 2.3             |
| C9-C10 Aromatics Total          | ND            | ug          | /m3 2  | 23     | 2.3             |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 135        |           | 50-200                 |
| Bromochloromethane  | 102        |           | 50-200                 |
| Chlorobenzene-d5    | 97         |           | 50-200                 |



|                                                                                                            |                                                                                       |                   | Serial_No:01                                                                          | 191116:23                                   |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                              | CFI- WASHINGTON AVE.                                                                  | La                | ab Number:                                                                            | L1100113                                    |
| Project Number:                                                                                            | 1047-3                                                                                | Re                | eport Date:                                                                           | 01/19/11                                    |
|                                                                                                            | :                                                                                     | LE RESULTS        |                                                                                       |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | L1100113-02 D<br>SG-7<br>PORTLAND, ME<br>Soil_Vapor<br>96,APH<br>01/14/11 13:09<br>RY | Date              | te Collected:<br>te Received:<br>ld Prep:                                             | 12/30/10 08:52<br>01/05/11<br>Not Specified |
|                                                                                                            | Qual                                                                                  | ntrol Information |                                                                                       |                                             |
| Were all QA/QC proced<br>Were all performance/ad                                                           |                                                                                       |                   | 200 ml/minute<br>Canister - 2.7<br>Mechanical<br>Unknown<br><=20%<br>Yes<br>Yes<br>No | •                                           |

| Parameter                       | Result        | Qualifier Units | RL  | MDL | Dilution Factor |
|---------------------------------|---------------|-----------------|-----|-----|-----------------|
| Petroleum Hydrocarbons in Air - | Mansfield Lab |                 |     |     |                 |
| 1,3-Butadiene                   | ND            | ug/m3           | 3.8 |     | 1.9             |
| Methyl tert butyl ether         | ND            | ug/m3           | 3.8 |     | 1.9             |
| Benzene                         | ND            | ug/m3           | 3.8 |     | 1.9             |
| Toluene                         | ND            | ug/m3           | 3.8 |     | 1.9             |
| C5-C8 Aliphatics, Adjusted      | ND            | ug/m3           | 23  |     | 1.9             |
| Ethylbenzene                    | ND            | ug/m3           | 3.8 |     | 1.9             |
| p/m-Xylene                      | ND            | ug/m3           | 7.6 |     | 1.9             |
| o-Xylene                        | ND            | ug/m3           | 3.8 |     | 1.9             |
| Naphthalene                     | ND            | ug/m3           | 3.8 |     | 1.9             |
| C9-C12 Aliphatics, Adjusted     | ND            | ug/m3           | 27  |     | 1.9             |
| C9-C10 Aromatics Total          | ND            | ug/m3           | 19  |     | 1.9             |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 136        |           | 50-200                 |
| Bromochloromethane  | 98         |           | 50-200                 |
| Chlorobenzene-d5    | 98         |           | 50-200                 |



|                                                                                                            |                                                                                        |                     | Serial_No:01                                                                          | 191116:23                                   |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                              | CFI- WASHINGTON AVE.                                                                   | Lab                 | Number:                                                                               | L1100113                                    |
| Project Number:                                                                                            | 1047-3                                                                                 | Rep                 | ort Date:                                                                             | 01/19/11                                    |
|                                                                                                            |                                                                                        | MPLE RESULTS        |                                                                                       |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | L1100113-03 D<br>SG-12<br>PORTLAND, ME<br>Soil_Vapor<br>96,APH<br>01/14/11 13:47<br>RY |                     | Collected:<br>Received:<br>Prep:                                                      | 12/30/10 09:56<br>01/05/11<br>Not Specified |
|                                                                                                            | Qu                                                                                     | Control Information |                                                                                       |                                             |
| Were all QA/QC procedu<br>Were all performance/ac                                                          |                                                                                        | edures achieved?    | 200 ml/minute<br>Canister - 2.7<br>Mechanical<br>Unknown<br><=20%<br>Yes<br>Yes<br>No |                                             |

| Parameter                       | Result        | Qualifier Units | RL  | MDL | Dilution Factor |
|---------------------------------|---------------|-----------------|-----|-----|-----------------|
| Petroleum Hydrocarbons in Air - | Mansfield Lab |                 |     |     |                 |
| 1,3-Butadiene                   | ND            | ug/m3           | 5.2 |     | 2.6             |
| Methyl tert butyl ether         | ND            | ug/m3           | 5.2 |     | 2.6             |
| Benzene                         | ND            | ug/m3           | 5.2 |     | 2.6             |
| Toluene                         | ND            | ug/m3           | 5.2 |     | 2.6             |
| C5-C8 Aliphatics, Adjusted      | 110           | ug/m3           | 31  |     | 2.6             |
| Ethylbenzene                    | ND            | ug/m3           | 5.2 |     | 2.6             |
| p/m-Xylene                      | ND            | ug/m3           | 10  |     | 2.6             |
| o-Xylene                        | ND            | ug/m3           | 5.2 |     | 2.6             |
| Naphthalene                     | ND            | ug/m3           | 5.2 |     | 2.6             |
| C9-C12 Aliphatics, Adjusted     | 44            | ug/m3           | 36  |     | 2.6             |
| C9-C10 Aromatics Total          | ND            | ug/m3           | 26  |     | 2.6             |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 123        |           | 50-200                 |
| Bromochloromethane  | 90         |           | 50-200                 |
| Chlorobenzene-d5    | 90         |           | 50-200                 |



|                                                                                                                                                                    |                                                                                      |              |                     | S                                  | Serial_No:01                                                                    | 191116:23                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------|---------------------|------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                                                                                      | CFI- WASHINGTO                                                                       | ON AVE.      |                     | Lab Nu                             | mber:                                                                           | L1100113                                    |
| Project Number:                                                                                                                                                    | 1047-3                                                                               |              |                     | Report                             | Date:                                                                           | 01/19/11                                    |
|                                                                                                                                                                    |                                                                                      |              | MPLE RESULTS        |                                    |                                                                                 |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst:                                                         | L1100113-04<br>SG-13<br>PORTLAND, ME<br>Soil_Vapor<br>96,APH<br>01/14/11 14:25<br>RY | D            |                     | Date Coll<br>Date Rec<br>Field Pre | eived:                                                                          | 12/30/10 09:34<br>01/05/11<br>Not Specified |
|                                                                                                                                                                    |                                                                                      | Qua          | Control Information |                                    |                                                                                 |                                             |
| Sample Type:<br>Sample Container Type:<br>Sampling Flow Controlle<br>Sampling Zone:<br>Sampling Flow Meter RF<br>Were all QA/QC procedu<br>Were all performance/ac | er:<br>PD of pre & post-samplin<br>ures REQUIRED by the i                            | method follo |                     |                                    | 200 ml/minute<br>Canister - 2.7<br>Mechanical<br>Unknown<br><=20%<br>Yes<br>Yes |                                             |

Were all performance/acceptance standards for the required procedures achieved? Were significant modifications made to the method as specified in Sect 11.1.2?

| Parameter                                     | Result | Qualifier Units | RL  | MDL | Dilution Factor |  |  |  |
|-----------------------------------------------|--------|-----------------|-----|-----|-----------------|--|--|--|
| Petroleum Hydrocarbons in Air - Mansfield Lab |        |                 |     |     |                 |  |  |  |
| 1,3-Butadiene                                 | ND     | ug/m3           | 2.8 |     | 1.4             |  |  |  |
| Methyl tert butyl ether                       | ND     | ug/m3           | 2.8 |     | 1.4             |  |  |  |
| Benzene                                       | ND     | ug/m3           | 2.8 |     | 1.4             |  |  |  |
| Toluene                                       | 26     | ug/m3           | 2.8 |     | 1.4             |  |  |  |
| C5-C8 Aliphatics, Adjusted                    | 70     | ug/m3           | 17  |     | 1.4             |  |  |  |
| Ethylbenzene                                  | 10     | ug/m3           | 2.8 |     | 1.4             |  |  |  |
| p/m-Xylene                                    | 46     | ug/m3           | 5.6 |     | 1.4             |  |  |  |
| o-Xylene                                      | 23     | ug/m3           | 2.8 |     | 1.4             |  |  |  |
| Naphthalene                                   | ND     | ug/m3           | 2.8 |     | 1.4             |  |  |  |
| C9-C12 Aliphatics, Adjusted                   | 28     | ug/m3           | 20  |     | 1.4             |  |  |  |
| C9-C10 Aromatics Total                        | 210    | ug/m3           | 14  |     | 1.4             |  |  |  |
|                                               |        |                 |     |     |                 |  |  |  |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 127        |           | 50-200                 |
| Bromochloromethane  | 97         |           | 50-200                 |
| Chlorobenzene-d5    | 93         |           | 50-200                 |



No

|                                                                                                            |                                                                                      |         | Serial_No:01191116:23   |                                                  |                                             |  |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------|-------------------------|--------------------------------------------------|---------------------------------------------|--|
| Project Name:                                                                                              | CFI- WASHINGT                                                                        | ON AVE. |                         | Lab Number:                                      | L1100113                                    |  |
| Project Number:                                                                                            | 1047-3                                                                               |         |                         | Report Date:                                     | 01/19/11                                    |  |
|                                                                                                            |                                                                                      |         | AMPLE RESULTS           |                                                  |                                             |  |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | L1100113-05<br>SG-15<br>PORTLAND, ME<br>Soil_Vapor<br>96,APH<br>01/14/11 15:40<br>RY | D       |                         | Date Collected:<br>Date Received:<br>Field Prep: | 12/30/10 08:37<br>01/05/11<br>Not Specified |  |
| Quality Control Information                                                                                |                                                                                      |         |                         |                                                  |                                             |  |
| Sample Type:                                                                                               |                                                                                      |         | 200 ml/minute Composite |                                                  |                                             |  |
| Sample Container Type:                                                                                     |                                                                                      |         | Canister - 2.7 Liter    |                                                  |                                             |  |
| Sampling Flow Controller:                                                                                  |                                                                                      |         | Mechanical              |                                                  |                                             |  |
| Sampling Zone:                                                                                             |                                                                                      |         |                         | Unknown                                          |                                             |  |
| Sampling Flow Meter RPD of pre & post-sampling calibration check:                                          |                                                                                      |         | <=20%                   |                                                  |                                             |  |

Were all QA/QC procedures REQUIRED by the method followed?

Were all performance/acceptance standards for the required procedures achieved? Were significant modifications made to the method as specified in Sect 11.1.2?

| Parameter                         | Result        | Qualifier Units | RL  | MDL | Dilution Factor |
|-----------------------------------|---------------|-----------------|-----|-----|-----------------|
| Petroleum Hydrocarbons in Air - I | Mansfield Lab |                 |     |     |                 |
| 1,3-Butadiene                     | ND            | ug/m3           | 3.6 |     | 1.8             |
| Methyl tert butyl ether           | ND            | ug/m3           | 3.6 |     | 1.8             |
| Benzene                           | 6.3           | ug/m3           | 3.6 |     | 1.8             |
| Toluene                           | 58            | ug/m3           | 3.6 |     | 1.8             |
| C5-C8 Aliphatics, Adjusted        | 110           | ug/m3           | 22  |     | 1.8             |
| Ethylbenzene                      | ND            | ug/m3           | 3.6 |     | 1.8             |
| p/m-Xylene                        | ND            | ug/m3           | 7.2 |     | 1.8             |
| o-Xylene                          | ND            | ug/m3           | 3.6 |     | 1.8             |
| Naphthalene                       | ND            | ug/m3           | 3.6 |     | 1.8             |
| C9-C12 Aliphatics, Adjusted       | 52            | ug/m3           | 25  |     | 1.8             |
| C9-C10 Aromatics Total            | ND            | ug/m3           | 18  |     | 1.8             |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 124        |           | 50-200                 |
| Bromochloromethane  | 94         |           | 50-200                 |
| Chlorobenzene-d5    | 96         |           | 50-200                 |



Yes

Yes

No

| Project Name:          | CFI- WASHINGTON AVE. | Lab Number:  | L1100113 |  |  |
|------------------------|----------------------|--------------|----------|--|--|
| Project Number:        | 1047-3               | Report Date: | 01/19/11 |  |  |
| Mathead Diank Analysia |                      |              |          |  |  |

# Method Blank Analysis Batch Quality Control

| Analytical Method: | 96,APH         |
|--------------------|----------------|
| Analytical Date:   | 01/14/11 10:28 |
| Analyst:           | RY             |

| Parameter                           | Result      | Qualifier      | Units | RL             | MDL |
|-------------------------------------|-------------|----------------|-------|----------------|-----|
| Petroleum Hydrocarbons in Air - Mai | nsfield Lab | for sample(s): | 01-05 | Batch: WG45154 | 8-4 |
| 1,3-Butadiene                       | ND          |                | ug/m3 | 2.0            |     |
| Methyl tert butyl ether             | ND          |                | ug/m3 | 2.0            |     |
| Benzene                             | ND          |                | ug/m3 | 2.0            |     |
| Toluene                             | ND          |                | ug/m3 | 2.0            |     |
| C5-C8 Aliphatics, Adjusted          | ND          |                | ug/m3 | 12             |     |
| Ethylbenzene                        | ND          |                | ug/m3 | 2.0            |     |
| p/m-Xylene                          | ND          |                | ug/m3 | 4.0            |     |
| o-Xylene                            | ND          |                | ug/m3 | 2.0            |     |
| Naphthalene                         | ND          |                | ug/m3 | 2.0            |     |
| C9-C12 Aliphatics, Adjusted         | ND          |                | ug/m3 | 14             |     |
| C9-C10 Aromatics Total              | ND          |                | ug/m3 | 10             |     |



# Lab Control Sample Analysis

Batch Quality Control

Project Name: CFI- WASHINGTON AVE.

Project Number: 1047-3

 Lab Number:
 L1100113

 Report Date:
 01/19/11

LCSD LCS %Recovery %Recovery %Recovery Qual Limits Parameter Qual RPD Qual **RPD** Limits Petroleum Hydrocarbons in Air - Mansfield Lab Associated sample(s): 01-05 Batch: WG451548-3 1,3-Butadiene 89 70-130 --70-130 Methyl tert butyl ether 109 --Benzene 111 70-130 --125 70-130 Toluene --C5-C8 Aliphatics, Adjusted 112 70-130 --Ethylbenzene 120 70-130 -p/m-Xylene 70-130 121 -o-Xylene 123 70-130 --Naphthalene 126 50-150 --C9-C12 Aliphatics, Adjusted 122 70-130 --C9-C10 Aromatics Total 116 70-130 --



### Lab Duplicate Analysis **Batch Quality Control**

Project Name: CFI- WASHINGTON AVE.

Project Number: 1047-3

Lab Number: Report Date:

L1100113 01/19/11

Parameter Native Sample **Duplicate Sample** Units RPD Qual **RPD** Limits Petroleum Hydrocarbons in Air - Mansfield Lab Associated sample(s): 01-05 QC Batch ID: WG451548-5 QC Sample: L1100113-04 Client ID: SG-13 ND 1,3-Butadiene ND ug/m3 NC 30 Methyl tert butyl ether ug/m3 NC ND ND 30 ug/m3 Benzene ND ND NC 30 Toluene 26 26 ug/m3 0 30 C5-C8 Aliphatics, Adjusted 30 70 74 ug/m3 6 Ethylbenzene 10 10 ug/m3 0 30 p/m-Xylene 46 30 46 ug/m3 0 ug/m3 30 o-Xylene 23 23 0 Naphthalene ug/m3 ND ND NC 30 C9-C12 Aliphatics, Adjusted 28 32 ug/m3 13 30 C9-C10 Aromatics Total 210 210 ug/m3 0 30



## Project Name: CFI- WASHINGTON AVE.

Serial\_No:01191116:23 Lab Number: L1100113

**Report Date:** 01/19/11

Project Number: 1047-3

### **Canister and Flow Controller Information**

|             |           |          |            |                      |                                 | _                                  |                    |                   |       |
|-------------|-----------|----------|------------|----------------------|---------------------------------|------------------------------------|--------------------|-------------------|-------|
| Samplenum   | Client ID | Media ID | Media Type | Cleaning<br>Batch ID | Initial<br>Pressure<br>(in. Hg) | Pressure<br>on Receipt<br>(in. Hg) | Flow Out<br>mL/min | Flow In<br>mL/min | % RSD |
| L1100113-01 | SG-5      | 0423     | #16 AMB    |                      | -                               | -                                  | 200                | 110               | 58    |
| L1100113-01 | SG-5      | 529      | 2.7L Can   | L1019883             | -29.2                           | -3.1                               | -                  | -                 | -     |
| L1100113-02 | SG-7      | 0308     | #90 SV     |                      | -                               | -                                  | 200                | 250               | 22    |
| L1100113-02 | SG-7      | 177      | 2.7L Can   | L1019883             | -29.3                           | -2.6                               | -                  | -                 | -     |
| L1100113-03 | SG-12     | 0332     | #90 SV     |                      | -                               | -                                  | 200                | 200               | 0     |
| L1100113-03 | SG-12     | 509      | 2.7L Can   | L1019983             | -29.3                           | -3.3                               | -                  | -                 | -     |
| L1100113-04 | SG-13     | 0367     | #90 SV     |                      | -                               | -                                  | 200                | 212               | 6     |
| L1100113-04 | SG-13     | 473      | 2.7L Can   | L1019883             | -29.3                           | -2.9                               | -                  | -                 | -     |
| L1100113-05 | SG-15     | 0223     | #90 SV     |                      | -                               | -                                  | 200                | 197               | 2     |
| L1100113-05 | SG-15     | 366      | 2.7L Can   | L1019883             | -28.0                           | -0.7                               | -                  | -                 | -     |



# **Air Volatiles Can Certification**

| Project Name:   | BATCH CANISTER CERTIFICATION | Lab Number:  | L1019883 |
|-----------------|------------------------------|--------------|----------|
| Project Number: | CANISTER QC BAT              | Report Date: | 01/19/11 |
|                 |                              |              |          |

| Lab ID:           | L1019883-01     | Date Collected: | 12/13/10 00:00 |
|-------------------|-----------------|-----------------|----------------|
| Client ID:        | CAN 393 SHELF 3 | Date Received:  | 12/13/10       |
| Sample Location:  |                 | Field Prep:     | Not Specified  |
| Matrix:           | Air             |                 | -              |
| Anaytical Method: | 48,TO-15        |                 |                |
| Analytical Date:  | 12/15/10 18:16  |                 |                |
| Analyst:          | BS              |                 |                |

|                                    |                     | ppbV  |     | ug/m3   |       |     |           | Dilution |
|------------------------------------|---------------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                          | Results             | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air (Low Leve | el) - Mansfield Lab |       |     |         |       |     |           |          |
| Chlorodifluoromethane              | ND                  | 0.200 |     | ND      | 0.707 |     |           | 1        |
| Propylene                          | ND                  | 0.200 |     | ND      | 0.344 |     |           | 1        |
| Propane                            | ND                  | 0.200 |     | ND      | 0.606 |     |           | 1        |
| Dichlorodifluoromethane            | ND                  | 0.200 |     | ND      | 0.988 |     |           | 1        |
| Chloromethane                      | ND                  | 0.200 |     | ND      | 0.413 |     |           | 1        |
| Freon-114                          | ND                  | 0.200 |     | ND      | 1.40  |     |           | 1        |
| Methanol                           | ND                  | 5.00  |     | ND      | 6.55  |     |           | 1        |
| Vinyl chloride                     | ND                  | 0.200 |     | ND      | 0.511 |     |           | 1        |
| 1,3-Butadiene                      | ND                  | 0.200 |     | ND      | 0.442 |     |           | 1        |
| Butane                             | ND                  | 0.200 |     | ND      | 0.475 |     |           | 1        |
| Bromomethane                       | ND                  | 0.200 |     | ND      | 0.776 |     |           | 1        |
| Chloroethane                       | ND                  | 0.200 |     | ND      | 0.527 |     |           | 1        |
| Ethanol                            | ND                  | 2.50  |     | ND      | 4.71  |     |           | 1        |
| Dichlorofluoromethane              | ND                  | 0.200 |     | ND      | 0.841 |     |           | 1        |
| Vinyl bromide                      | ND                  | 0.200 |     | ND      | 0.874 |     |           | 1        |
| Acrolein                           | ND                  | 0.500 |     | ND      | 1.14  |     |           | 1        |
| Acetone                            | ND                  | 1.00  |     | ND      | 2.37  |     |           | 1        |
| Acetonitrile                       | ND                  | 0.200 |     | ND      | 0.336 |     |           | 1        |
| Trichlorofluoromethane             | ND                  | 0.200 |     | ND      | 1.12  |     |           | 1        |
| Isopropanol                        | ND                  | 0.500 |     | ND      | 1.23  |     |           | 1        |
| Acrylonitrile                      | ND                  | 0.200 |     | ND      | 0.434 |     |           | 1        |
| Pentane                            | ND                  | 0.200 |     | ND      | 0.590 |     |           | 1        |
| Ethyl ether                        | ND                  | 0.200 |     | ND      | 0.606 |     |           | 1        |
| 1,1-Dichloroethene                 | ND                  | 0.200 |     | ND      | 0.792 |     |           | 1        |
| Tertiary butyl Alcohol             | ND                  | 0.500 |     | ND      | 1.52  |     |           | 1        |



# Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1019883

 Report Date:
 01/19/11

| Lab ID:<br>Client ID:<br>Sample Location: | L1019883-01<br>CAN 393 SHELI | F 3     |            |     |         | Date I<br>Field I | Collecte<br>Receive<br>Prep: |          | 12/13/10 00:00<br>12/13/10<br>Not Specified |
|-------------------------------------------|------------------------------|---------|------------|-----|---------|-------------------|------------------------------|----------|---------------------------------------------|
| Parameter                                 |                              | Results | ppbV<br>RL | MDL | Results | ug/m3<br>RL       | MDL                          | Qualifie | Dilution<br>Factor                          |
| Volatile Organics in A                    | ir (Low Level) - M           |         |            |     |         |                   |                              |          |                                             |
| Methylene chloride                        |                              | ND      | 1.00       |     | ND      | 3.47              |                              |          | 1                                           |
| 3-Chloropropene                           |                              | ND      | 0.200      |     | ND      | 0.626             |                              |          | 1                                           |
| Carbon disulfide                          |                              | ND      | 0.200      |     | ND      | 0.622             |                              |          | 1                                           |
| Freon-113                                 |                              | ND      | 0.200      |     | ND      | 1.53              |                              |          | 1                                           |
| trans-1,2-Dichloroethene                  |                              | ND      | 0.200      |     | ND      | 0.792             |                              |          | 1                                           |
| 1,1-Dichloroethane                        |                              | ND      | 0.200      |     | ND      | 0.809             |                              |          | 1                                           |
| Methyl tert butyl ether                   |                              | ND      | 0.200      |     | ND      | 0.720             |                              |          | 1                                           |
| Vinyl acetate                             |                              | ND      | 0.200      |     | ND      | 0.704             |                              |          | 1                                           |
| 2-Butanone                                |                              | ND      | 0.200      |     | ND      | 0.589             |                              |          | 1                                           |
| cis-1,2-Dichloroethene                    |                              | ND      | 0.200      |     | ND      | 0.792             |                              |          | 1                                           |
| Ethyl Acetate                             |                              | ND      | 0.500      |     | ND      | 1.80              |                              |          | 1                                           |
| Chloroform                                |                              | ND      | 0.200      |     | ND      | 0.976             |                              |          | 1                                           |
| Tetrahydrofuran                           |                              | ND      | 0.200      |     | ND      | 0.589             |                              |          | 1                                           |
| 2,2-Dichloropropane                       |                              | ND      | 0.200      |     | ND      | 0.923             |                              |          | 1                                           |
| 1,2-Dichloroethane                        |                              | ND      | 0.200      |     | ND      | 0.809             |                              |          | 1                                           |
| n-Hexane                                  |                              | ND      | 0.200      |     | ND      | 0.704             |                              |          | 1                                           |
| Diisopropyl ether                         |                              | ND      | 0.200      |     | ND      | 0.835             |                              |          | 1                                           |
| tert-Butyl Ethyl Ether                    |                              | ND      | 0.200      |     | ND      | 0.835             |                              |          | 1                                           |
| 1,1,1-Trichloroethane                     |                              | ND      | 0.200      |     | ND      | 1.09              |                              |          | 1                                           |
| 1,1-Dichloropropene                       |                              | ND      | 0.200      |     | ND      | 0.907             |                              |          | 1                                           |
| Benzene                                   |                              | ND      | 0.200      |     | ND      | 0.638             |                              |          | 1                                           |
| Carbon tetrachloride                      |                              | ND      | 0.200      |     | ND      | 1.26              |                              |          | 1                                           |
| Cyclohexane                               |                              | ND      | 0.200      |     | ND      | 0.688             |                              |          | 1                                           |
| tert-Amyl Methyl Ether                    |                              | ND      | 0.200      |     | ND      | 0.835             |                              |          | 1                                           |
| Dibromomethane                            |                              | ND      | 0.200      |     | ND      | 1.42              |                              |          | 1                                           |
| 1,2-Dichloropropane                       |                              | ND      | 0.200      |     | ND      | 0.924             |                              |          | 1                                           |
| Bromodichloromethane                      |                              | ND      | 0.200      |     | ND      | 1.34              |                              |          | 1                                           |
| 1,4-Dioxane                               |                              | ND      | 0.200      |     | ND      | 0.720             |                              |          | 1                                           |
|                                           |                              |         |            |     |         |                   |                              |          |                                             |



# Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1019883

 Report Date:
 01/19/11

| Lab ID:<br>Client ID:<br>Sample Location: | L1019883-01<br>CAN 393 SHELF | = 3     |            |     |         | Date I<br>Field I | Collecte<br>Receive<br>Prep: |           | 12/13/10 00:00<br>12/13/10<br>Not Specified |
|-------------------------------------------|------------------------------|---------|------------|-----|---------|-------------------|------------------------------|-----------|---------------------------------------------|
| Parameter                                 |                              | Results | ppbV<br>RL | MDL | Results | ug/m3<br>RL       | MDL                          | Qualifier | Dilution<br>Factor                          |
| Volatile Organics in A                    | ir (Low Level) - M           |         |            |     |         |                   |                              |           |                                             |
| Trichloroethene                           |                              | ND      | 0.200      |     | ND      | 1.07              |                              |           | 1                                           |
| 2,2,4-Trimethylpentane                    |                              | ND      | 0.200      |     | ND      | 0.934             |                              |           | 1                                           |
| Heptane                                   |                              | ND      | 0.200      |     | ND      | 0.819             |                              |           | 1                                           |
| 2,4,4-trimethyl-1-pentene                 |                              | ND      | 0.500      |     | ND      | 2.29              |                              |           | 1                                           |
| cis-1,3-Dichloropropene                   |                              | ND      | 0.200      |     | ND      | 0.907             |                              |           | 1                                           |
| 4-Methyl-2-pentanone                      |                              | ND      | 0.200      |     | ND      | 0.819             |                              |           | 1                                           |
| 2,4,4-trimethyl-2-pentene                 |                              | ND      | 0.500      |     | ND      | 2.29              |                              |           | 1                                           |
| trans-1,3-Dichloropropene                 | 9                            | ND      | 0.200      |     | ND      | 0.907             |                              |           | 1                                           |
| 1,1,2-Trichloroethane                     |                              | ND      | 0.200      |     | ND      | 1.09              |                              |           | 1                                           |
| Toluene                                   |                              | ND      | 0.200      |     | ND      | 0.753             |                              |           | 1                                           |
| 1,3-Dichloropropane                       |                              | ND      | 0.200      |     | ND      | 0.923             |                              |           | 1                                           |
| 2-Hexanone                                |                              | ND      | 0.200      |     | ND      | 0.819             |                              |           | 1                                           |
| Dibromochloromethane                      |                              | ND      | 0.200      |     | ND      | 1.70              |                              |           | 1                                           |
| 1,2-Dibromoethane                         |                              | ND      | 0.200      |     | ND      | 1.54              |                              |           | 1                                           |
| Butyl acetate                             |                              | ND      | 0.500      |     | ND      | 2.37              |                              |           | 1                                           |
| Octane                                    |                              | ND      | 0.200      |     | ND      | 0.934             |                              |           | 1                                           |
| Tetrachloroethene                         |                              | ND      | 0.200      |     | ND      | 1.36              |                              |           | 1                                           |
| 1,1,1,2-Tetrachloroethane                 | 9                            | ND      | 0.200      |     | ND      | 1.37              |                              |           | 1                                           |
| Chlorobenzene                             |                              | ND      | 0.200      |     | ND      | 0.920             |                              |           | 1                                           |
| Ethylbenzene                              |                              | ND      | 0.200      |     | ND      | 0.868             |                              |           | 1                                           |
| p/m-Xylene                                |                              | ND      | 0.400      |     | ND      | 1.74              |                              |           | 1                                           |
| Bromoform                                 |                              | ND      | 0.200      |     | ND      | 2.06              |                              |           | 1                                           |
| Styrene                                   |                              | ND      | 0.200      |     | ND      | 0.851             |                              |           | 1                                           |
| 1,1,2,2-Tetrachloroethane                 | 9                            | ND      | 0.200      |     | ND      | 1.37              |                              |           | 1                                           |
| o-Xylene                                  |                              | ND      | 0.200      |     | ND      | 0.868             |                              |           | 1                                           |
| 1,2,3-Trichloropropane                    |                              | ND      | 0.200      |     | ND      | 1.20              |                              |           | 1                                           |
| Nonane                                    |                              | ND      | 0.200      |     | ND      | 1.05              |                              |           | 1                                           |
| Isopropylbenzene                          |                              | ND      | 0.200      |     | ND      | 0.982             |                              |           | 1                                           |



# Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1019883

 Report Date:
 01/19/11

| Lab ID:L1019883-01Client ID:CAN 393 SHEISample Location:CAN 393 SHEI |                     | F 3           | 3     |     |         |       | Collecte<br>Receive<br>Prep: | d:        | 12/13/10 00:00<br>12/13/10<br>Not Specified |
|----------------------------------------------------------------------|---------------------|---------------|-------|-----|---------|-------|------------------------------|-----------|---------------------------------------------|
|                                                                      |                     |               | ppbV  |     |         | ug/m3 |                              |           | Dilution<br>Factor                          |
| Parameter                                                            |                     | Results       | RL    | MDL | Results | RL    | MDL                          | Qualifier | Factor                                      |
| Volatile Organics in                                                 | Air (Low Level) - M | lansfield Lab | )     |     |         |       |                              |           |                                             |
| Bromobenzene                                                         |                     | ND            | 0.200 |     | ND      | 1.28  |                              |           | 1                                           |
| 2-Chlorotoluene                                                      |                     | ND            | 0.200 |     | ND      | 1.03  |                              |           | 1                                           |
| n-Propylbenzene                                                      |                     | ND            | 0.200 |     | ND      | 0.982 |                              |           | 1                                           |
| 4-Chlorotoluene                                                      |                     | ND            | 0.200 |     | ND      | 1.03  |                              |           | 1                                           |
| 4-Ethyltoluene                                                       |                     | ND            | 0.200 |     | ND      | 0.982 |                              |           | 1                                           |
| 1,3,5-Trimethybenzene                                                |                     | ND            | 0.200 |     | ND      | 0.982 |                              |           | 1                                           |
| tert-Butylbenzene                                                    |                     | ND            | 0.200 |     | ND      | 1.10  |                              |           | 1                                           |
| 1,2,4-Trimethylbenzene                                               | )                   | ND            | 0.200 |     | ND      | 0.982 |                              |           | 1                                           |
| Decane                                                               |                     | ND            | 0.200 |     | ND      | 1.16  |                              |           | 1                                           |
| Benzyl chloride                                                      |                     | ND            | 0.200 |     | ND      | 1.03  |                              |           | 1                                           |
| 1,3-Dichlorobenzene                                                  |                     | ND            | 0.200 |     | ND      | 1.20  |                              |           | 1                                           |
| 1,4-Dichlorobenzene                                                  |                     | ND            | 0.200 |     | ND      | 1.20  |                              |           | 1                                           |
| sec-Butylbenzene                                                     |                     | ND            | 0.200 |     | ND      | 1.10  |                              |           | 1                                           |
| p-Isopropyltoluene                                                   |                     | ND            | 0.200 |     | ND      | 1.10  |                              |           | 1                                           |
| 1,2-Dichlorobenzene                                                  |                     | ND            | 0.200 |     | ND      | 1.20  |                              |           | 1                                           |
| n-Butylbenzene                                                       |                     | ND            | 0.200 |     | ND      | 1.10  |                              |           | 1                                           |
| 1,2-Dibromo-3-chloropr                                               | opane               | ND            | 0.200 |     | ND      | 1.93  |                              |           | 1                                           |
| Undecane                                                             |                     | ND            | 0.200 |     | ND      | 1.28  |                              |           | 1                                           |
| Dodecane                                                             |                     | ND            | 0.200 |     | ND      | 1.39  |                              |           | 1                                           |
| 1,2,4-Trichlorobenzene                                               |                     | ND            | 0.200 |     | ND      | 1.48  |                              |           | 1                                           |
| Naphthalene                                                          |                     | ND            | 0.200 |     | ND      | 1.05  |                              |           | 1                                           |
| 1,2,3-Trichlorobenzene                                               |                     | ND            | 0.200 |     | ND      | 1.48  |                              |           | 1                                           |
| Hexachlorobutadiene                                                  |                     | ND            | 0.200 |     | ND      | 2.13  |                              |           | 1                                           |
|                                                                      |                     |               |       |     |         |       |                              |           |                                             |



| (13/10 00:0 |
|-------------|
| 5/11        |
| 5/11        |
| 9/11        |
| 19883       |
| 1           |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 85         |           | 60-140                 |
| Bromochloromethane  | 89         |           | 60-140                 |
| chlorobenzene-d5    | 101        |           | 60-140                 |



| Project Name:   | BATCH CANISTER CERTIFICATION       | Lab Number:  | L1019983 |
|-----------------|------------------------------------|--------------|----------|
| Project Number: | CANISTER QC BAT                    | Report Date: | 01/19/11 |
|                 | Air Canister Certification Results |              |          |

| Lab ID:           | L1019983-01     | Date Collected: | 12/14/10 00:00 |
|-------------------|-----------------|-----------------|----------------|
| Client ID:        | CAN 263 SHELF 2 | Date Received:  | 12/14/10       |
| Sample Location:  |                 | Field Prep:     | Not Specified  |
| Matrix:           | Air             |                 | -              |
| Anaytical Method: | 48,TO-15        |                 |                |
| Analytical Date:  | 12/16/10 15:10  |                 |                |
| Analyst:          | RY              |                 |                |

|                                      | ppbV            |       |     | ug/m3   |       |     |           | Dilution |
|--------------------------------------|-----------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                            | Results         | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air (Low Level) | - Mansfield Lab |       |     |         |       |     |           |          |
| Chlorodifluoromethane                | ND              | 0.200 |     | ND      | 0.707 |     |           | 1        |
| Propylene                            | ND              | 0.200 |     | ND      | 0.344 |     |           | 1        |
| Propane                              | ND              | 0.200 |     | ND      | 0.606 |     |           | 1        |
| Dichlorodifluoromethane              | ND              | 0.200 |     | ND      | 0.988 |     |           | 1        |
| Chloromethane                        | ND              | 0.200 |     | ND      | 0.413 |     |           | 1        |
| Freon-114                            | ND              | 0.200 |     | ND      | 1.40  |     |           | 1        |
| Methanol                             | ND              | 5.00  |     | ND      | 6.55  |     |           | 1        |
| Vinyl chloride                       | ND              | 0.200 |     | ND      | 0.511 |     |           | 1        |
| 1,3-Butadiene                        | ND              | 0.200 |     | ND      | 0.442 |     |           | 1        |
| Butane                               | ND              | 0.200 |     | ND      | 0.475 |     |           | 1        |
| Bromomethane                         | ND              | 0.200 |     | ND      | 0.776 |     |           | 1        |
| Chloroethane                         | ND              | 0.200 |     | ND      | 0.527 |     |           | 1        |
| Ethanol                              | ND              | 2.50  |     | ND      | 4.71  |     |           | 1        |
| Dichlorofluoromethane                | ND              | 0.200 |     | ND      | 0.841 |     |           | 1        |
| Vinyl bromide                        | ND              | 0.200 |     | ND      | 0.874 |     |           | 1        |
| Acrolein                             | ND              | 0.500 |     | ND      | 1.14  |     |           | 1        |
| Acetone                              | ND              | 1.00  |     | ND      | 2.37  |     |           | 1        |
| Acetonitrile                         | ND              | 0.200 |     | ND      | 0.336 |     |           | 1        |
| Trichlorofluoromethane               | ND              | 0.200 |     | ND      | 1.12  |     |           | 1        |
| Isopropanol                          | ND              | 0.500 |     | ND      | 1.23  |     |           | 1        |
| Acrylonitrile                        | ND              | 0.200 |     | ND      | 0.434 |     |           | 1        |
| Pentane                              | ND              | 0.200 |     | ND      | 0.590 |     |           | 1        |
| Ethyl ether                          | ND              | 0.200 |     | ND      | 0.606 |     |           | 1        |
| 1,1-Dichloroethene                   | ND              | 0.200 |     | ND      | 0.792 |     |           | 1        |
| Tertiary butyl Alcohol               | ND              | 0.500 |     | ND      | 1.52  |     |           | 1        |



# Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1019983

 Report Date:
 01/19/11

| Lab ID:<br>Client ID:<br>Sample Location: | L1019983-01<br>CAN 263 SHELI | F 2<br><b>ppbV</b> |       |     |         |       | Collecte<br>Receive<br>Prep: |           | 12/14/10 00:00<br>12/14/10<br>Not Specified<br>Dilution |
|-------------------------------------------|------------------------------|--------------------|-------|-----|---------|-------|------------------------------|-----------|---------------------------------------------------------|
| Parameter                                 |                              | Results            | RL    | MDL | Results | RL    | MDL                          | Qualifier | <b>F</b> 4                                              |
| Volatile Organics in A                    | Air (Low Level) - M          | ansfield Lat       | )     |     |         |       |                              |           |                                                         |
| Methylene chloride                        |                              | ND                 | 1.00  |     | ND      | 3.47  |                              |           | 1                                                       |
| 3-Chloropropene                           |                              | ND                 | 0.200 |     | ND      | 0.626 |                              |           | 1                                                       |
| Carbon disulfide                          |                              | ND                 | 0.200 |     | ND      | 0.622 |                              |           | 1                                                       |
| Freon-113                                 |                              | ND                 | 0.200 |     | ND      | 1.53  |                              |           | 1                                                       |
| trans-1,2-Dichloroethene                  | 1                            | ND                 | 0.200 |     | ND      | 0.792 |                              |           | 1                                                       |
| 1,1-Dichloroethane                        |                              | ND                 | 0.200 |     | ND      | 0.809 |                              |           | 1                                                       |
| Methyl tert butyl ether                   |                              | ND                 | 0.200 |     | ND      | 0.720 |                              |           | 1                                                       |
| Vinyl acetate                             |                              | ND                 | 0.200 |     | ND      | 0.704 |                              |           | 1                                                       |
| 2-Butanone                                |                              | ND                 | 0.200 |     | ND      | 0.589 |                              |           | 1                                                       |
| cis-1,2-Dichloroethene                    |                              | ND                 | 0.200 |     | ND      | 0.792 |                              |           | 1                                                       |
| Ethyl Acetate                             |                              | ND                 | 0.500 |     | ND      | 1.80  |                              |           | 1                                                       |
| Chloroform                                |                              | ND                 | 0.200 |     | ND      | 0.976 |                              |           | 1                                                       |
| Tetrahydrofuran                           |                              | ND                 | 0.200 |     | ND      | 0.589 |                              |           | 1                                                       |
| 2,2-Dichloropropane                       |                              | ND                 | 0.200 |     | ND      | 0.923 |                              |           | 1                                                       |
| 1,2-Dichloroethane                        |                              | ND                 | 0.200 |     | ND      | 0.809 |                              |           | 1                                                       |
| n-Hexane                                  |                              | ND                 | 0.200 |     | ND      | 0.704 |                              |           | 1                                                       |
| Diisopropyl ether                         |                              | ND                 | 0.200 |     | ND      | 0.835 |                              |           | 1                                                       |
| tert-Butyl Ethyl Ether                    |                              | ND                 | 0.200 |     | ND      | 0.835 |                              |           | 1                                                       |
| 1,1,1-Trichloroethane                     |                              | ND                 | 0.200 |     | ND      | 1.09  |                              |           | 1                                                       |
| 1,1-Dichloropropene                       |                              | ND                 | 0.200 |     | ND      | 0.907 |                              |           | 1                                                       |
| Benzene                                   |                              | ND                 | 0.200 |     | ND      | 0.638 |                              |           | 1                                                       |
| Carbon tetrachloride                      |                              | ND                 | 0.200 |     | ND      | 1.26  |                              |           | 1                                                       |
| Cyclohexane                               |                              | ND                 | 0.200 |     | ND      | 0.688 |                              |           | 1                                                       |
| tert-Amyl Methyl Ether                    |                              | ND                 | 0.200 |     | ND      | 0.835 |                              |           | 1                                                       |
| Dibromomethane                            |                              | ND                 | 0.200 |     | ND      | 1.42  |                              |           | 1                                                       |
| 1,2-Dichloropropane                       |                              | ND                 | 0.200 |     | ND      | 0.924 |                              |           | 1                                                       |
| Bromodichloromethane                      |                              | ND                 | 0.200 |     | ND      | 1.34  |                              |           | 1                                                       |
| 1,4-Dioxane                               |                              | ND                 | 0.200 |     | ND      | 0.720 |                              |           | 1                                                       |
|                                           |                              |                    |       |     |         |       |                              |           |                                                         |



# Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1019983

 Report Date:
 01/19/11

| Lab ID:<br>Client ID:<br>Sample Location: | L1019983-01<br>CAN 263 SHELF | - 2     |            |     |         | Date I<br>Field I | Collecte<br>Receive<br>Prep: |           | 12/14/10 00:00<br>12/14/10<br>Not Specified |
|-------------------------------------------|------------------------------|---------|------------|-----|---------|-------------------|------------------------------|-----------|---------------------------------------------|
| Parameter                                 |                              | Results | ppbV<br>RL | MDL | Results | ug/m3<br>RL       | MDL                          | Qualifier | Dilution<br>Factor                          |
| Volatile Organics in A                    | ir (Low Level) - M           |         |            |     |         |                   |                              |           |                                             |
| Trichloroethene                           |                              | ND      | 0.200      |     | ND      | 1.07              |                              |           | 1                                           |
| 2,2,4-Trimethylpentane                    |                              | ND      | 0.200      |     | ND      | 0.934             |                              |           | 1                                           |
| Heptane                                   |                              | ND      | 0.200      |     | ND      | 0.819             |                              |           | 1                                           |
| 2,4,4-trimethyl-1-pentene                 |                              | ND      | 0.500      |     | ND      | 2.29              |                              |           | 1                                           |
| cis-1,3-Dichloropropene                   |                              | ND      | 0.200      |     | ND      | 0.907             |                              |           | 1                                           |
| 4-Methyl-2-pentanone                      |                              | ND      | 0.200      |     | ND      | 0.819             |                              |           | 1                                           |
| 2,4,4-trimethyl-2-pentene                 |                              | ND      | 0.500      |     | ND      | 2.29              |                              |           | 1                                           |
| trans-1,3-Dichloropropene                 | e                            | ND      | 0.200      |     | ND      | 0.907             |                              |           | 1                                           |
| 1,1,2-Trichloroethane                     |                              | ND      | 0.200      |     | ND      | 1.09              |                              |           | 1                                           |
| Toluene                                   |                              | ND      | 0.200      |     | ND      | 0.753             |                              |           | 1                                           |
| 1,3-Dichloropropane                       |                              | ND      | 0.200      |     | ND      | 0.923             |                              |           | 1                                           |
| 2-Hexanone                                |                              | ND      | 0.200      |     | ND      | 0.819             |                              |           | 1                                           |
| Dibromochloromethane                      |                              | ND      | 0.200      |     | ND      | 1.70              |                              |           | 1                                           |
| 1,2-Dibromoethane                         |                              | ND      | 0.200      |     | ND      | 1.54              |                              |           | 1                                           |
| Butyl acetate                             |                              | ND      | 0.500      |     | ND      | 2.37              |                              |           | 1                                           |
| Octane                                    |                              | ND      | 0.200      |     | ND      | 0.934             |                              |           | 1                                           |
| Tetrachloroethene                         |                              | ND      | 0.200      |     | ND      | 1.36              |                              |           | 1                                           |
| 1,1,1,2-Tetrachloroethane                 | e                            | ND      | 0.200      |     | ND      | 1.37              |                              |           | 1                                           |
| Chlorobenzene                             |                              | ND      | 0.200      |     | ND      | 0.920             |                              |           | 1                                           |
| Ethylbenzene                              |                              | ND      | 0.200      |     | ND      | 0.868             |                              |           | 1                                           |
| p/m-Xylene                                |                              | ND      | 0.400      |     | ND      | 1.74              |                              |           | 1                                           |
| Bromoform                                 |                              | ND      | 0.200      |     | ND      | 2.06              |                              |           | 1                                           |
| Styrene                                   |                              | ND      | 0.200      |     | ND      | 0.851             |                              |           | 1                                           |
| 1,1,2,2-Tetrachloroethane                 | e                            | ND      | 0.200      |     | ND      | 1.37              |                              |           | 1                                           |
| o-Xylene                                  |                              | ND      | 0.200      |     | ND      | 0.868             |                              |           | 1                                           |
| 1,2,3-Trichloropropane                    |                              | ND      | 0.200      |     | ND      | 1.20              |                              |           | 1                                           |
| Nonane                                    |                              | ND      | 0.200      |     | ND      | 1.05              |                              |           | 1                                           |
| Isopropylbenzene                          |                              | ND      | 0.200      |     | ND      | 0.982             |                              |           | 1                                           |



# Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1019983

 Report Date:
 01/19/11

| Lab ID:L1019983-01Client ID:CAN 263 SHESample Location:CAN 263 SHE |                     | F 2           | 2     |     |         |       | Collecte<br>Receive<br>Prep: |          | 12/14/10 00:00<br>12/14/10<br>Not Specified |
|--------------------------------------------------------------------|---------------------|---------------|-------|-----|---------|-------|------------------------------|----------|---------------------------------------------|
|                                                                    |                     |               | ppbV  |     |         | ug/m3 |                              |          | Dilution<br>Factor                          |
| Parameter                                                          |                     | Results       | RL    | MDL | Results | RL    | MDL                          | Qualifie | Factor                                      |
| Volatile Organics in                                               | Air (Low Level) - M | lansfield Lab | )     |     |         |       |                              |          |                                             |
| Bromobenzene                                                       |                     | ND            | 0.200 |     | ND      | 1.28  |                              |          | 1                                           |
| 2-Chlorotoluene                                                    |                     | ND            | 0.200 |     | ND      | 1.03  |                              |          | 1                                           |
| n-Propylbenzene                                                    |                     | ND            | 0.200 |     | ND      | 0.982 |                              |          | 1                                           |
| 4-Chlorotoluene                                                    |                     | ND            | 0.200 |     | ND      | 1.03  |                              |          | 1                                           |
| 4-Ethyltoluene                                                     |                     | ND            | 0.200 |     | ND      | 0.982 |                              |          | 1                                           |
| 1,3,5-Trimethybenzene                                              |                     | ND            | 0.200 |     | ND      | 0.982 |                              |          | 1                                           |
| tert-Butylbenzene                                                  |                     | ND            | 0.200 |     | ND      | 1.10  |                              |          | 1                                           |
| 1,2,4-Trimethylbenzene                                             | )                   | ND            | 0.200 |     | ND      | 0.982 |                              |          | 1                                           |
| Decane                                                             |                     | ND            | 0.200 |     | ND      | 1.16  |                              |          | 1                                           |
| Benzyl chloride                                                    |                     | ND            | 0.200 |     | ND      | 1.03  |                              |          | 1                                           |
| 1,3-Dichlorobenzene                                                |                     | ND            | 0.200 |     | ND      | 1.20  |                              |          | 1                                           |
| 1,4-Dichlorobenzene                                                |                     | ND            | 0.200 |     | ND      | 1.20  |                              |          | 1                                           |
| sec-Butylbenzene                                                   |                     | ND            | 0.200 |     | ND      | 1.10  |                              |          | 1                                           |
| p-Isopropyltoluene                                                 |                     | ND            | 0.200 |     | ND      | 1.10  |                              |          | 1                                           |
| 1,2-Dichlorobenzene                                                |                     | ND            | 0.200 |     | ND      | 1.20  |                              |          | 1                                           |
| n-Butylbenzene                                                     |                     | ND            | 0.200 |     | ND      | 1.10  |                              |          | 1                                           |
| 1,2-Dibromo-3-chloropr                                             | opane               | ND            | 0.200 |     | ND      | 1.93  |                              |          | 1                                           |
| Undecane                                                           |                     | ND            | 0.200 |     | ND      | 1.28  |                              |          | 1                                           |
| Dodecane                                                           |                     | ND            | 0.200 |     | ND      | 1.39  |                              |          | 1                                           |
| 1,2,4-Trichlorobenzene                                             |                     | ND            | 0.200 |     | ND      | 1.48  |                              |          | 1                                           |
| Naphthalene                                                        |                     | ND            | 0.200 |     | ND      | 1.05  |                              |          | 1                                           |
| 1,2,3-Trichlorobenzene                                             |                     | ND            | 0.200 |     | ND      | 1.48  |                              |          | 1                                           |
| Hexachlorobutadiene                                                |                     | ND            | 0.200 |     | ND      | 2.13  |                              |          | 1                                           |
|                                                                    |                     |               |       |     |         |       |                              |          |                                             |



|                  |               | Air (   | Canister C | ertificatic | n Results |       |           |          |                |
|------------------|---------------|---------|------------|-------------|-----------|-------|-----------|----------|----------------|
|                  |               |         |            |             |           |       |           |          |                |
| Lab ID:          | L1019983-01   |         |            |             |           | Date  | Collected | d:       | 12/14/10 00:00 |
| Client ID:       | CAN 263 SHELF | 2       |            |             |           | Date  | Received  | d:       | 12/14/10       |
| Sample Location: |               |         |            |             |           | Field | Prep:     |          | Not Specified  |
|                  |               |         | ppbV       |             |           | ug/m3 |           |          | Dilution       |
| Parameter        | -             | Results | RL         | MDL         | Results   | RL    | MDL       | Qualifie | r Factor       |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 107        |           | 60-140                 |
| Bromochloromethane  | 94         |           | 60-140                 |
| chlorobenzene-d5    | 92         |           | 60-140                 |



# **AIR Petro Can Certification**

|                    |                              | Serial_No:      | 01191116:23    |
|--------------------|------------------------------|-----------------|----------------|
| Project Name:      | BATCH CANISTER CERTIFICATION | Lab Number:     | L1019883       |
| Project Number:    | CANISTER QC BAT              | Report Date:    | 01/19/11       |
|                    | AIR CAN CERTIFICATION RE     | SULTS           |                |
| Lab ID:            | L1019883-01                  | Date Collected: | 12/13/10 00:00 |
| Client ID:         | CAN 393 SHELF 3              | Date Received:  | 12/13/10       |
| Sample Location:   | Not Specified                | Field Prep:     | Not Specified  |
| Matrix:            | Air                          |                 |                |
| Analytical Method: | 96,APH                       |                 |                |
| Analytical Date:   | 12/16/10 14:34               |                 |                |
| Analyst:           | RY                           |                 |                |

| Parameter                                     | Result | Qualifier Un | its RL | MDL | Dilution Factor |  |  |  |  |  |
|-----------------------------------------------|--------|--------------|--------|-----|-----------------|--|--|--|--|--|
| Petroleum Hydrocarbons in Air - Mansfield Lab |        |              |        |     |                 |  |  |  |  |  |
| 1,3-Butadiene                                 | ND     | ug/          | m3 2.0 |     | 1               |  |  |  |  |  |
| Methyl tert butyl ether                       | ND     | ug/i         | m3 2.0 |     | 1               |  |  |  |  |  |
| Benzene                                       | ND     | ug/          | m3 2.0 |     | 1               |  |  |  |  |  |
| Toluene                                       | ND     | ug/i         | m3 2.0 |     | 1               |  |  |  |  |  |
| C5-C8 Aliphatics, Adjusted                    | ND     | ug/i         | m3 12  |     | 1               |  |  |  |  |  |
| Ethylbenzene                                  | ND     | ug/          | m3 2.0 |     | 1               |  |  |  |  |  |
| p/m-Xylene                                    | ND     | ug/i         | m3 4.0 |     | 1               |  |  |  |  |  |
| o-Xylene                                      | ND     | ug/i         | m3 2.0 |     | 1               |  |  |  |  |  |
| Naphthalene                                   | ND     | ug/          | m3 2.0 |     | 1               |  |  |  |  |  |
| C9-C12 Aliphatics, Adjusted                   | ND     | ug/          | m3 14  |     | 1               |  |  |  |  |  |
| C9-C10 Aromatics Total                        | ND     | ug/          | m3 10  |     | 1               |  |  |  |  |  |



|                    |                              | Serial_No:      | 01191116:23    |
|--------------------|------------------------------|-----------------|----------------|
| Project Name:      | BATCH CANISTER CERTIFICATION | Lab Number:     | L1019983       |
| Project Number:    | CANISTER QC BAT              | Report Date:    | 01/19/11       |
|                    | AIR CAN CERTIF               | ICATION RESULTS |                |
| Lab ID:            | L1019983-01                  | Date Collected: | 12/14/10 00:00 |
| Client ID:         | CAN 263 SHELF 2              | Date Received:  | 12/14/10       |
| Sample Location:   | Not Specified                | Field Prep:     | Not Specified  |
| Matrix:            | Air                          |                 |                |
| Analytical Method: | 96,APH                       |                 |                |
| Analytical Date:   | 12/16/10 15:10               |                 |                |
| Analyst:           | RY                           |                 |                |

| Result                                        | Qualifier                                                             | Units                                            | RL                                                                                                                         | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dilution Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|-----------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Petroleum Hydrocarbons in Air - Mansfield Lab |                                                                       |                                                  |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| ND                                            |                                                                       | ug/m3                                            | 2.0                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| ND                                            |                                                                       | ug/m3                                            | 2.0                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| ND                                            |                                                                       | ug/m3                                            | 2.0                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| ND                                            |                                                                       | ug/m3                                            | 2.0                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| ND                                            |                                                                       | ug/m3                                            | 12                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| ND                                            |                                                                       | ug/m3                                            | 2.0                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| ND                                            |                                                                       | ug/m3                                            | 4.0                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| ND                                            |                                                                       | ug/m3                                            | 2.0                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| ND                                            |                                                                       | ug/m3                                            | 2.0                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| ND                                            |                                                                       | ug/m3                                            | 14                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| ND                                            |                                                                       | ug/m3                                            | 10                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                                               | field Lab<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | field Lab ND ND ND ND ND ND ND ND ND ND ND ND ND | ifield LabNDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3 | ND         ug/m3         2.0           ND         ug/m3         2.0           ND         ug/m3         2.0           ND         ug/m3         2.0           ND         ug/m3         2.0           ND         ug/m3         2.0           ND         ug/m3         2.0           ND         ug/m3         2.0           ND         ug/m3         4.0           ND         ug/m3         2.0           ND         ug/m3         14 | ND         ug/m3         2.0            ND         ug/m3         2.0            ND         ug/m3         2.0            ND         ug/m3         2.0            ND         ug/m3         2.0            ND         ug/m3         2.0            ND         ug/m3         2.0            ND         ug/m3         12            ND         ug/m3         2.0            ND         ug/m3         14 |  |  |  |  |  |



# Project Name: CFI- WASHINGTON AVE. Project Number: 1047-3

Lab Number: L1100113 Report Date: 01/19/11

### Sample Receipt and Container Information

Were project specific reporting limits specified? YES

### Reagent H2O Preserved Vials Frozen on: NA

# Cooler Information Custody Seal Cooler

N/A Present/Intact

| Container Info | ormation             |        |     | Temp |     |                |                                       |
|----------------|----------------------|--------|-----|------|-----|----------------|---------------------------------------|
| Container ID   | Container Type       | Cooler | рΗ  |      | res | Seal           | Analysis(*)                           |
| L1100113-01A   | Canister - 2.7 Liter | N/A    | N/A |      | Y   | Present/Intact | APH-10(30),FIXGAS(30),TO15-<br>LL(30) |
| L1100113-02A   | Canister - 2.7 Liter | N/A    | N/A |      | Y   | Present/Intact | APH-10(30),FIXGAS(30),TO15-<br>LL(30) |
| L1100113-03A   | Canister - 2.7 Liter | N/A    | N/A |      | Y   | Present/Intact | APH-10(30),FIXGAS(30),TO15-<br>LL(30) |
| L1100113-04A   | Canister - 2.7 Liter | N/A    | N/A |      | Y   | Present/Intact | APH-10(30),FIXGAS(30),TO15-<br>LL(30) |
| L1100113-05A   | Canister - 2.7 Liter | N/A    | N/A |      | Y   | Present/Intact | APH-10(30),FIXGAS(30),TO15-<br>LL(30) |
| L1100113-06A   | Canister - 2.7 Liter | N/A    | N/A |      | Y   | Present/Intact | CLEAN-FEE()                           |
| L1100113-07A   | Canister - 2.7 Liter | N/A    | N/A |      | Y   | Present/Intact | CLEAN-FEE()                           |



### Project Name: CFI- WASHINGTON AVE.

Project Number: 1047-3

## Lab Number: L1100113

### **Report Date:** 01/19/11

### GLOSSARY

#### Acronyms

- EPA · Environmental Protection Agency.
- LCS · Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD · Laboratory Control Sample Duplicate: Refer to LCS.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD · Matrix Spike Sample Duplicate: Refer to MS.
- NA · Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI · Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

#### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

#### Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E -Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **H** The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.

Report Format: Data Usability Report



# Project Name: CFI- WASHINGTON AVE. Lab Number: L1100113 Project Number: 1047-3 Report Date: 01/19/11

Data Qualifiers

- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: CFI- WASHINGTON AVE. Project Number: 1047-3 
 Lab Number:
 L1100113

 Report Date:
 01/19/11

### REFERENCES

- 48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.
- 51 Determination of Carbon Dioxide, Methane, Nitrogen and Oxygen from Stationary Sources. Method 3C. Appendix A, Part 60, 40 CFR (Code of Federal Regulations). June 20, 1996.
- 96 Method for the Determination of Air-Phase Petroleum Hydrocarbons (APH), MassDEP, December 2009, Revision 1 with QC Requirements & Performance Standards for the Analysis of APH by GC/MS under the Massachusetts Contingency Plan, WSC-CAM-IXA, July 2010.

### LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



## Certificate/Approval Program Summary

Last revised July 19, 2010 - Mansfield Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

### Connecticut Department of Public Health Certificate/Lab ID: PH-0141.

*Wastewater/Non-Potable Water* (Inorganic Parameters: pH, Turbidity, Conductivity, Alkalinity, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Vanadium, Zinc, Total Residue (Solids), Total Suspended Solids (non-filterable), Total Cyanide. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables, Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, PAHs, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.)

Solid Waste/Soil (Inorganic Parameters: pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Organic Carbon, Total Cyanide, Corrosivity, TCLP 1311. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Volatile Organics, Acid Extractables, Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

### Florida Department of Health Certificate/Lab ID: E87814. NELAP Accredited.

*Non-Potable Water* (Inorganic Parameters: SM2320B, EPA 120.1, SM2510B, EPA 245.1, EPA 150.1, EPA 160.2, SM2540D, EPA 335.2, SM2540G, EPA 180.1. <u>Organic Parameters</u>: EPA 625, 608.)

*Solid & Chemical Materials* (Inorganic Parameters: 6020, 7470, 7471, 9045, 9014. Organic Parameters: EPA 8260, 8270, 8082, 8081.)

Air & Emissions (EPA TO-15.)

### Louisiana Department of Environmental Quality Certificate/Lab ID: 03090. NELAP Accredited.

*Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 120.1, 150.1, 160.2, 180.1, 200.8, 245.1, 310.1, 335.2, 608, 625, 1631, 3010, 3015, 3020, 6020, 9010, 9014, 9040, SM2320B, 2510B, 2540D, 2540G, 4500CN-E, 4500H-B, <u>Organic Parameters</u>: EPA 3510, 3580, 3630, 3640, 3660, 3665, 5030, 8015 (mod), 3570, 8081, 8082, 8260, 8270, )

Solid & Chemical Materials (Inorganic Parameters: 6020, 7196, 7470, 7471, 7474, 9010, 9014, 9040, 9045, 9060. <u>Organic Parameters</u>: EPA 8015 (mod), EPA 3570, 1311, 3050, 3051, 3060, 3580, 3630, 3640, 3660, 3665, 5035, 8081, 8082, 8260, 8270.)

Biological Tissue (Inorganic Parameters: EPA 6020. Organic Parameters: EPA 3570, 3510, 3610, 3630, 3640, 8270.)

#### Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA030.

Non-Potable Water (Inorganic Parameters: SM4500H+B. Organic Parameters: EPA 624.)

#### New Hampshire Department of Environmental Services Certificate/Lab ID: 2206. NELAP Accredited.

*Non-Potable Water* (Inorganic Parameters: EPA 200.8, 245.1, 1631E, 120.1, 150.1, 180.1, 310.1, 335.2, 160.2, SM2540D, 2540G, 4500CN-E, 4500H+B, 2320B, 2510B. <u>Organic Parameters</u>: EPA 625, 608.)

### New Jersey Department of Environmental Protection Certificate/Lab ID: MA015. NELAP Accredited.

*Non-Potable Water* (<u>Inorganic Parameters</u>: SW-846 1312, 3010, 3020A, 3015, 6020, SM2320B, EPA 200.8, SM2540C, 2540D, 2540G, EPA 120.1, SM2510B, EPA 180.1, 245.1, 1631E, SW-846 9040B, 6020, 9010B, 9014 <u>Organic Parameters</u>: EPA 608, 625, SW-846 3510C, 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082 8260B, 8270C)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6020, 9010B, 9014, 1311, 1312, 3050B, 3051, 3060A, 7196A, 7470A, 7471A, 9045C, 9060. <u>Organic Parameters</u>: SW-846 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082, 8260B, 8270C, 3570, 8015B.)

Atmospheric Organic Parameters (EPA TO-15)

Biological Tissue (Inorganic Parameters: SW-846 6020 Organic Parameters: SW-846 8270C, 3510C, 3570, 3610B, 3630C, 3640A)

### New York Department of Health Certificate/Lab ID: 11627. NELAP Accredited.

*Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 310.1, SM2320B, EPA 365.2, 160.1, EPA 160.2, SM2540D, EPA 200.8, 6020, 1631E, 245.1, 335.2, 9014, 150.1, 9040B, 120.1, SM2510B, EPA 376.2, 180.1, 9010B. <u>Organic Parameters</u>: EPA 624, 8260B, 8270C, 608, 8081A, 625, 8082, 3510C, 3511, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 9040B, 9045C, SW-846 Ch7 Sec 7.3, EPA 6020, 7196A, 7471A, 7474, 9014, 9040B, 9045C, 9010B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8081A, DRO 8015B, 8082, 1311, 3050B, 3580, 3050B, 3035, 3570, 3051, 5035, 5030B.)

Air & Emissions (EPA TO-15.)

Rhode Island Department of Health Certificate/Lab ID: LAO00299. NELAP Accredited via LA-DEQ.

Refer to MA-DEP Certificate for Non-Potable Water.

Refer to LA-DEQ Certificate for Non-Potable Water.

Texas Commission of Environmental Quality Certificate/Lab ID: T104704419-08-TX. NELAP Accredited.

*Solid & Chemical Materials* (<u>Inorganic Parameters</u>: EPA 6020, 7470, 7471, 1311, 7196, 9014, 9040, 9045, 9060. <u>Organic Parameters</u>: EPA 8015, 8270, 8260, 8081, 8082.)

Air (Organic Parameters: EPA TO-15)

U.S. Army Corps of Engineers

Department of Defense Certificate/Lab ID: L2217.01.

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312,3051, 6020, 747A, 7474, 9045C,9060, SM 2540G, ASTM D422-63. <u>Organic Parameters</u>: EPA 3580, 3570, 3540C, 5035, 8260B, 8270C, 8270 Alk-PAH, 8082, 8081A, 8015 (SHC), 8015 (DRO).

Air & Emissions (EPA TO-15.)

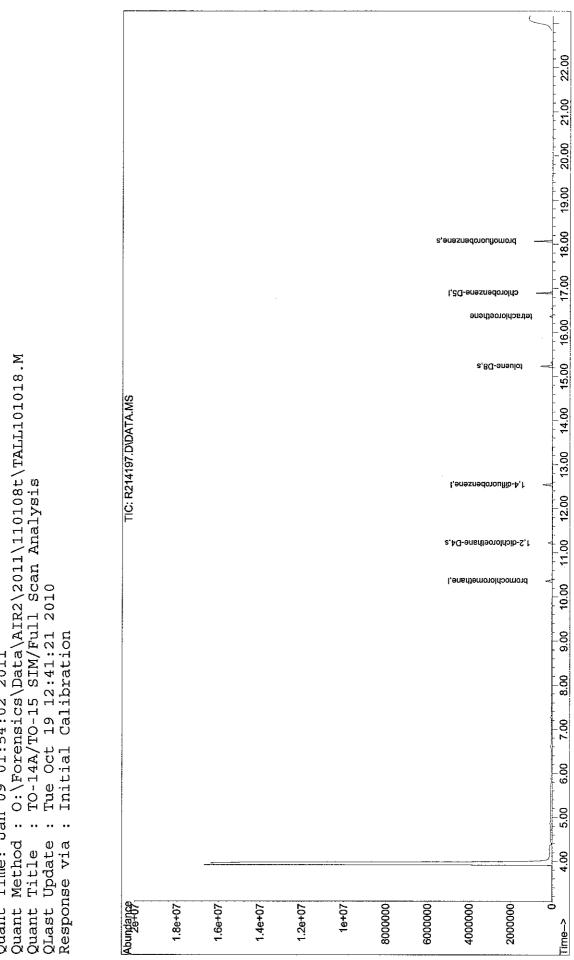
### Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: 8270C: Biphenyl.

|                                                                                                                                                                                                                        |                                                                                                                |                                           |                    |                          | 17                                                                                                  |                                               | Seria                                                                                            | al_No:0119111                                                                                                                                      | 6:23                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------|--------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Form No: 101-02 (19-Jun-09)                                                                                                                                                                                            | *SAMPLE MATRIX CODES                                                                                           | (1) 「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」 | s 56-13<br>4 56-13 | 2 56-7                   | (Lab Use Only) Sample ID                                                                            | Other Project Specific Requirements/Comments: | Phone: 207-822-6306<br>Fax: Rote M. Eremita O. Maner Gu<br>Email:                                | client: MEDEP Pote Eremita<br>Address: 312 Canco RZ<br>Portlanz, ME                                                                                | <b>CHAIN OF C</b><br>sfield, MA 02048<br>FAX: 508-822-32 |
| Reindwished by:<br>FED EX<br>13/11 0<br>15/11 10                                                                                                                                                                       | AA = Ambient Air (Indoor/Outdoor)<br>SY = Soil Vapor/Landfill <u>Gas/SVE</u><br>Ather = Ply & Specify          |                                           |                    | - 962<br>- 258           | Initial Final<br>Date Start Time End Time Vacuum Vacuum                                             | MA See Attalez                                | Mathematical Stress     Time       Date Dire     Time                                            | Project #: 1047-3<br>Project Manager: Eremite / 10507                                                                                              | NALYSIS Project Information                              |
| 1015 A Mary 1 1/5/                                                                                                                                                                                                     | Container Type                                                                                                 |                                           |                    | 272 177 308<br>1 509 332 | Sample Sampler's Can ID ID -Flow A<br>Matrix* Initials Size Can Controller A<br>SV S& Z7L S29 043 ) | Be<br>Filled<br>Out<br>5 (1)                  | Report to: W different than Project Manager)<br>Chiremit 2<br>Dicting, M. Mc Kanzi Co Maine, Giv | Criteria Checker:<br>(Default based on Regulatory Criteria Indicated)<br>Other Formats:<br>EMAIL (standard pdf report)<br>Additional Deliverables: | Date Rec'd in Lab:                                       |
| Date/Time:     clock will not start until any amble       guittes are resolved.     All samples of subject to Alpha's       submitted are subject to Alpha's     Generations.       See reverse side.     Generations. | Please print clearly, legibly and completely. Samples can not be completely in and turnaround time completely. |                                           |                    | XX                       | A                                                                                                   |                                               |                                                                                                  | Regulatory Requirements/Report Limits<br>State/Fed Program Criteria                                                                                | ALPHA Job #: $L//00//3$<br>Billing Information           |

# **TO-15**

2


Page:

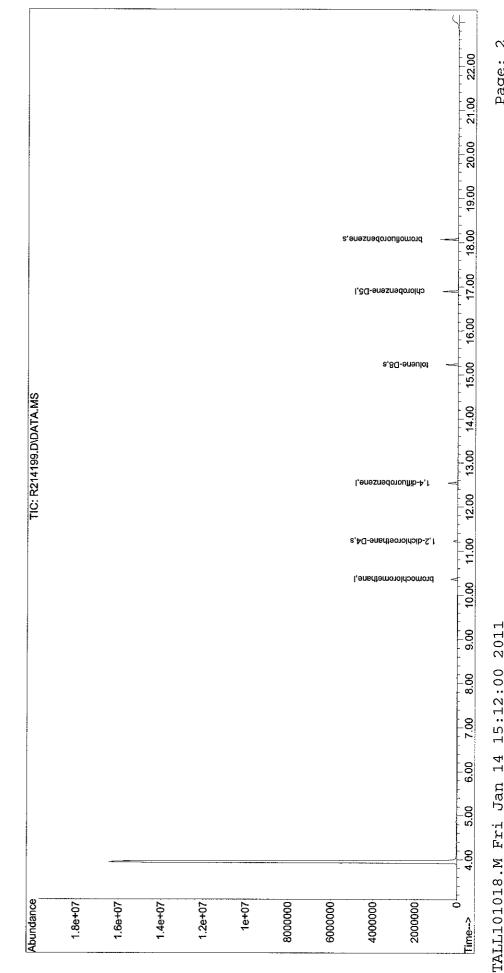
2011

15:11:50

Jan 14

TALL101018.M Fri




Quant Time: Jan 09 01:54:02 2011 Quant Method : 0:\Forensics\Data\AIR2\2011\110108t\TALL101018.M Quant Title : T0-14A/T0-15 SIM/Full Scan Analysis QLast Update : Tue Oct 19 12:41:21 2010 (QT Reviewed) 0:\Forensics\Data\AIR2\2011\110108t\ t---Sample Multiplier: 9\_Chlorinateds+EDB 6:05 pm L1100113-01,3,250,250 WG450777, ICAL5425 AIRPIANO2:BS 8 Jan 2011 R214197.D ω Data Path Data File Operator ALS Vial Acq On Sample Misc

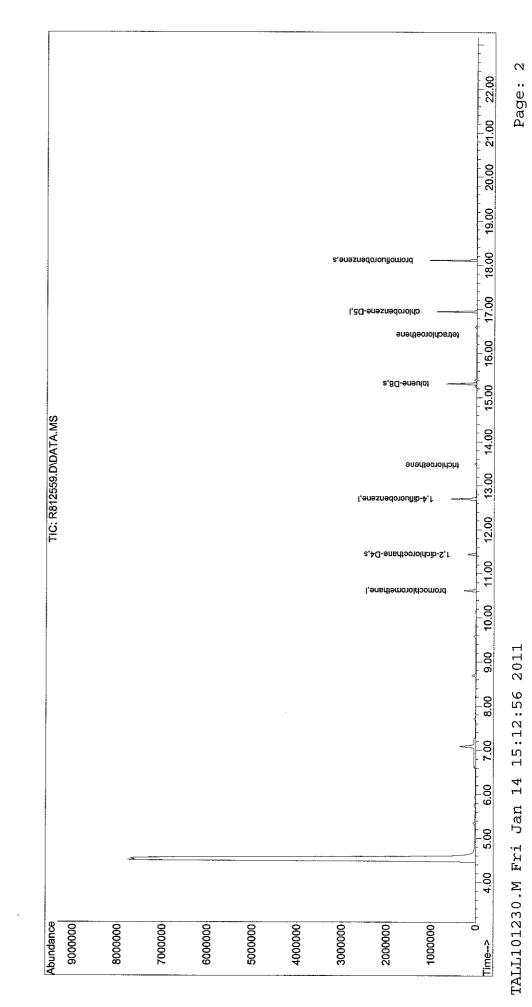
Ļ

ī

•••

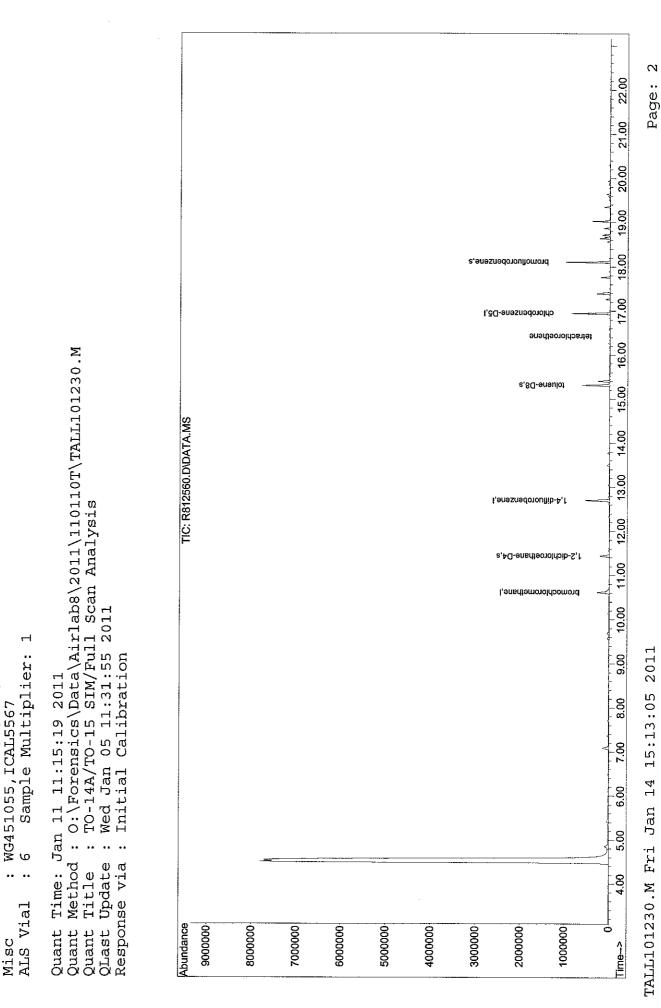
Sub List




Time: Jan 09 01:54:44 2011 Method : 0:\Forensics\Data\AIR2\2011\110108t\TALL101018.M (QT Reviewed) TO-14A/TO-15 SIM/Full Scan Analysis 0:\Forensics\Data\AIR2\2011\110108t\ Tue Oct 19 12:41:21 2010 ч. -I Sample Multiplier: 9\_Chlorinateds+EDB 7:20 pm L1100113-02,3,250,250 WG450777,ICAL5425 AIRPIANO2:BS 8 Jan 2011 R214199.D ••• თ QLast Update Title Data Path Data File Sub List Operator ALS Vial Acq On Sample Quant Quant Quant Misc

: Initial Calibration

Response via


Page 72 of 87

 $\sim$ Page:



: 0:\Forensics\Data\Airlab8\2011\110110T\TALL101230.M : TO-14A/TO-15 SIM/Full Scan Analysis : Wed Jan 05 11:31:55 2011 (QT Reviewed) 0:\Forensics\Data\Airlab8\2011\110110T\ ч. Sample Multiplier: 1 t L1100113-03D,3,125,250 WG451055,ICAL5567 Initial Calibration 9\_Chlorinateds+EDB 6:49 pm Time: Jan 11 11:15:07 2011 10 Jan 2011 AIRLAB8:BS R812559.D •• ഗ Quant Method Response via QLast Update Title Data Path Data File Sub List Operator ALS Vial Acq On Sample Quant Quant Misc

Page 73 of 87



Data Path Data File

(QT Reviewed)

ч.

I

9\_Chlorinateds+EDB

••

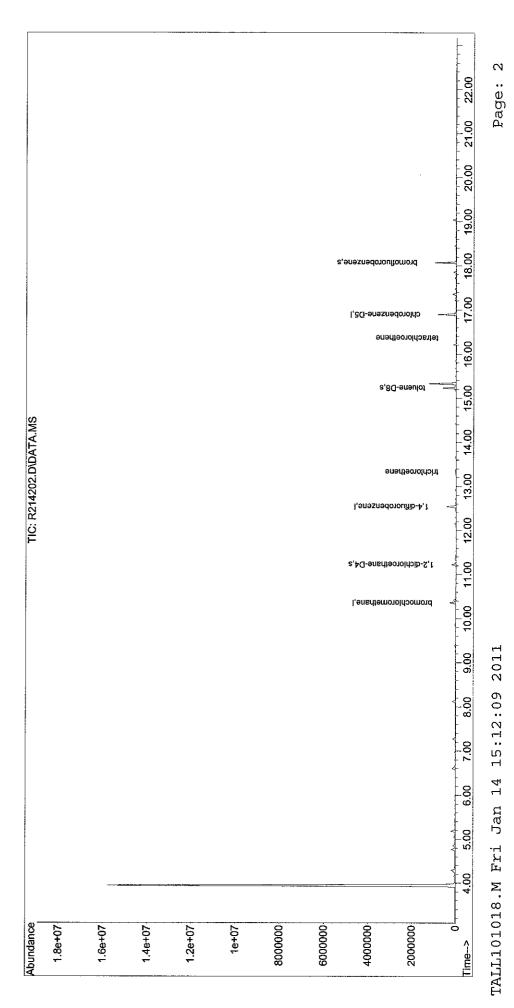
Sub List

0:\Forensics\Data\Airlab8\2011\110110T\

7:26 pm

10 Jan 2011 AIRLAB8:BS

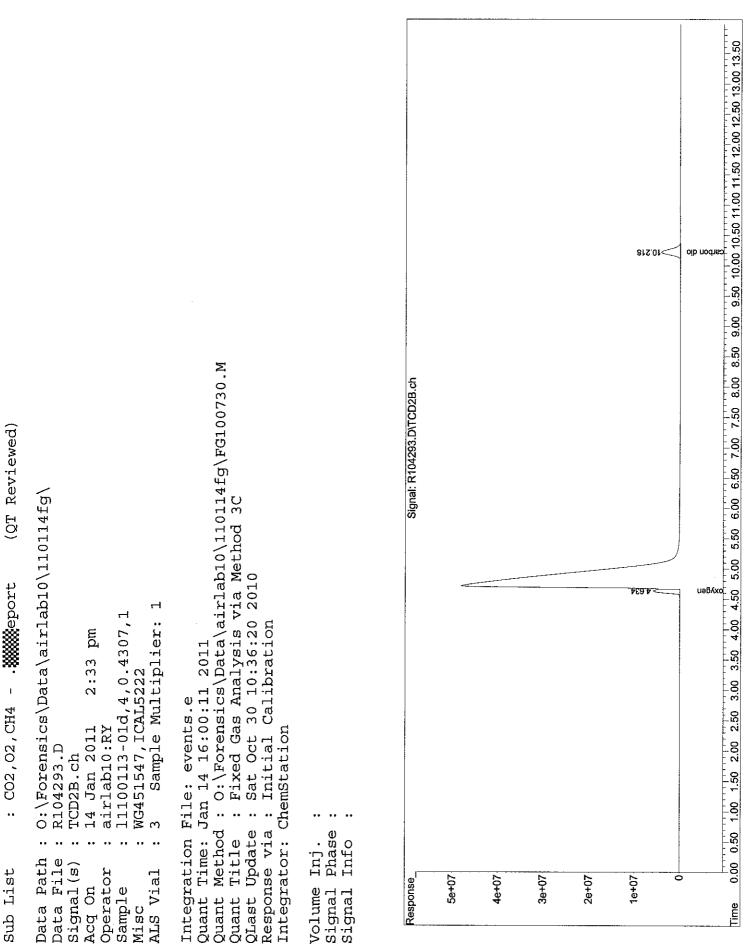
Operator


Sample

Acq On

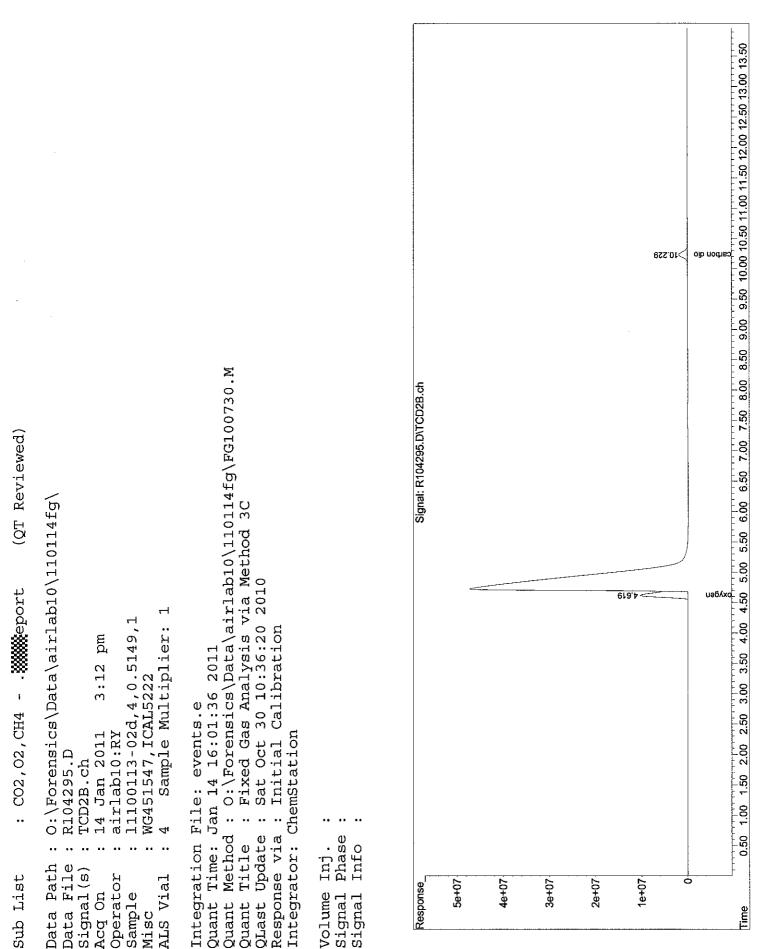
R812560.D

L1100113-04D, 3, 125, 250


#### Serial\_No:01191116:23



Quant Time: Jan 09 01:55:45 2011 Quant Method : O:\Forensics\Data\AIR2\2011\110108t\TALL101018.M Quant Title : TO-14A/TO-15 SIM/Full Scan Analysis (OT Reviewed) 0:\Forensics\Data\AIR2\2011\110108t\ Tue Oct 19 12:41:21 2010 ب -----Sample Multiplier: I Initial Calibration 9\_Chlorinateds+EDB 9:14 pm L1100113-05,3,250,250 WG450777, ICAL5425 AIRPIANO2:BS 8 Jan 2011 R214202.D 12 •• Response via QLast Update Data Path Data File Sub List Operator ALS Vial Acq On Sample Misc

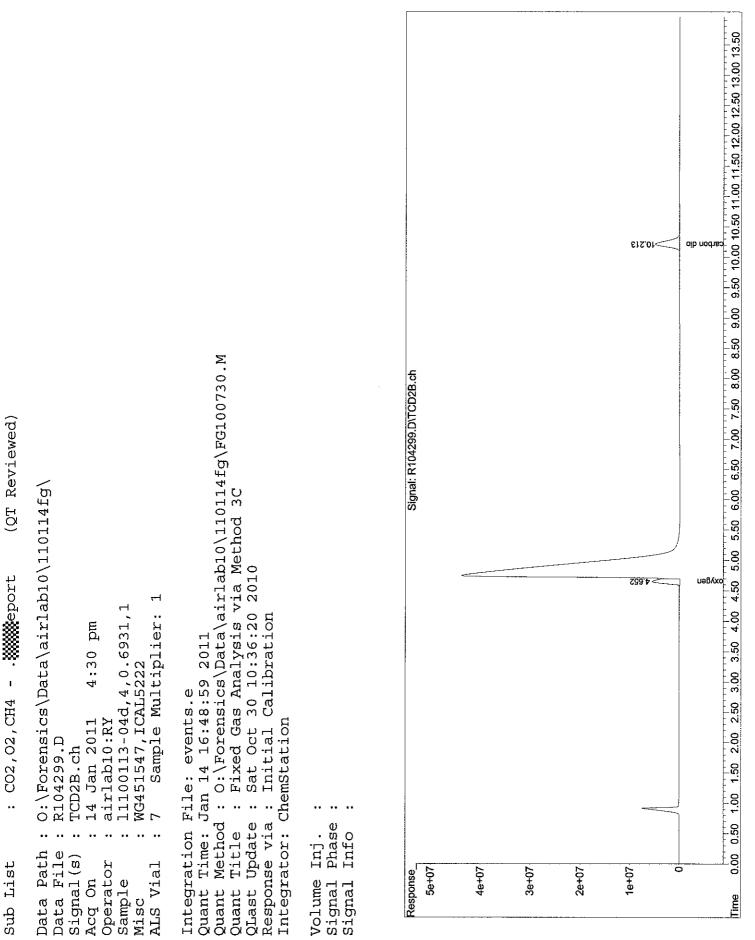

## **Fixed Gases**

Page:



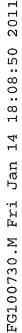
Page 77 of 87

FG100730.M Fri Jan 14 18:08:27 2011




Page:

Page 78 of 87




Page:



Page:

Quant Time: Jan 14 17:32:23 2011 Quant Method : 0:\Forensics\Data\airlab10\110114fg\FG100730.M Signal: R104301.D\TCD2B.ch (QT Reviewed) 0:\Forensics\Data\airlab10\110114fg\ : Fixed Gas Analysis via Method 3C : Sat Oct 30 10:36:20 2010 . ...eport Sample Multiplier: 1 l1100113-05d,4,0.5644,1 WG451547,ICAL5222 : Initial Calibration 5:10 pm : CO2,O2,CH4 -Integration File: events.e 14 Jan 2011 airlabl0:RY Integrator: ChemStation R104301.D TCD2B.ch თ QLast Update Response via Phase Quant Title Volume Inj. Info Data Path Data File Signal (s) Sub List Operator ALS Vial 5e+07 4e+07 3e+07 2e+07 Response Acq On Sample Signal Signal Misc



Time

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.50 12.00 12.50 13.00 13.50

uə6kxo

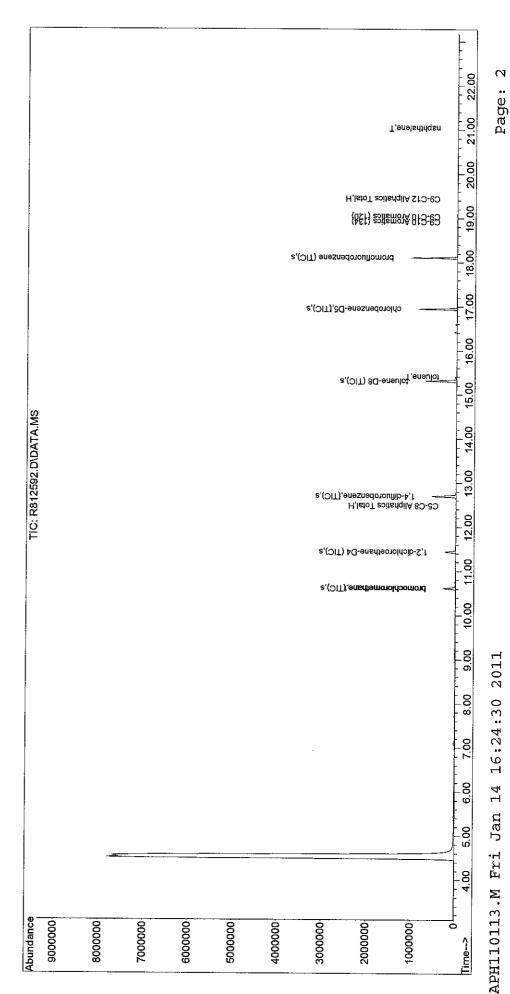
119.4

1e+07

ò

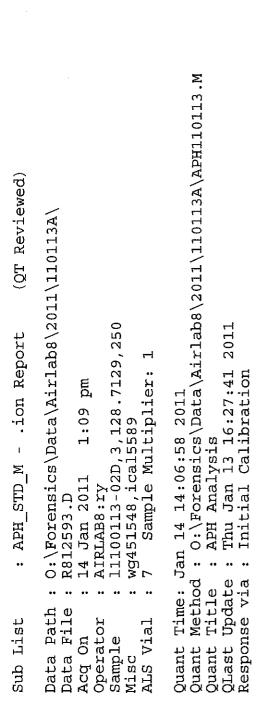
cerbon dio

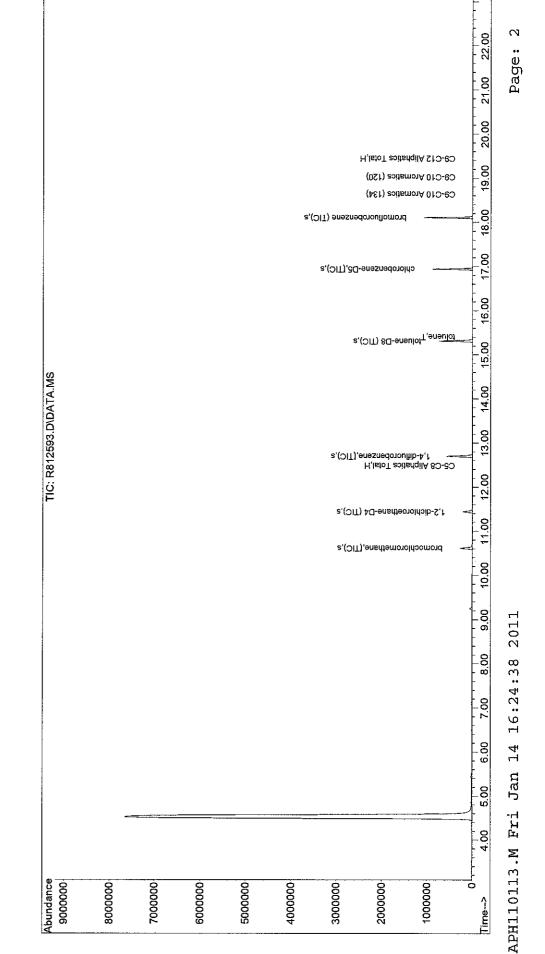
252.01


Page: 2

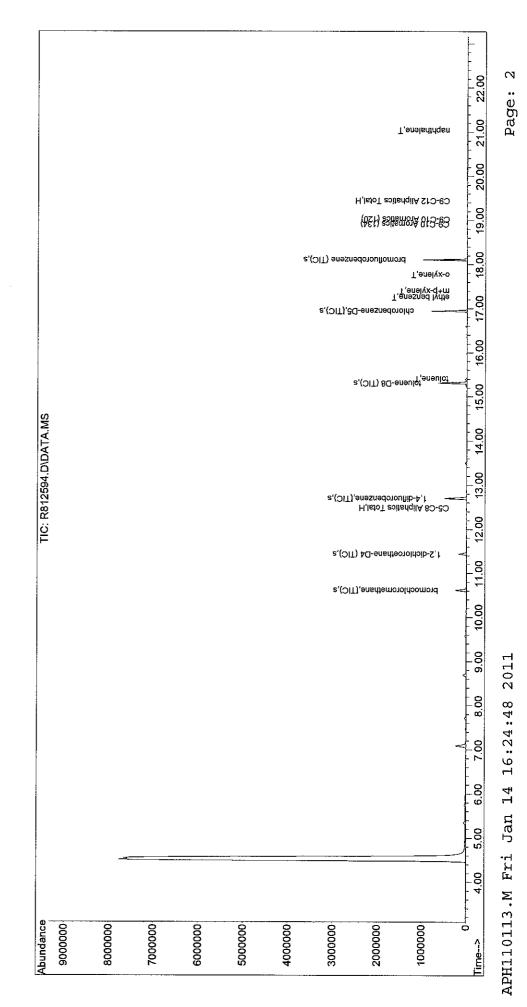
Page 81 of 87

## APH


: 0:\Forensics\Data\Airlab8\2011\110113A\APH110113.M (QT Reviewed) 0:\Forensics\Data\Airlab8\2011\110113A\ l1100113-01D,3,107.6733,250 wg451548,ica15589 2011 .ion Report щ : Thu Jan 13 16:27:41 : Initial Calibration Sample Multiplier: 12:32 pm Time: Jan 14 14:06:16 2011 APH Analysis ī APH\_STD\_M 14 Jan 2011 AIRLAB8: ry R812592.D •• ω Quant Method QLast Update Title •• Data Path Data File Sub List Operator ALS Vial Acq On Sample Quant Quant Misc

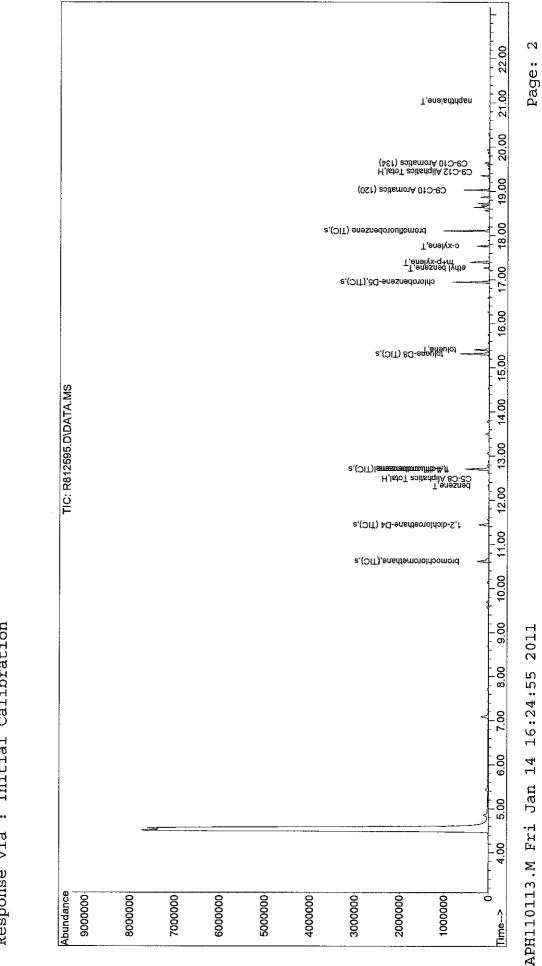

Response via



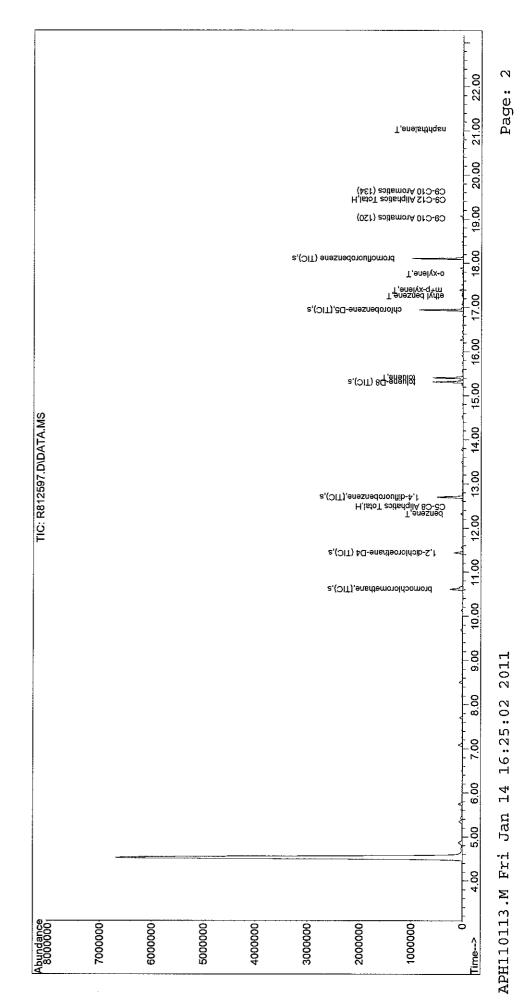

Page 83 of 87

2






Page 84 of 87




: 0:\Forensics\Data\Airlab8\2011\110113A\APH110113.M (QT Reviewed) 0:\Forensics\Data\Airlab8\2011\110113A\ APH Analysis Thu Jan 13 16:27:41 2011 .ion Report l1100113-03D,3,95.2970,250 wg451548,ical5589 Sample Multiplier: 1 : Initial Calibration 1:47 pm Time: Jan 14 14:22:41 2011 i APH\_STD\_M 14 Jan 2011 AIRLAB8: ry R812594.D •• •• ω Quant Method QLast Update Response via •• Title Data Path Data File Sub List Operator ALS Vial Acq On Sample Quant Quant Misc

Page 85 of 87



: 0:\Forensics\Data\Airlab8\2011\110113A\APH110113.M (QT Reviewed) 0:\Forensics\Data\Airlab8\2011\110113A\ 11100113-04D, 3, 173.2673, 250 2011 .ion Report Ч Thu Jan 13 16:27:41 Initial Calibration Sample Multiplier: 2:25 pm Quant Time: Jan 14 14:50:09 2011 wg451548,ica15589 APH Analysis ī R STD\_M 14 Jan 2011 AIRLAB8: ry R812595 D •• •• ്ത Quant Method Response via QLast Update Title Data Path Data File Sub List Operator ALS Vial Acq On Sample Quant Misc



Time: Jan 14 16:23:06 2011 Method : O:\Forensics\Data\Airlab8\2011\110113A\APH110113.M (QT Reviewed) 0:\Forensics\Data\Airlab8\2011\110113A\ 11100113-05D,3,141.0891,250
wg451548,ical5589
10 Sample Multiplier: 1 2011 .ion Report Ч Sample Multiplier: : Thu Jan 13 16:27:41 : Initial Calibration 3:40 pm APH Analysis ī APH\_STD\_M 14 Jan 2011 AIRLAB8:ry R812597.D •• •• Response via Update Title •• Data Path File Sub List Operator ALS Vial Acq On Sample QLast Quant Quant Quant Data Misc



#### ANALYTICAL REPORT

| Lab Number:     | L1100508                             |
|-----------------|--------------------------------------|
| Client:         | Maine DEP-Div. of Technical Services |
|                 | Division of Technical Services       |
|                 | 312 Canco Road                       |
|                 | Portland, ME 04103                   |
| ATTN:           | Peter Eremita                        |
| Phone:          | (207) 592-0592                       |
| Project Name:   | CFI - WASHINGTON AVE                 |
| Project Number: | 1042                                 |
| Report Date:    | 01/28/11                             |
|                 |                                      |

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NY (11627), CT (PH-0141), NH (2206), NJ (MA015), RI (LAO00299), ME (MA0030), PA (Registration #68-02089), LA NELAC (03090), FL NELAC (E87814), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com



| Project Name:   | CFI - WASHINGTON AVE |
|-----------------|----------------------|
| Project Number: | 1042                 |

 Lab Number:
 L1100508

 Report Date:
 01/28/11

| Alpha<br>Sample ID | Client ID | Sample<br>Location | Collection<br>Date/Time |
|--------------------|-----------|--------------------|-------------------------|
| L1100508-01        | SG-19     | PORTLAND, ME       | 01/10/11 11:07          |
| L1100508-02        | SG-8      | PORTLAND, ME       | 01/10/11 12:10          |
| L1100508-03        | SG-3      | PORTLAND, ME       | 01/10/11 11:47          |
| L1100508-04        | SG-11     | PORTLAND, ME       | 01/10/11 11:27          |
| L1100508-05        | SG-1      | PORTLAND, ME       | 01/10/11 10:50          |
| L1100508-06        | CAN 185   | PORTLAND, ME       |                         |
| L1100508-07        | CAN 154   | PORTLAND, ME       |                         |
| L1100508-08        | CAN 114   | PORTLAND, ME       |                         |
| L1100508-09        | CAN 393   | PORTLAND, ME       |                         |
| L1100508-10        | CAN 151   | PORTLAND, ME       |                         |
| L1100508-11        | CAN 263   | PORTLAND, ME       |                         |
| L1100508-12        | CAN 333   | PORTLAND, ME       |                         |
| L1100508-13        | CAN 1747  | PORTLAND, ME       |                         |



 Lab Number:
 L1100508

 Report Date:
 01/28/11

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

| An af | firmative response to questions A through F is required for "Presumptive Certainty" status                                                                                                                                         |     |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| A     | Were all samples received in a condition consistent with those described on the Chain-of-<br>Custody, properly preserved (including temperature) in the field or laboratory, and<br>prepared/analyzed within method holding times? | YES |
| В     | Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?                                                                                                               | YES |
| С     | Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?                                               | YES |
| D     | Does the laboratory report comply with all the reporting requirements specified in CAM VII A,<br>"Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"                          | YES |
| E a.  | VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).                                                        | YES |
| Eb.   | APH and TO-15 Methods only: Was the complete analyte list reported for each method?                                                                                                                                                | YES |
| F     | Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?                                          | YES |
| A res | ponse to questions G, H and I is required for "Presumptive Certainty" status                                                                                                                                                       |     |
| G     | Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?                                                                                                                          | YES |

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Were all QC performance standards specified in the CAM protocol(s) achieved?



YES

Н

Project Name: CFI - WASHINGTON AVE Project Number: 1042 
 Lab Number:
 L1100508

 Report Date:
 01/28/11

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

MCP Related Narratives

Canisters were released from the laboratory on December 15, 2010. The canister certification data is provided as an addendum.

Client requested that APH analysis also be performed.

Volatile Organics in Air

L1100508-01 through -05 and WG451826-5 Duplicate have elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

Petroleum Hydrocarbons in Air

L1100508-01 and -03 through -05 have elevated detection limits due to the dilution required by the elevated



Project Name: **CFI - WASHINGTON AVE** Project Number: 1042

Lab Number: L1100508 **Report Date:** 01/28/11

**Case Narrative (continued)** 

concentrations of non-target compounds in the sample.

Fixed Gas

L1100508-01 through -05: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen in order to facilitate the transfer of sample to the Gas Chromatograph. The addition of Nitrogen resulted in a dilution of the sample. The reporting limits have been elevated accordingly.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Kuhl M. ihin Kathleen O'Brien

Title: Technical Director/Representative

Date: 01/28/11



# AIR



L1100508

01/28/11

Lab Number:

Report Date:

## Project Name: CFI - WASHINGTON AVE

Project Number: 1042

| Lab ID:           | L1100508-01 D  | Date Collected: | 01/10/11 11:07 |
|-------------------|----------------|-----------------|----------------|
| Client ID:        | SG-19          | Date Received:  | 01/13/11       |
| Sample Location:  | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:           | Soil_Vapor     |                 |                |
| Anaytical Method: | 48,TO-15       |                 |                |
| Analytical Date:  | 01/17/11 22:38 |                 |                |
| Analyst:          | BS             |                 |                |

|                                   |                      | ppbV | ppbV |         | ug/m3 |     |           | Dilution |
|-----------------------------------|----------------------|------|------|---------|-------|-----|-----------|----------|
| Parameter                         | Results              | RL   | MDL  | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air (Low Lev | vel) - Mansfield Lab | ľ    |      |         |       |     |           |          |
| Vinyl chloride                    | ND                   | 2.00 |      | ND      | 5.11  |     |           | 10       |
| 1,1-Dichloroethene                | ND                   | 2.00 |      | ND      | 7.92  |     |           | 10       |
| trans-1,2-Dichloroethene          | ND                   | 2.00 |      | ND      | 7.92  |     |           | 10       |
| 1,1-Dichloroethane                | ND                   | 2.00 |      | ND      | 8.09  |     |           | 10       |
| cis-1,2-Dichloroethene            | ND                   | 2.00 |      | ND      | 7.92  |     |           | 10       |
| 1,2-Dichloroethane                | ND                   | 2.00 |      | ND      | 8.09  |     |           | 10       |
| 1,1,1-Trichloroethane             | ND                   | 2.00 |      | ND      | 10.9  |     |           | 10       |
| Trichloroethene                   | ND                   | 2.00 |      | ND      | 10.7  |     |           | 10       |
| 1,2-Dibromoethane                 | ND                   | 2.00 |      | ND      | 15.4  |     |           | 10       |
| Tetrachloroethene                 | ND                   | 2.00 |      | ND      | 13.6  |     |           | 10       |
|                                   |                      |      |      |         |       |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 99         |           | 60-140                 |
| Bromochloromethane  | 89         |           | 60-140                 |
| chlorobenzene-d5    | 97         |           | 60-140                 |



L1100508

01/28/11

Lab Number:

Report Date:

Project Name: CFI - WASHINGTON AVE

Project Number: 1042

| Lab ID:           | L1100508-02 D  | Date Collected: | 01/10/11 12:10 |
|-------------------|----------------|-----------------|----------------|
| Client ID:        | SG-8           | Date Received:  | 01/13/11       |
| Sample Location:  | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:           | Soil_Vapor     |                 |                |
| Anaytical Method: | 48,TO-15       |                 |                |
| Analytical Date:  | 01/17/11 21:26 |                 |                |
| Analyst:          | BS             |                 |                |

|                                   |                      | ppbV  |     |         |      | ug/m3 |           | Dilution |
|-----------------------------------|----------------------|-------|-----|---------|------|-------|-----------|----------|
| Parameter                         | Results              | RL    | MDL | Results | RL   | MDL   | Qualifier | Factor   |
| Volatile Organics in Air (Low Lev | vel) - Mansfield Lab | )     |     |         |      |       |           |          |
| Vinyl chloride                    | ND                   | 0.400 |     | ND      | 1.02 |       |           | 2        |
| 1,1-Dichloroethene                | ND                   | 0.400 |     | ND      | 1.58 |       |           | 2        |
| trans-1,2-Dichloroethene          | ND                   | 0.400 |     | ND      | 1.58 |       |           | 2        |
| 1,1-Dichloroethane                | ND                   | 0.400 |     | ND      | 1.62 |       |           | 2        |
| cis-1,2-Dichloroethene            | ND                   | 0.400 |     | ND      | 1.58 |       |           | 2        |
| 1,2-Dichloroethane                | ND                   | 0.400 |     | ND      | 1.62 |       |           | 2        |
| 1,1,1-Trichloroethane             | ND                   | 0.400 |     | ND      | 2.18 |       |           | 2        |
| Trichloroethene                   | ND                   | 0.400 |     | ND      | 2.15 |       |           | 2        |
| 1,2-Dibromoethane                 | ND                   | 0.400 |     | ND      | 3.07 |       |           | 2        |
| Tetrachloroethene                 | ND                   | 0.400 |     | ND      | 2.71 |       |           | 2        |
|                                   |                      |       |     |         |      |       |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 102        |           | 60-140                 |
| Bromochloromethane  | 94         |           | 60-140                 |
| chlorobenzene-d5    | 106        |           | 60-140                 |



L1100508

01/28/11

Lab Number:

Report Date:

## Project Name: CFI - WASHINGTON AVE

Project Number: 1042

| Lab ID:           | L1100508-03 D  | Date Collected: | 01/10/11 11:47 |
|-------------------|----------------|-----------------|----------------|
| Client ID:        | SG-3           | Date Received:  | 01/13/11       |
| Sample Location:  | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:           | Soil_Vapor     |                 | -              |
| Anaytical Method: | 48,TO-15       |                 |                |
| Analytical Date:  | 01/17/11 23:50 |                 |                |
| Analyst:          | BS             |                 |                |

|                                  |                      | ppbV |     |         | ug/m3 |     |           | Dilution |
|----------------------------------|----------------------|------|-----|---------|-------|-----|-----------|----------|
| Parameter                        | Results              | RL   | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air (Low Le | vel) - Mansfield Lab | )    |     |         |       |     |           |          |
| Vinyl chloride                   | ND                   | 63.2 |     | ND      | 162.  |     |           | 316.2    |
| 1,1-Dichloroethene               | ND                   | 63.2 |     | ND      | 250.  |     |           | 316.2    |
| trans-1,2-Dichloroethene         | ND                   | 63.2 |     | ND      | 250.  |     |           | 316.2    |
| 1,1-Dichloroethane               | ND                   | 63.2 |     | ND      | 256.  |     |           | 316.2    |
| cis-1,2-Dichloroethene           | ND                   | 63.2 |     | ND      | 250.  |     |           | 316.2    |
| 1,2-Dichloroethane               | ND                   | 63.2 |     | ND      | 256.  |     |           | 316.2    |
| 1,1,1-Trichloroethane            | ND                   | 63.2 |     | ND      | 345.  |     |           | 316.2    |
| Trichloroethene                  | ND                   | 63.2 |     | ND      | 340.  |     |           | 316.2    |
| 1,2-Dibromoethane                | ND                   | 63.2 |     | ND      | 486.  |     |           | 316.2    |
| Tetrachloroethene                | ND                   | 63.2 |     | ND      | 428.  |     |           | 316.2    |
|                                  |                      |      |     |         |       |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 112        |           | 60-140                 |
| Bromochloromethane  | 93         |           | 60-140                 |
| chlorobenzene-d5    | 121        |           | 60-140                 |



L1100508

01/28/11

Lab Number:

Report Date:

## Project Name: CFI - WASHINGTON AVE

Project Number: 1042

| Lab ID:           | L1100508-04 D  | Date Collected: | 01/10/11 11:27 |
|-------------------|----------------|-----------------|----------------|
| Client ID:        | SG-11          | Date Received:  | 01/13/11       |
| Sample Location:  | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:           | Soil_Vapor     |                 |                |
| Anaytical Method: | 48,TO-15       |                 |                |
| Analytical Date:  | 01/17/11 23:14 |                 |                |
| Analyst:          | BS             |                 |                |

|                                  |                      | ppbV |     |         | ug/m3 |     | Dilution  |        |
|----------------------------------|----------------------|------|-----|---------|-------|-----|-----------|--------|
| Parameter                        | Results              | RL   | MDL | Results | RL    | MDL | Qualifier | Factor |
| Volatile Organics in Air (Low Le | vel) - Mansfield Lab | )    |     |         |       |     |           |        |
| Vinyl chloride                   | ND                   | 2.00 |     | ND      | 5.11  |     |           | 10     |
| 1,1-Dichloroethene               | ND                   | 2.00 |     | ND      | 7.92  |     |           | 10     |
| trans-1,2-Dichloroethene         | ND                   | 2.00 |     | ND      | 7.92  |     |           | 10     |
| 1,1-Dichloroethane               | ND                   | 2.00 |     | ND      | 8.09  |     |           | 10     |
| cis-1,2-Dichloroethene           | ND                   | 2.00 |     | ND      | 7.92  |     |           | 10     |
| 1,2-Dichloroethane               | ND                   | 2.00 |     | ND      | 8.09  |     |           | 10     |
| 1,1,1-Trichloroethane            | ND                   | 2.00 |     | ND      | 10.9  |     |           | 10     |
| Trichloroethene                  | ND                   | 2.00 |     | ND      | 10.7  |     |           | 10     |
| 1,2-Dibromoethane                | ND                   | 2.00 |     | ND      | 15.4  |     |           | 10     |
| Tetrachloroethene                | ND                   | 2.00 |     | ND      | 13.6  |     |           | 10     |
|                                  |                      |      |     |         |       |     |           |        |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 107        |           | 60-140                 |
| Bromochloromethane  | 88         |           | 60-140                 |
| chlorobenzene-d5    | 105        |           | 60-140                 |



L1100508

01/28/11

Lab Number:

Report Date:

## Project Name: CFI - WASHINGTON AVE

Project Number: 1042

| Lab ID:           | L1100508-05 D  | Date Collected: | 01/10/11 10:50 |
|-------------------|----------------|-----------------|----------------|
| Client ID:        | SG-1           | Date Received:  | 01/13/11       |
| Sample Location:  | PORTLAND, ME   | Field Prep:     | Not Specified  |
| Matrix:           | Soil_Vapor     |                 |                |
| Anaytical Method: | 48,TO-15       |                 |                |
| Analytical Date:  | 01/18/11 00:26 |                 |                |
| Analyst:          | BS             |                 |                |

|                                   |                      | ppbV |     |         | ug/m3 |     | Dilution  |        |
|-----------------------------------|----------------------|------|-----|---------|-------|-----|-----------|--------|
| Parameter                         | Results              | RL   | MDL | Results | RL    | MDL | Qualifier | Factor |
| Volatile Organics in Air (Low Lev | vel) - Mansfield Lab | ľ    |     |         |       |     |           |        |
| Vinyl chloride                    | ND                   | 62.1 |     | ND      | 159.  |     |           | 310.6  |
| 1,1-Dichloroethene                | ND                   | 62.1 |     | ND      | 246.  |     |           | 310.6  |
| trans-1,2-Dichloroethene          | ND                   | 62.1 |     | ND      | 246.  |     |           | 310.6  |
| 1,1-Dichloroethane                | ND                   | 62.1 |     | ND      | 251.  |     |           | 310.6  |
| cis-1,2-Dichloroethene            | ND                   | 62.1 |     | ND      | 246.  |     |           | 310.6  |
| 1,2-Dichloroethane                | ND                   | 62.1 |     | ND      | 251.  |     |           | 310.6  |
| 1,1,1-Trichloroethane             | ND                   | 62.1 |     | ND      | 339.  |     |           | 310.6  |
| Trichloroethene                   | ND                   | 62.1 |     | ND      | 334.  |     |           | 310.6  |
| 1,2-Dibromoethane                 | ND                   | 62.1 |     | ND      | 477.  |     |           | 310.6  |
| Tetrachloroethene                 | ND                   | 62.1 |     | ND      | 421.  |     |           | 310.6  |
|                                   |                      |      |     |         |       |     |           |        |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 121        |           | 60-140                 |
| Bromochloromethane  | 97         |           | 60-140                 |
| chlorobenzene-d5    | 134        |           | 60-140                 |



### Project Number: 1042

## Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 01/17/11 18:58

|                                      |               | ppbV       |          |              | ug/m3 |        |           |        |
|--------------------------------------|---------------|------------|----------|--------------|-------|--------|-----------|--------|
| Parameter                            | Results       | RL         | MDL      | Results      | RL    | MDL    | Qualifier | Factor |
| Volatile Organics in Air (Low Level) | - Mansfield L | ab for sar | mple(s): | 01-05 Batch: | WG45  | 1826-4 |           |        |
| Vinyl chloride                       | ND            | 0.200      |          | ND           | 0.511 |        |           | 1      |
| 1,1-Dichloroethene                   | ND            | 0.200      |          | ND           | 0.792 |        |           | 1      |
| trans-1,2-Dichloroethene             | ND            | 0.200      |          | ND           | 0.792 |        |           | 1      |
| 1,1-Dichloroethane                   | ND            | 0.200      |          | ND           | 0.809 |        |           | 1      |
| cis-1,2-Dichloroethene               | ND            | 0.200      |          | ND           | 0.792 |        |           | 1      |
| 1,2-Dichloroethane                   | ND            | 0.200      |          | ND           | 0.809 |        |           | 1      |
| 1,1,1-Trichloroethane                | ND            | 0.200      |          | ND           | 1.09  |        |           | 1      |
| Trichloroethene                      | ND            | 0.200      |          | ND           | 1.07  |        |           | 1      |
| 1,2-Dibromoethane                    | ND            | 0.200      |          | ND           | 1.54  |        |           | 1      |
| Tetrachloroethene                    | ND            | 0.200      |          | ND           | 1.36  |        |           | 1      |
|                                      |               |            |          |              |       |        |           |        |



# Lab Control Sample Analysis Batch Quality Control

CFI - WASHINGTON AVE **Project Name:** 

Project Number: 1042

Lab Number: L1100508 01/28/11

Report Date:

| arameter                                       | LCS<br>%Recovery | Qual         | LCSD<br>%Recove |        | Qual              | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|------------------------------------------------|------------------|--------------|-----------------|--------|-------------------|---------------------|-----|------|------------|
| olatile Organics in Air (Low Level) - Mansfiel | d Lab Associat   | ed sample(s) | ): 01-05        | Batch: | WG45 <sup>-</sup> | 1826-3              |     |      |            |
| Vinyl chloride                                 | 95               |              | -               |        |                   | 70-130              | -   |      |            |
| 1,1-Dichloroethene                             | 100              |              | -               |        |                   | 70-130              | -   |      |            |
| trans-1,2-Dichloroethene                       | 94               |              | -               |        |                   | 70-130              | -   |      |            |
| 1,1-Dichloroethane                             | 96               |              | -               |        |                   | 70-130              | -   |      |            |
| cis-1,2-Dichloroethene                         | 98               |              | -               |        |                   | 70-130              | -   |      |            |
| 1,2-Dichloroethane                             | 112              |              | -               |        |                   | 70-130              | -   |      |            |
| 1,1,1-Trichloroethane                          | 112              |              | -               |        |                   | 70-130              | -   |      |            |
| Trichloroethene                                | 98               |              | -               |        |                   | 70-130              | -   |      |            |
| 1,2-Dibromoethane                              | 105              |              | -               |        |                   | 70-130              | -   |      |            |
| Tetrachloroethene                              | 105              |              | -               |        |                   | 70-130              | -   |      |            |



## Lab Duplicate Analysis Batch Quality Control

Project Name: CFI - WASHINGTON AVE

Project Number: 1042

Lab Number: Report Date:

 Der:
 L1100508

 Ite:
 01/28/11

| arameter                                            | Native Sample               | Duplicate Sample  | Units        | RPD         | Qual     | RPD Limits      |
|-----------------------------------------------------|-----------------------------|-------------------|--------------|-------------|----------|-----------------|
| olatile Organics in Air (Low Level) - Mansfield Lab | Associated sample(s): 01-05 | QC Batch ID: WG45 | 51826-5 QC S | Sample: L11 | 00508-02 | Client ID: SG-8 |
| Vinyl chloride                                      | ND                          | ND                | ppbV         | NC          |          | 25              |
| 1,1-Dichloroethene                                  | ND                          | ND                | ppbV         | NC          |          | 25              |
| trans-1,2-Dichloroethene                            | ND                          | ND                | ppbV         | NC          |          | 25              |
| 1,1-Dichloroethane                                  | ND                          | ND                | ppbV         | NC          |          | 25              |
| cis-1,2-Dichloroethene                              | ND                          | ND                | ppbV         | NC          |          | 25              |
| 1,2-Dichloroethane                                  | ND                          | ND                | ppbV         | NC          |          | 25              |
| 1,1,1-Trichloroethane                               | ND                          | ND                | ppbV         | NC          |          | 25              |
| Trichloroethene                                     | ND                          | ND                | ppbV         | NC          |          | 25              |
| 1,2-Dibromoethane                                   | ND                          | ND                | ppbV         | NC          |          | 25              |
| Tetrachloroethene                                   | ND                          | ND                | ppbV         | NC          |          | 25              |
|                                                     |                             |                   |              |             |          |                 |



| Project Name:<br>Project Number:                                                                           | CFI - WASHINGTON AV<br>1042                                                         | /E             | Lab Number:<br>Report Date:                                            | L1100508<br>01/28/11                        |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------|---------------------------------------------|
|                                                                                                            |                                                                                     | SAMPLE RESULTS |                                                                        |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | L1100508-01<br>SG-19<br>PORTLAND, ME<br>Soil_Vapor<br>51,3C<br>01/22/11 15:43<br>RY | D              | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Method: | 01/10/11 11:07<br>01/13/11<br>Not Specified |

| Parameter                         | Result | Qualifier | Units | RL    | MDL | Dilution Factor |
|-----------------------------------|--------|-----------|-------|-------|-----|-----------------|
| Fixed Gases by GC - Mansfield Lab |        |           |       |       |     |                 |
| Oxygen                            | ND     |           | %     | 1.56  |     | 1.555           |
| Carbon Dioxide                    | 2.03   |           | %     | 0.156 |     | 1.555           |
| Methane                           | 87.6   |           | %     | 0.156 |     | 1.555           |

|                                                                                                            |                                                                                    |                | Serial_No:                                                             | 01281114:51                                 |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                              | CFI - WASHINGTON A                                                                 | VE             | Lab Number:                                                            | L1100508                                    |
| Project Number:                                                                                            | 1042                                                                               |                | Report Date:                                                           | 01/28/11                                    |
|                                                                                                            |                                                                                    | SAMPLE RESULTS |                                                                        |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | L1100508-02<br>SG-8<br>PORTLAND, ME<br>Soil_Vapor<br>51,3C<br>01/22/11 16:21<br>RY | D              | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Method: | 01/10/11 12:10<br>01/13/11<br>Not Specified |

| Parameter                         | Result | Qualifier | Units | RL    | MDL | <b>Dilution Factor</b> |
|-----------------------------------|--------|-----------|-------|-------|-----|------------------------|
| Fixed Gases by GC - Mansfield Lab |        |           |       |       |     |                        |
| Oxygen                            | 4.94   |           | %     | 1.96  |     | 1.963                  |
| Carbon Dioxide                    | 9.01   |           | %     | 0.196 |     | 1.963                  |
| Methane                           | ND     |           | %     | 0.196 |     | 1.963                  |



|                                                                                                            |                                                                                      |                | Serial_No:                                                             | 01281114:51                                 |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                              | CFI - WASHINGTON AVE                                                                 | E              | Lab Number:                                                            | L1100508                                    |
| Project Number:                                                                                            | 1042                                                                                 |                | Report Date:                                                           | 01/28/11                                    |
|                                                                                                            |                                                                                      | SAMPLE RESULTS |                                                                        |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | L1100508-03 E<br>SG-3<br>PORTLAND, ME<br>Soil_Vapor<br>51,3C<br>01/22/11 17:00<br>RY | )              | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Method: | 01/10/11 11:47<br>01/13/11<br>Not Specified |

| Parameter                         | Result | Qualifier | Units | RL    | MDL | <b>Dilution Factor</b> |
|-----------------------------------|--------|-----------|-------|-------|-----|------------------------|
| Fixed Gases by GC - Mansfield Lab |        |           |       |       |     |                        |
| Oxygen                            | ND     |           | %     | 1.58  |     | 1.578                  |
| Carbon Dioxide                    | 5.23   |           | %     | 0.158 |     | 1.578                  |
| Methane                           | 34.3   |           | %     | 0.158 |     | 1.578                  |



|                                                                                                            |                                                                                     |                | Serial_No:                                                             | 01281114:51                                 |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                              | CFI - WASHINGTON AV                                                                 | E              | Lab Number:                                                            | L1100508                                    |
| Project Number:                                                                                            | 1042                                                                                |                | Report Date:                                                           | 01/28/11                                    |
|                                                                                                            |                                                                                     | SAMPLE RESULTS |                                                                        |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | L1100508-04<br>SG-11<br>PORTLAND, ME<br>Soil_Vapor<br>51,3C<br>01/22/11 17:39<br>RY | D              | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Method: | 01/10/11 11:27<br>01/13/11<br>Not Specified |

| Parameter                         | Result | Qualifier | Units | RL    | MDL | <b>Dilution Factor</b> |
|-----------------------------------|--------|-----------|-------|-------|-----|------------------------|
| Fixed Gases by GC - Mansfield Lab |        |           |       |       |     |                        |
| Oxygen                            | 2.80   |           | %     | 1.71  |     | 1.707                  |
| Carbon Dioxide                    | 1.05   |           | %     | 0.171 |     | 1.707                  |
| Methane                           | 73.0   |           | %     | 0.171 |     | 1.707                  |



|                                                                                                            |                                                                                      | Serial_N                                                              | o:01281114:51                                     |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|
| Project Name:                                                                                              | CFI - WASHINGTON AVE                                                                 | Lab Number:                                                           | L1100508                                          |
| Project Number:                                                                                            | 1042                                                                                 | Report Date:                                                          | 01/28/11                                          |
|                                                                                                            | SA                                                                                   | AMPLE RESULTS                                                         |                                                   |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | L1100508-05 D<br>SG-1<br>PORTLAND, ME<br>Soil_Vapor<br>51,3C<br>01/22/11 18:18<br>RY | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Method | 01/10/11 10:50<br>01/13/11<br>Not Specified<br>d: |

| Parameter                         | Result | Qualifier | Units | RL    | MDL | <b>Dilution Factor</b> |
|-----------------------------------|--------|-----------|-------|-------|-----|------------------------|
| Fixed Gases by GC - Mansfield Lab |        |           |       |       |     |                        |
| Oxygen                            | ND     |           | %     | 1.55  |     | 1.55                   |
| Carbon Dioxide                    | 3.71   |           | %     | 0.155 |     | 1.55                   |
| Methane                           | 59.0   |           | %     | 0.155 |     | 1.55                   |



| Project Name:         | CFI - WASHINGTON AVE | Lab Number:  | L1100508 |  |  |  |
|-----------------------|----------------------|--------------|----------|--|--|--|
| Project Number:       | 1042                 | Report Date: | 01/28/11 |  |  |  |
| Mathed Plank Analysia |                      |              |          |  |  |  |

#### Method Blank Analysis Batch Quality Control

Analytical Method:51,3CAnalytical Date:01/22/11 15:13Analyst:RY

| Parameter                         | Result       | Qualifier | Units  | s RL       | MDL |
|-----------------------------------|--------------|-----------|--------|------------|-----|
| Fixed Gases by GC - Mansfield Lab | for sample(s | s): 01-05 | Batch: | WG452486-2 |     |
| Oxygen                            | ND           |           | %      | 1.00       |     |
| Carbon Dioxide                    | ND           |           | %      | 0.100      |     |
| Methane                           | ND           |           | %      | 0.100      |     |



# Lab Control Sample Analysis Batch Quality Control

CFI - WASHINGTON AVE **Project Name:** 

Project Number: 1042

Lab Number: L1100508 Report Date: 01/28/11

| Parameter                         | LCS<br>%Recovery      | Qual       | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|-----------------------------------|-----------------------|------------|-------------------|------|---------------------|-----|------|------------|
| Fixed Gases by GC - Mansfield Lab | Associated sample(s): | 01-05 Bate | ch: WG452486-     | 1    |                     |     |      |            |
| Oxygen                            | 94                    |            | -                 |      | 80-120              | -   |      |            |
| Carbon Dioxide                    | 108                   |            | -                 |      | 80-120              | -   |      |            |
| Methane                           | 115                   |            | -                 |      | 80-120              | -   |      |            |



#### Lab Duplicate Analysis Batch Quality Control

Project Name: CFI - WASHINGTON AVE

Project Number: 1042

Lab Number:

L1100508 01/28/11

Native Sample **Duplicate Sample** Units RPD Qual **RPD** Limits Parameter Fixed Gases by GC - Mansfield Lab Associated sample(s): 01-05 QC Batch ID: WG452486-3 QC Sample: L1100508-01 Client ID: SG-19 Oxygen ND ND % NC 5 Carbon Dioxide 2.03 2.04 % 0 5 Methane 87.6 87.9 % 0 5 Fixed Gases by GC - Mansfield Lab Associated sample(s): 01-05 QC Batch ID: WG452486-4 QC Sample: L1100508-02 Client ID: SG-8 4.94 5.07 % 5 Oxygen 3 Carbon Dioxide 9.01 9.00 % 0 5 ND % NC 5 Methane ND Fixed Gases by GC - Mansfield Lab Associated sample(s): 01-05 QC Batch ID: WG452486-5 QC Sample: L1100508-03 Client ID: SG-3 ND ND % NC 5 Oxygen Carbon Dioxide 5.23 5.23 % 0 5 34.3 34.3 % 0 5 Methane Fixed Gases by GC - Mansfield Lab Associated sample(s): 01-05 QC Batch ID: WG452486-6 QC Sample: L1100508-04 Client ID: SG-11 5 Oxygen 2.80 2.93 % 5 Carbon Dioxide 5 1.05 1.04 % 1 73.0 5 Methane 72.8 % 0



# Lab Duplicate Analysis Batch Quality Control

Project Name: CFI - WASHINGTON AVE

 Lab Number:
 L1100508

 Report Date:
 01/28/11

Project Number: 1042

| Parameter                           | Native Sam                   | ple Duplicate Sar      | nple Units       | RPD             | RPD Limits |
|-------------------------------------|------------------------------|------------------------|------------------|-----------------|------------|
| Fixed Gases by GC - Mansfield Lab A | ssociated sample(s): 01-05 Q | C Batch ID: WG452486-7 | QC Sample: L1100 | 508-05 Client I | D: SG-1    |
| Oxygen                              | ND                           | ND                     | %                | NC              | 5          |
| Carbon Dioxide                      | 3.71                         | 3.71                   | %                | 0               | 5          |
| Methane                             | 59.0                         | 59.0                   | %                | 0               | 5          |



| Project Name:<br>Project Number:                                                                                                                                                                                                                                                                                                                                                            | CFI - WASHINGTON<br>1042                                                               |               | RESULTS       |       | Lab Numb<br>Report Da                      |     | L1100508<br>01/28/11                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------|---------------|-------|--------------------------------------------|-----|---------------------------------------------|
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst:                                                                                                                                                                                                                                                                                  | L1100508-01 D<br>SG-19<br>PORTLAND, ME<br>Soil_Vapor<br>96,APH<br>01/17/11 22:38<br>BS |               |               |       | Date Collect<br>Date Receiv<br>Field Prep: |     | 01/10/11 11:07<br>01/13/11<br>Not Specified |
|                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        | Quality Contr | ol Informatio | on    |                                            |     |                                             |
| Sample Type:<br>Sample Container Type:<br>Sampling Flow Controller:<br>Sampling Zone:<br>Sampling Flow Meter RPD of pre & post-sampling calibration check:<br>Were all QA/QC procedures REQUIRED by the method followed?<br>Were all performance/acceptance standards for the required procedures achieve<br>Were significant modifications made to the method as specified in Sect 11.1.2? |                                                                                        |               |               |       | Ca<br>Mi<br>Ur                             | s   | •                                           |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                        | Result        | Qualifier     | Units | RL                                         | MDL | Dilution Factor                             |
| Petroleum Hydroca                                                                                                                                                                                                                                                                                                                                                                           | arbons in Air - Mansf                                                                  | ield Lab      |               |       |                                            |     |                                             |
| 1,3-Butadiene                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        | ND            |               | ug/m3 | 20                                         |     | 10                                          |
| Methyl tert butyl ether                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        | ND            |               | ug/m3 | 20                                         |     | 10                                          |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        | 43            |               | ug/m3 | 20                                         |     | 10                                          |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        | ND            |               | ug/m3 | 20                                         |     | 10                                          |
| C5-C8 Aliphatics, Adjust                                                                                                                                                                                                                                                                                                                                                                    | ed                                                                                     | 52000         |               | ug/m3 | 120                                        |     | 10                                          |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        | ND            |               | ug/m3 | 20                                         |     | 10                                          |
| p/m-Xylene                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        | ND            |               | ug/m3 | 40                                         |     | 10                                          |

| C9-C12 Aliphatics, Adjusted<br>C9-C10 Aromatics Total |                     | 3700       | ug/m3     | 140                    |
|-------------------------------------------------------|---------------------|------------|-----------|------------------------|
|                                                       |                     | 420        | ug/m3     | 100                    |
|                                                       | Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|                                                       | 1,4-Difluorobenzene | 125        |           | 50-200                 |
|                                                       | Bromochloromethane  | 96         |           | 50-200                 |

83

ND

ND



10

10

10

10

20

20

50-200

--

--

--

--

ug/m3

ug/m3

Serial\_No:01281114:51

o-Xylene

Naphthalene

Chlorobenzene-d5

| Project Name:<br>Project Number:<br>Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst:                                                  | CFI - WASHINGT<br>1042<br>L1100508-02<br>SG-8<br>PORTLAND, ME<br>Soil_Vapor<br>96,APH<br>01/17/11 21:26<br>BS | -                                             | RESULTS   |       | Lab Numb<br>Report Da<br>Date Collect<br>Date Receiv<br>Field Prep: | i <b>te:</b><br>:ed:                                                           | L1100508<br>01/28/11<br>01/10/11 12:10<br>01/13/11<br>Not Specified |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|-------|---------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Sample Type:<br>Sample Container Type:<br>Sampling Flow Controlle<br>Sampling Zone:<br>Sampling Flow Meter RF<br>Were all QA/QC procedu<br>Were all performance/ac<br>Were significant modifica | r:<br>PD of pre & post-samplin<br>ures REQUIRED by the i<br>cceptance standards for t                         | method followed?<br>the required procedures a | achieved? | on    | C<br>M<br>U<br><=<br>Yı                                             | 00 ml/minute<br>anister - 2.7<br>lechanical<br>nknown<br>=20%<br>es<br>es<br>o |                                                                     |
| Parameter                                                                                                                                                                                       |                                                                                                               | Result                                        | Qualifier | Units | RL                                                                  | MDL                                                                            | Dilution Factor                                                     |
| Petroleum Hydroca                                                                                                                                                                               | arbons in Air - Mar                                                                                           | nsfield Lab                                   |           |       |                                                                     |                                                                                |                                                                     |
| 1,3-Butadiene                                                                                                                                                                                   |                                                                                                               | ND                                            |           | ug/m3 | 4.0                                                                 |                                                                                | 2                                                                   |
| Methyl tert butyl ether                                                                                                                                                                         |                                                                                                               | ND                                            |           | ug/m3 | 4.0                                                                 |                                                                                | 2                                                                   |
| Benzene                                                                                                                                                                                         |                                                                                                               | ND                                            |           | ug/m3 | 4.0                                                                 |                                                                                | 2                                                                   |
| Toluene                                                                                                                                                                                         |                                                                                                               | ND                                            |           | ug/m3 | 4.0                                                                 |                                                                                | 2                                                                   |
| C5-C8 Aliphatics, Adjust                                                                                                                                                                        | ed                                                                                                            | ND                                            |           | ug/m3 | 24                                                                  |                                                                                | 2                                                                   |
| Ethylbenzene                                                                                                                                                                                    |                                                                                                               | ND                                            |           | ug/m3 | 4.0                                                                 |                                                                                | 2                                                                   |
| p/m-Xylene                                                                                                                                                                                      |                                                                                                               | ND                                            |           | ug/m3 | 8.0                                                                 |                                                                                | 2                                                                   |
| o-Xylene                                                                                                                                                                                        |                                                                                                               | ND                                            |           | ug/m3 | 4.0                                                                 |                                                                                | 2                                                                   |

| % Recovery | Qualifier | Acceptance<br>Criteria |
|------------|-----------|------------------------|
| 129        |           | 50-200                 |
| 94         |           | 50-200                 |
| 95         |           | 50-200                 |
|            | 129<br>94 | 129<br>94              |

ND

ND

ND

ug/m3

ug/m3

ug/m3

4.0

28

20

--

--

--



2

2

2

Serial\_No:01281114:51

Naphthalene

C9-C12 Aliphatics, Adjusted

C9-C10 Aromatics Total

| Project Name: CFI - WASHINGTON AVE                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |               |               |       | Lab Numb                                   | er:                                                      | L1100508                                    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------|---------------|-------|--------------------------------------------|----------------------------------------------------------|---------------------------------------------|--|
| Project Number:                                                                                                                                                                                                                                                                                                                                                                               | 1042                                                                                |               |               |       | Report Da                                  | te:                                                      | 01/28/11                                    |  |
| -                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     | SAMPLE        | RESULTS       |       | -                                          |                                                          |                                             |  |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst:                                                                                                                                                                                                                                                                                    | L1100508-03<br>SG-3<br>PORTLAND, ME<br>Soil_Vapor<br>96,APH<br>01/17/11 23:50<br>BS | D             |               |       | Date Collect<br>Date Receiv<br>Field Prep: |                                                          | 01/10/11 11:47<br>01/13/11<br>Not Specified |  |
|                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     | Quality Contr | ol Informatio | on    |                                            |                                                          |                                             |  |
| Sample Type:<br>Sample Container Type:<br>Sampling Flow Controller:<br>Sampling Zone:<br>Sampling Flow Meter RPD of pre & post-sampling calibration check:<br>Were all QA/QC procedures REQUIRED by the method followed?<br>Were all performance/acceptance standards for the required procedures achieved?<br>Were significant modifications made to the method as specified in Sect 11.1.2? |                                                                                     |               |               |       | C;<br>M<br>Ui<br><=<br>Ye                  | anister - 2.7<br>echanical<br>nknown<br>=20%<br>es<br>es | e Composite<br>Liter                        |  |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     | Result        | Qualifier     | Units | RL                                         | MDL                                                      | Dilution Factor                             |  |
| Petroleum Hydroca                                                                                                                                                                                                                                                                                                                                                                             | arbons in Air - Ma                                                                  | nsfield Lab   |               |       |                                            |                                                          |                                             |  |
| 1,3-Butadiene                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                     | ND            |               | ug/m3 | 640                                        |                                                          | 320                                         |  |
| Methyl tert butyl ether                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     | ND            |               | ug/m3 | 640                                        |                                                          | 320                                         |  |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     | 6100          |               | ug/m3 | 640                                        |                                                          | 320                                         |  |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     | ND            |               | ug/m3 | 640                                        |                                                          | 320                                         |  |
| C5-C8 Aliphatics, Adjust                                                                                                                                                                                                                                                                                                                                                                      | ed                                                                                  | 5000000       |               | ug/m3 | 3800                                       |                                                          | 320                                         |  |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     | ND            |               | ug/m3 | 640                                        |                                                          | 320                                         |  |

| C5-C8 Aliphatics, Adjusted  | 500000 | ug/m3 | 3800 | <br>320 |
|-----------------------------|--------|-------|------|---------|
| Ethylbenzene                | ND     | ug/m3 | 640  | <br>320 |
| p/m-Xylene                  | ND     | ug/m3 | 1300 | <br>320 |
| o-Xylene                    | ND     | ug/m3 | 640  | <br>320 |
| Naphthalene                 | ND     | ug/m3 | 640  | <br>320 |
| C9-C12 Aliphatics, Adjusted | 250000 | ug/m3 | 4500 | <br>320 |
| C9-C10 Aromatics Total      | 8100   | ug/m3 | 3200 | <br>320 |
|                             |        |       |      |         |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 141        |           | 50-200                 |
| Bromochloromethane  | 104        |           | 50-200                 |
| Chlorobenzene-d5    | 96         |           | 50-200                 |



| Project Name:<br>Project Number:<br>Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst:                                                                                                                                                                                                                                                                                                                        | CFI - WASHINGT<br>1042<br>L1100508-04<br>SG-11<br>PORTLAND, ME<br>Soil_Vapor<br>96,APH<br>01/17/11 23:14<br>BS | <b>SAMPLE</b> | RESULTS   |       | Lab Numb<br>Report Da<br>Date Collect<br>Date Receiv<br>Field Prep: | <b>ite:</b><br>ted: | L1100508<br>01/28/11<br>01/10/11 11:27<br>01/13/11<br>Not Specified |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|-----------|-------|---------------------------------------------------------------------|---------------------|---------------------------------------------------------------------|
| Quality Control InformationSample Type:200 ml/minute CompositeSample Container Type:Canister - 2.7 LiterSampling Flow Controller:MechanicalSampling Zone:UnknownSampling Flow Meter RPD of pre & post-sampling calibration check:<=20%Were all QA/QC procedures REQUIRED by the method followed?YesWere all performance/acceptance standards for the required procedures achieved?YesWere significant modifications made to the method as specified in Sect 11.1.2?No |                                                                                                                |               |           |       |                                                                     |                     |                                                                     |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                | Result        | Qualifier | Units | RL                                                                  | MDL                 | Dilution Factor                                                     |
| Petroleum Hydroca                                                                                                                                                                                                                                                                                                                                                                                                                                                     | arbons in Air - Ma                                                                                             | nsfield Lab   |           |       |                                                                     |                     |                                                                     |
| 1,3-Butadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                | ND            |           | ug/m3 | 20                                                                  |                     | 10                                                                  |
| Methyl tert butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | ND            |           | ug/m3 | 20                                                                  |                     | 10                                                                  |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | 2900          |           | ug/m3 | 20                                                                  |                     | 10                                                                  |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | 23            |           | ug/m3 | 20                                                                  |                     | 10                                                                  |
| C5-C8 Aliphatics, Adjust                                                                                                                                                                                                                                                                                                                                                                                                                                              | ed                                                                                                             | 41000         |           | ug/m3 | 120                                                                 |                     | 10                                                                  |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                | ND            |           | ug/m3 | 20                                                                  |                     | 10                                                                  |
| p/m-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                | 62            |           | ug/m3 | 40                                                                  |                     | 10                                                                  |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                | 52            |           | ug/m3 | 20                                                                  |                     | 10                                                                  |

|                     |            |           | Acceptance |
|---------------------|------------|-----------|------------|
| Internal Standard   | % Recovery | Qualifier | Criteria   |
| 1,4-Difluorobenzene | 136        |           | 50-200     |
| Bromochloromethane  | 100        |           | 50-200     |
| Chlorobenzene-d5    | 86         |           | 50-200     |

ND

6700

290



10

10

10

20

140

100

--

--

--

ug/m3

ug/m3

ug/m3

Serial\_No:01281114:51

Naphthalene

C9-C12 Aliphatics, Adjusted

C9-C10 Aromatics Total

| Project Name: CFI - WASHINGTON AVE                                                                         |                                                                                       |                                                      |               |       | Lab Numb                | ber:       | L1100508                                    |  |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------|---------------|-------|-------------------------|------------|---------------------------------------------|--|
| Project Number:                                                                                            | 1042                                                                                  |                                                      |               |       | Report Da               | 01/28/11   |                                             |  |
|                                                                                                            |                                                                                       | SAMPLE                                               | RESULTS       |       |                         |            |                                             |  |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | L1100508-05 [<br>SG-1<br>PORTLAND, ME<br>Soil_Vapor<br>96,APH<br>01/18/11 00:26<br>BS | Date Received:<br>LAND, ME Field Prep:<br>Vapor<br>H |               |       |                         |            | 01/10/11 10:50<br>01/13/11<br>Not Specified |  |
|                                                                                                            |                                                                                       | Quality Contro                                       | ol Informatio | on    |                         |            |                                             |  |
| Sample Type:                                                                                               |                                                                                       |                                                      |               |       | 200 ml/minute Composite |            |                                             |  |
| Sample Container Type:                                                                                     |                                                                                       |                                                      |               |       | Canister - 2.7 Liter    |            |                                             |  |
| Sampling Flow Controller                                                                                   | r:                                                                                    |                                                      |               |       |                         | lechanical |                                             |  |
| Sampling Zone:                                                                                             |                                                                                       | a d'han Cara al sa la                                |               |       | Unknown                 |            |                                             |  |
|                                                                                                            | D of pre & post-sampling                                                              |                                                      |               |       | <=20%                   |            |                                             |  |
| •                                                                                                          | res REQUIRED by the m<br>ceptance standards for th                                    |                                                      | chiovod?      |       | Yes<br>Yes              |            |                                             |  |
|                                                                                                            | ations made to the method                                                             |                                                      |               |       | I<br>N                  |            |                                             |  |
|                                                                                                            |                                                                                       |                                                      |               |       |                         |            |                                             |  |
| Parameter                                                                                                  |                                                                                       | Result                                               | Qualifier     | Units | RL                      | MDL        | Dilution Factor                             |  |
| Petroleum Hydroca                                                                                          | arbons in Air - Man                                                                   | sfield Lab                                           |               |       |                         |            |                                             |  |
| 1,3-Butadiene                                                                                              |                                                                                       | ND                                                   |               | ug/m3 | 620                     |            | 310                                         |  |
| Methyl tert butyl ether                                                                                    |                                                                                       | ND                                                   |               | ug/m3 | 620                     |            | 310                                         |  |
| Benzene                                                                                                    |                                                                                       | 20000                                                |               | ug/m3 | 620                     |            | 310                                         |  |
| Toluene                                                                                                    |                                                                                       | ND                                                   |               | ug/m3 | 620                     |            | 310                                         |  |
| C5-C8 Aliphatics, Adjuste                                                                                  | ed                                                                                    | 4500000                                              |               | ug/m3 | 3700                    |            | 310                                         |  |

| Toluene                     | ND      | ug/m3 | 620  | <br>310 |
|-----------------------------|---------|-------|------|---------|
| C5-C8 Aliphatics, Adjusted  | 4500000 | ug/m3 | 3700 | <br>310 |
| Ethylbenzene                | 3800    | ug/m3 | 620  | <br>310 |
| p/m-Xylene                  | ND      | ug/m3 | 1200 | <br>310 |
| o-Xylene                    | ND      | ug/m3 | 620  | <br>310 |
| Naphthalene                 | ND      | ug/m3 | 620  | <br>310 |
| C9-C12 Aliphatics, Adjusted | 420000  | ug/m3 | 4300 | <br>310 |
| C9-C10 Aromatics Total      | 9300    | ug/m3 | 3100 | <br>310 |
|                             |         |       |      |         |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 153        |           | 50-200                 |
| Bromochloromethane  | 112        |           | 50-200                 |
| Chlorobenzene-d5    | 120        |           | 50-200                 |



 Project Name:
 CFI - WASHINGTON AVE
 Lab Number:
 L1100508

 Project Number:
 1042
 Report Date:
 01/28/11

## Method Blank Analysis Batch Quality Control

Analytical Method:96,APHAnalytical Date:01/17/11 18:58Analyst:BS

| arameter                       | Result        | Qualifier        | Units | RL           | MDL   |
|--------------------------------|---------------|------------------|-------|--------------|-------|
| etroleum Hydrocarbons in Air - | Mansfield Lab | o for sample(s): | 01-05 | Batch: WG451 | 825-4 |
| 1,3-Butadiene                  | ND            |                  | ug/m3 | 2.0          |       |
| Methyl tert butyl ether        | ND            |                  | ug/m3 | 2.0          |       |
| Benzene                        | ND            |                  | ug/m3 | 2.0          |       |
| Toluene                        | ND            |                  | ug/m3 | 2.0          |       |
| C5-C8 Aliphatics, Adjusted     | ND            |                  | ug/m3 | 12           |       |
| Ethylbenzene                   | ND            |                  | ug/m3 | 2.0          |       |
| p/m-Xylene                     | ND            |                  | ug/m3 | 4.0          |       |
| o-Xylene                       | ND            |                  | ug/m3 | 2.0          |       |
| Naphthalene                    | ND            |                  | ug/m3 | 2.0          |       |
| C9-C12 Aliphatics, Adjusted    | ND            |                  | ug/m3 | 14           |       |
| C9-C10 Aromatics Total         | ND            |                  | ug/m3 | 10           |       |



# Lab Control Sample Analysis Batch Quality Control

CFI - WASHINGTON AVE **Project Name:** 

Project Number: 1042

Lab Number: L1100508 Report Date: 01/28/11

| Parameter                                     | LCS<br>%Recovery | Qual      |       | .CSD<br>ecovery |            | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|-----------------------------------------------|------------------|-----------|-------|-----------------|------------|---------------------|-----|------|------------|
| Petroleum Hydrocarbons in Air - Mansfield Lat | o Associated s   | ample(s): | 01-05 | Batch:          | WG451825-3 |                     |     |      |            |
| 1,3-Butadiene                                 | 88               |           |       | -               |            | 70-130              | -   |      |            |
| Methyl tert butyl ether                       | 96               |           |       | -               |            | 70-130              | -   |      |            |
| Benzene                                       | 107              |           |       | -               |            | 70-130              | -   |      |            |
| Toluene                                       | 87               |           |       | -               |            | 70-130              | -   |      |            |
| C5-C8 Aliphatics, Adjusted                    | 88               |           |       | -               |            | 70-130              | -   |      |            |
| Ethylbenzene                                  | 113              |           |       | -               |            | 70-130              | -   |      |            |
| p/m-Xylene                                    | 114              |           |       | -               |            | 70-130              | -   |      |            |
| o-Xylene                                      | 114              |           |       | -               |            | 70-130              | -   |      |            |
| Naphthalene                                   | 121              |           |       | -               |            | 50-150              | -   |      |            |
| C9-C12 Aliphatics, Adjusted                   | 105              |           |       | -               |            | 70-130              | -   |      |            |
| C9-C10 Aromatics Total                        | 108              |           |       | -               |            | 70-130              | -   |      |            |



#### Lab Duplicate Analysis Batch Quality Control

Project Name: CFI - WASHINGTON AVE

Project Number: 1042

JIIIOI

 Lab Number:
 L1100508

 Report Date:
 01/28/11

Parameter Native Sample **Duplicate Sample** Units RPD Qual **RPD** Limits Petroleum Hydrocarbons in Air - Mansfield Lab Associated sample(s): 01-05 QC Batch ID: WG451825-5 QC Sample: L1100508-02 Client ID: SG-8 1,3-Butadiene ND ND ug/m3 NC 30 Methyl tert butyl ether ug/m3 NC ND ND 30 Benzene ND ND ug/m3 NC 30 Toluene ND ND ug/m3 NC 30 C5-C8 Aliphatics, Adjusted 30 ND ND ug/m3 NC NC Ethylbenzene ND ND ug/m3 30 p/m-Xylene NC 30 ND ND ug/m3 ug/m3 30 o-Xylene ND ND NC Naphthalene ug/m3 ND ND NC 30 C9-C12 Aliphatics, Adjusted ND ND ug/m3 NC 30 C9-C10 Aromatics Total ND ND ug/m3 NC 30



### Project Name: CFI - WASHINGTON AVE

Serial\_No:01281114:51 Lab Number: L1100508

**Report Date:** 01/28/11

Project Number: 1042

### Canister and Flow Controller Information

| Client ID | Media ID                                                                                                           | Media Type                                                                                                                                                                                                       | Cleaning<br>Batch ID                                                                                                                                                                                                                                                                                                                                                                                                                  | Initial<br>Pressure<br>(in. Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Flow Out<br>mL/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Flow In<br>mL/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | % RSD                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SG-19     | 0010                                                                                                               | #90 SV                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SG-19     | 552                                                                                                                | 2.7L Can                                                                                                                                                                                                         | L1019883                                                                                                                                                                                                                                                                                                                                                                                                                              | -28.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SG-8      | 0161                                                                                                               | #90 SV                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SG-8      | 1724                                                                                                               | 2.7L Can                                                                                                                                                                                                         | L1019883                                                                                                                                                                                                                                                                                                                                                                                                                              | -29.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SG-3      | 0449                                                                                                               | #90 SV                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SG-3      | 318                                                                                                                | 2.7L Can                                                                                                                                                                                                         | L1019883                                                                                                                                                                                                                                                                                                                                                                                                                              | -29.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SG-11     | 0330                                                                                                               | #90 SV                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SG-11     | 247                                                                                                                | 2.7L Can                                                                                                                                                                                                         | L1019883                                                                                                                                                                                                                                                                                                                                                                                                                              | -29.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SG-1      | 0263                                                                                                               | #90 SV                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SG-1      | 474                                                                                                                | 2.7L Can                                                                                                                                                                                                         | L1019883                                                                                                                                                                                                                                                                                                                                                                                                                              | -29.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | SG-19         SG-19         SG-8         SG-8         SG-3         SG-11         SG-11         SG-11         SG-11 | SG-19       0010         SG-19       552         SG-8       0161         SG-8       1724         SG-3       0449         SG-3       318         SG-11       0330         SG-11       247         SG-1       0263 | Client ID         Media ID           SG-19         0010         #90 SV           SG-19         552         2.7L Can           SG-8         0161         #90 SV           SG-8         1724         2.7L Can           SG-3         0449         #90 SV           SG-3         0449         #90 SV           SG-31         0330         #90 SV           SG-11         247         2.7L Can           SG-1         0263         #90 SV | Client ID         Media ID         Batch ID           SG-19         0010         #90 SV           SG-19         552         2.7L Can         L1019883           SG-8         0161         #90 SV         1000           SG-8         0161         #90 SV         1000           SG-8         0161         #90 SV         1000           SG-8         1724         2.7L Can         L1019883           SG-3         0449         #90 SV         1000           SG-3         0449         #90 SV         1000           SG-3         0330         #90 SV         1000           SG-11         247         2.7L Can         L1019883           SG-1         0263         #90 SV         1000 | Client ID         Media ID         Batch ID         (in. Hg)           SG-19         0010         #90 SV         -           SG-19         552         2.7L Can         L1019883         -28.9           SG-8         0161         #90 SV         -         -           SG-3         0449         #90 SV         -         -           SG-3         0449         #90 SV         -         -           SG-11         0330         #90 SV         -         -           SG-11         247         2.7L Can         L1019883         -29.3           SG-1         0263         #90 SV         -         - | Client ID         Media ID         Media Type         Cleaning Batch ID         Pressure (n. Hg)         on Receipt (n. Hg)           SG-19         0010         #90 SV         -         -         -           SG-19         552         2.7L Can         L1019883         -28.9         -2.9           SG-3         0161         #90 SV         -         -         -           SG-3         0449         #90 SV         -         -         -           SG-3         0449         #90 SV         -         -         -           SG-3         0330         #90 SV         -         -         -           SG-11         0330         #90 SV         -         -         -           SG-11         0263         #90 SV         -         -         -           SG-1         0263         #90 SV         -         -         - | Client IDMedia 1DMedia TypeCleaning<br>Batch IDPressure<br>(in. Hg)on Receipt<br>mL/minSG-190010#90 SV200SG-195522.7 L CanL1019883-28.9-2.9-SG-80161#90 SV200SG-80161#90 SV200SG-817242.7 L CanL1019883-29.3-3.8-SG-30449#90 SV200SG-30449#90 SV200SG-30300#90 SV200SG-1103302.7 L CanL1019883-29.3-3.6-SG-110330#90 SV200SG-110263#90 SV200SG-110263#90 SV200SG-110263#90 SVSG-11204SG-110263#90 SVSG-110263#90 SVSG-110263#90 SVSG-110263#90 SVSG-110263#90 SVSG-11 <t< td=""><td>Client IDMedia IDMedia TypeCleaning<br/>Batch IDPressure<br/>(in. Hg)flow out<br/>mL/miFlow out<br/>mL/miSG-190010#90 SV200208SG-195522.7L CanL1019883-28.9-2.9SG-80161#90 SV200207SG-80161#90 SV200207SG-817242.7L CanL1019883-29.3-3.8SG-30449#90 SV200206SG-30449#90 SV200206SG-30449#90 SV200206SG-110330#90 SV200205SG-110330#90 SV200205SG-110263#90 SVSG-11207207SG-112063#90 SVSG-112063#90 SVSG-112063#90 SVSG-110263#90 SVSG-110263#90 SV&lt;</td></t<> | Client IDMedia IDMedia TypeCleaning<br>Batch IDPressure<br>(in. Hg)flow out<br>mL/miFlow out<br>mL/miSG-190010#90 SV200208SG-195522.7L CanL1019883-28.9-2.9SG-80161#90 SV200207SG-80161#90 SV200207SG-817242.7L CanL1019883-29.3-3.8SG-30449#90 SV200206SG-30449#90 SV200206SG-30449#90 SV200206SG-110330#90 SV200205SG-110330#90 SV200205SG-110263#90 SVSG-11207207SG-112063#90 SVSG-112063#90 SVSG-112063#90 SVSG-110263#90 SVSG-110263#90 SV< |



# **Air Volatiles Can Certification**

| Project Name:   |                                    | Lab Number:  | L1019883 |
|-----------------|------------------------------------|--------------|----------|
| Project Number: | CANISTER QC BAT                    | Report Date: | 01/28/11 |
|                 | Air Canister Certification Results |              |          |

| Lab ID:           | L1019883-01     | Date Collected: | 12/13/10 00:00 |
|-------------------|-----------------|-----------------|----------------|
| Client ID:        | CAN 393 SHELF 3 | Date Received:  | 12/13/10       |
| Sample Location:  |                 | Field Prep:     | Not Specified  |
| Matrix:           | Air             |                 | ·              |
| Anaytical Method: | 48,TO-15        |                 |                |
| Analytical Date:  | 12/15/10 18:16  |                 |                |
| Analyst:          | BS              |                 |                |

|                                      | ppbV            |       |     | ug/m3   |       |     |           | Dilution |
|--------------------------------------|-----------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                            | Results         | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| /olatile Organics in Air (Low Level) | - Mansfield Lab |       |     |         |       |     |           |          |
| Chlorodifluoromethane                | ND              | 0.200 |     | ND      | 0.707 |     |           | 1        |
| Propylene                            | ND              | 0.200 |     | ND      | 0.344 |     |           | 1        |
| Propane                              | ND              | 0.200 |     | ND      | 0.606 |     |           | 1        |
| Dichlorodifluoromethane              | ND              | 0.200 |     | ND      | 0.988 |     |           | 1        |
| Chloromethane                        | ND              | 0.200 |     | ND      | 0.413 |     |           | 1        |
| Freon-114                            | ND              | 0.200 |     | ND      | 1.40  |     |           | 1        |
| Methanol                             | ND              | 5.00  |     | ND      | 6.55  |     |           | 1        |
| /inyl chloride                       | ND              | 0.200 |     | ND      | 0.511 |     |           | 1        |
| ,3-Butadiene                         | ND              | 0.200 |     | ND      | 0.442 |     |           | 1        |
| Butane                               | ND              | 0.200 |     | ND      | 0.475 |     |           | 1        |
| Bromomethane                         | ND              | 0.200 |     | ND      | 0.776 |     |           | 1        |
| Chloroethane                         | ND              | 0.200 |     | ND      | 0.527 |     |           | 1        |
| Ethanol                              | ND              | 2.50  |     | ND      | 4.71  |     |           | 1        |
| Dichlorofluoromethane                | ND              | 0.200 |     | ND      | 0.841 |     |           | 1        |
| /inyl bromide                        | ND              | 0.200 |     | ND      | 0.874 |     |           | 1        |
| Acrolein                             | ND              | 0.500 |     | ND      | 1.14  |     |           | 1        |
| Acetone                              | ND              | 1.00  |     | ND      | 2.37  |     |           | 1        |
| Acetonitrile                         | ND              | 0.200 |     | ND      | 0.336 |     |           | 1        |
| Frichlorofluoromethane               | ND              | 0.200 |     | ND      | 1.12  |     |           | 1        |
| sopropanol                           | ND              | 0.500 |     | ND      | 1.23  |     |           | 1        |
| Acrylonitrile                        | ND              | 0.200 |     | ND      | 0.434 |     |           | 1        |
| Pentane                              | ND              | 0.200 |     | ND      | 0.590 |     |           | 1        |
| Ethyl ether                          | ND              | 0.200 |     | ND      | 0.606 |     |           | 1        |
| I,1-Dichloroethene                   | ND              | 0.200 |     | ND      | 0.792 |     |           | 1        |
| Fertiary butyl Alcohol               | ND              | 0.500 |     | ND      | 1.52  |     |           | 1        |



# Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1019883

 Report Date:
 01/28/11

### Air Canister Certification Results

| Lab ID:<br>Client ID:<br>Sample Location: | L1019883-01<br>CAN 393 SHEL | .F 3    | ppbV  |     |         |       | Collecte<br>Receive<br>Prep: |          | 12/13/10 00:0<br>12/13/10<br>Not Specified |
|-------------------------------------------|-----------------------------|---------|-------|-----|---------|-------|------------------------------|----------|--------------------------------------------|
| Parameter                                 |                             | Results | RL    | MDL | Results | RL    | MDL                          | Qualifie | Dilution<br>Factor                         |
| Volatile Organics in A                    | Air (Low Level) - N         |         |       |     |         |       |                              |          |                                            |
| Methylene chloride                        |                             | ND      | 1.00  |     | ND      | 3.47  |                              |          | 1                                          |
| 3-Chloropropene                           |                             | ND      | 0.200 |     | ND      | 0.626 |                              |          | 1                                          |
| Carbon disulfide                          |                             | ND      | 0.200 |     | ND      | 0.622 |                              |          | 1                                          |
| Freon-113                                 |                             | ND      | 0.200 |     | ND      | 1.53  |                              |          | 1                                          |
| trans-1,2-Dichloroethene                  | e                           | ND      | 0.200 |     | ND      | 0.792 |                              |          | 1                                          |
| 1,1-Dichloroethane                        |                             | ND      | 0.200 |     | ND      | 0.809 |                              |          | 1                                          |
| Methyl tert butyl ether                   |                             | ND      | 0.200 |     | ND      | 0.720 |                              |          | 1                                          |
| Vinyl acetate                             |                             | ND      | 0.200 |     | ND      | 0.704 |                              |          | 1                                          |
| 2-Butanone                                |                             | ND      | 0.200 |     | ND      | 0.589 |                              |          | 1                                          |
| cis-1,2-Dichloroethene                    |                             | ND      | 0.200 |     | ND      | 0.792 |                              |          | 1                                          |
| Ethyl Acetate                             |                             | ND      | 0.500 |     | ND      | 1.80  |                              |          | 1                                          |
| Chloroform                                |                             | ND      | 0.200 |     | ND      | 0.976 |                              |          | 1                                          |
| Tetrahydrofuran                           |                             | ND      | 0.200 |     | ND      | 0.589 |                              |          | 1                                          |
| 2,2-Dichloropropane                       |                             | ND      | 0.200 |     | ND      | 0.923 |                              |          | 1                                          |
| 1,2-Dichloroethane                        |                             | ND      | 0.200 |     | ND      | 0.809 |                              |          | 1                                          |
| n-Hexane                                  |                             | ND      | 0.200 |     | ND      | 0.704 |                              |          | 1                                          |
| Diisopropyl ether                         |                             | ND      | 0.200 |     | ND      | 0.835 |                              |          | 1                                          |
| tert-Butyl Ethyl Ether                    |                             | ND      | 0.200 |     | ND      | 0.835 |                              |          | 1                                          |
| 1,1,1-Trichloroethane                     |                             | ND      | 0.200 |     | ND      | 1.09  |                              |          | 1                                          |
| 1,1-Dichloropropene                       |                             | ND      | 0.200 |     | ND      | 0.907 |                              |          | 1                                          |
| Benzene                                   |                             | ND      | 0.200 |     | ND      | 0.638 |                              |          | 1                                          |
| Carbon tetrachloride                      |                             | ND      | 0.200 |     | ND      | 1.26  |                              |          | 1                                          |
| Cyclohexane                               |                             | ND      | 0.200 |     | ND      | 0.688 |                              |          | 1                                          |
| tert-Amyl Methyl Ether                    |                             | ND      | 0.200 |     | ND      | 0.835 |                              |          | 1                                          |
| Dibromomethane                            |                             | ND      | 0.200 |     | ND      | 1.42  |                              |          | 1                                          |
| 1,2-Dichloropropane                       |                             | ND      | 0.200 |     | ND      | 0.924 |                              |          | 1                                          |
| Bromodichloromethane                      |                             | ND      | 0.200 |     | ND      | 1.34  |                              |          | 1                                          |
| 1,4-Dioxane                               |                             | ND      | 0.200 |     | ND      | 0.720 |                              |          | 1                                          |
|                                           |                             |         |       |     |         |       |                              |          |                                            |



# Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1019883

 Report Date:
 01/28/11

### Air Canister Certification Results

| Lab ID:<br>Client ID:<br>Sample Location: | _F 3                  | F 3<br>ррьV |       |     |         | Collecte<br>Receive<br>Prep: |     | 12/13/10 00:00<br>12/13/10<br>Not Specified<br>Dilution |        |
|-------------------------------------------|-----------------------|-------------|-------|-----|---------|------------------------------|-----|---------------------------------------------------------|--------|
| Parameter                                 |                       | Results     | RL    | MDL | Results | RL                           | MDL | Qualifie                                                | Fastar |
|                                           | n Air (Low Level) - I |             |       |     |         |                              |     |                                                         |        |
| Trichloroethene                           |                       | ND          | 0.200 |     | ND      | 1.07                         |     |                                                         | 1      |
| 2,2,4-Trimethylpentan                     | e                     | ND          | 0.200 |     | ND      | 0.934                        |     |                                                         | 1      |
| Heptane                                   |                       | ND          | 0.200 |     | ND      | 0.819                        |     |                                                         | 1      |
| 2,4,4-trimethyl-1-pente                   | ene                   | ND          | 0.500 |     | ND      | 2.29                         |     |                                                         | 1      |
| cis-1,3-Dichloroproper                    | ne                    | ND          | 0.200 |     | ND      | 0.907                        |     |                                                         | 1      |
| 4-Methyl-2-pentanone                      |                       | ND          | 0.200 |     | ND      | 0.819                        |     |                                                         | 1      |
| 2,4,4-trimethyl-2-pente                   | ene                   | ND          | 0.500 |     | ND      | 2.29                         |     |                                                         | 1      |
| trans-1,3-Dichloroprop                    | ene                   | ND          | 0.200 |     | ND      | 0.907                        |     |                                                         | 1      |
| 1,1,2-Trichloroethane                     |                       | ND          | 0.200 |     | ND      | 1.09                         |     |                                                         | 1      |
| Toluene                                   |                       | ND          | 0.200 |     | ND      | 0.753                        |     |                                                         | 1      |
| 1,3-Dichloropropane                       |                       | ND          | 0.200 |     | ND      | 0.923                        |     |                                                         | 1      |
| 2-Hexanone                                |                       | ND          | 0.200 |     | ND      | 0.819                        |     |                                                         | 1      |
| Dibromochloromethan                       | e                     | ND          | 0.200 |     | ND      | 1.70                         |     |                                                         | 1      |
| 1,2-Dibromoethane                         |                       | ND          | 0.200 |     | ND      | 1.54                         |     |                                                         | 1      |
| Butyl acetate                             |                       | ND          | 0.500 |     | ND      | 2.37                         |     |                                                         | 1      |
| Octane                                    |                       | ND          | 0.200 |     | ND      | 0.934                        |     |                                                         | 1      |
| Tetrachloroethene                         |                       | ND          | 0.200 |     | ND      | 1.36                         |     |                                                         | 1      |
| 1,1,1,2-Tetrachloroeth                    | ane                   | ND          | 0.200 |     | ND      | 1.37                         |     |                                                         | 1      |
| Chlorobenzene                             |                       | ND          | 0.200 |     | ND      | 0.920                        |     |                                                         | 1      |
| Ethylbenzene                              |                       | ND          | 0.200 |     | ND      | 0.868                        |     |                                                         | 1      |
| p/m-Xylene                                |                       | ND          | 0.400 |     | ND      | 1.74                         |     |                                                         | 1      |
| Bromoform                                 |                       | ND          | 0.200 |     | ND      | 2.06                         |     |                                                         | 1      |
| Styrene                                   |                       | ND          | 0.200 |     | ND      | 0.851                        |     |                                                         | 1      |
| 1,1,2,2-Tetrachloroeth                    | ane                   | ND          | 0.200 |     | ND      | 1.37                         |     |                                                         | 1      |
| o-Xylene                                  |                       | ND          | 0.200 |     | ND      | 0.868                        |     |                                                         | 1      |
| 1,2,3-Trichloropropane                    | e                     | ND          | 0.200 |     | ND      | 1.20                         |     |                                                         | 1      |
| Nonane                                    |                       | ND          | 0.200 |     | ND      | 1.05                         |     |                                                         | 1      |
| Isopropylbenzene                          |                       | ND          | 0.200 |     | ND      | 0.982                        |     |                                                         | 1      |
|                                           |                       |             |       |     |         |                              |     |                                                         |        |



# Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1019883

 Report Date:
 01/28/11

### Air Canister Certification Results

| Lab ID:<br>Client ID:<br>Sample Location: | L1019883-01<br>CAN 393 SHEL | F 3           |       |     |         |       | Collecte<br>Receive<br>Prep: | d:        | 12/13/10 00:00<br>12/13/10<br>Not Specified |
|-------------------------------------------|-----------------------------|---------------|-------|-----|---------|-------|------------------------------|-----------|---------------------------------------------|
|                                           |                             |               | ppbV  |     |         | ug/m3 |                              |           | Dilution<br>Factor                          |
| Parameter                                 |                             | Results       | RL    | MDL | Results | RL    | MDL                          | Qualifier | Factor                                      |
| Volatile Organics in                      | Air (Low Level) - M         | lansfield Lab | )     |     |         |       |                              |           |                                             |
| Bromobenzene                              |                             | ND            | 0.200 |     | ND      | 1.28  |                              |           | 1                                           |
| 2-Chlorotoluene                           |                             | ND            | 0.200 |     | ND      | 1.03  |                              |           | 1                                           |
| n-Propylbenzene                           |                             | ND            | 0.200 |     | ND      | 0.982 |                              |           | 1                                           |
| 4-Chlorotoluene                           |                             | ND            | 0.200 |     | ND      | 1.03  |                              |           | 1                                           |
| 4-Ethyltoluene                            |                             | ND            | 0.200 |     | ND      | 0.982 |                              |           | 1                                           |
| 1,3,5-Trimethybenzene                     |                             | ND            | 0.200 |     | ND      | 0.982 |                              |           | 1                                           |
| tert-Butylbenzene                         |                             | ND            | 0.200 |     | ND      | 1.10  |                              |           | 1                                           |
| 1,2,4-Trimethylbenzene                    | )                           | ND            | 0.200 |     | ND      | 0.982 |                              |           | 1                                           |
| Decane                                    |                             | ND            | 0.200 |     | ND      | 1.16  |                              |           | 1                                           |
| Benzyl chloride                           |                             | ND            | 0.200 |     | ND      | 1.03  |                              |           | 1                                           |
| 1,3-Dichlorobenzene                       |                             | ND            | 0.200 |     | ND      | 1.20  |                              |           | 1                                           |
| 1,4-Dichlorobenzene                       |                             | ND            | 0.200 |     | ND      | 1.20  |                              |           | 1                                           |
| sec-Butylbenzene                          |                             | ND            | 0.200 |     | ND      | 1.10  |                              |           | 1                                           |
| p-Isopropyltoluene                        |                             | ND            | 0.200 |     | ND      | 1.10  |                              |           | 1                                           |
| 1,2-Dichlorobenzene                       |                             | ND            | 0.200 |     | ND      | 1.20  |                              |           | 1                                           |
| n-Butylbenzene                            |                             | ND            | 0.200 |     | ND      | 1.10  |                              |           | 1                                           |
| 1,2-Dibromo-3-chloropr                    | opane                       | ND            | 0.200 |     | ND      | 1.93  |                              |           | 1                                           |
| Undecane                                  |                             | ND            | 0.200 |     | ND      | 1.28  |                              |           | 1                                           |
| Dodecane                                  |                             | ND            | 0.200 |     | ND      | 1.39  |                              |           | 1                                           |
| 1,2,4-Trichlorobenzene                    |                             | ND            | 0.200 |     | ND      | 1.48  |                              |           | 1                                           |
| Naphthalene                               |                             | ND            | 0.200 |     | ND      | 1.05  |                              |           | 1                                           |
| 1,2,3-Trichlorobenzene                    |                             | ND            | 0.200 |     | ND      | 1.48  |                              |           | 1                                           |
| Hexachlorobutadiene                       |                             | ND            | 0.200 |     | ND      | 2.13  |                              |           | 1                                           |
|                                           |                             |               |       |     |         |       |                              |           |                                             |



|                      |                      |             |           |             |           |        | Serial   | _No:012   | 81114:51       |
|----------------------|----------------------|-------------|-----------|-------------|-----------|--------|----------|-----------|----------------|
| Project Name:        | BATCH CANISTE        | R CERTIF    | ICATION   |             |           | Lab I  | Number   | :         | L1019883       |
| Project Number:      | CANISTER QC BA       | ٩T          |           |             |           | Repo   | ort Date | : (       | 01/28/11       |
|                      |                      | Air C       | anister C | ertificatio | n Results |        |          |           |                |
| Lab ID:              | L1019883-01          |             |           |             |           | Date   | Collecte | d:        | 12/13/10 00:00 |
| Client ID:           | CAN 393 SHELF        | 3           |           |             |           | Date I | Receive  | d:        | 12/13/10       |
| Sample Location:     |                      |             |           |             |           | Field  | Prep:    |           | Not Specified  |
|                      |                      |             | ppbV      |             |           | ug/m3  |          |           | Dilution       |
| Parameter            |                      | Results     | RL        | MDL         | Results   | RL     | MDL      | Qualifier | Factor         |
| Volatile Organics in | Air (Low Level) - Ma | ansfield La | b         |             |           |        |          |           |                |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 85         |           | 60-140                 |
| Bromochloromethane  | 89         |           | 60-140                 |
| chlorobenzene-d5    | 101        |           | 60-140                 |



# **AIR Petro Can Certification**

|                               |                              | Serial_No:      | :01281114:51   |  |  |  |  |  |  |  |  |  |  |  |
|-------------------------------|------------------------------|-----------------|----------------|--|--|--|--|--|--|--|--|--|--|--|
| Project Name:                 | BATCH CANISTER CERTIFICATION | Lab Number:     | L1019883       |  |  |  |  |  |  |  |  |  |  |  |
| Project Number:               | CANISTER QC BAT              | Report Date:    | 01/28/11       |  |  |  |  |  |  |  |  |  |  |  |
| AIR CAN CERTIFICATION RESULTS |                              |                 |                |  |  |  |  |  |  |  |  |  |  |  |
| Lab ID:                       | L1019883-01                  | Date Collected: | 12/13/10 00:00 |  |  |  |  |  |  |  |  |  |  |  |
| Client ID:                    | CAN 393 SHELF 3              | Date Received:  | 12/13/10       |  |  |  |  |  |  |  |  |  |  |  |
| Sample Location:              | Not Specified                | Field Prep:     | Not Specified  |  |  |  |  |  |  |  |  |  |  |  |
| Matrix:                       | Air                          |                 |                |  |  |  |  |  |  |  |  |  |  |  |
| Analytical Method:            | 96,APH                       |                 |                |  |  |  |  |  |  |  |  |  |  |  |
| Analytical Date:              | 12/16/10 14:34               |                 |                |  |  |  |  |  |  |  |  |  |  |  |
| Analyst:                      | RY                           |                 |                |  |  |  |  |  |  |  |  |  |  |  |

| Parameter                                     | Result | Qualifier | Units | RL  | MDL | Dilution Factor |  |  |  |  |  |  |
|-----------------------------------------------|--------|-----------|-------|-----|-----|-----------------|--|--|--|--|--|--|
| Petroleum Hydrocarbons in Air - Mansfield Lab |        |           |       |     |     |                 |  |  |  |  |  |  |
| 1,3-Butadiene                                 | ND     |           | ug/m3 | 2.0 |     | 1               |  |  |  |  |  |  |
| Methyl tert butyl ether                       | ND     |           | ug/m3 | 2.0 |     | 1               |  |  |  |  |  |  |
| Benzene                                       | ND     |           | ug/m3 | 2.0 |     | 1               |  |  |  |  |  |  |
| Toluene                                       | ND     |           | ug/m3 | 2.0 |     | 1               |  |  |  |  |  |  |
| C5-C8 Aliphatics, Adjusted                    | ND     |           | ug/m3 | 12  |     | 1               |  |  |  |  |  |  |
| Ethylbenzene                                  | ND     |           | ug/m3 | 2.0 |     | 1               |  |  |  |  |  |  |
| p/m-Xylene                                    | ND     |           | ug/m3 | 4.0 |     | 1               |  |  |  |  |  |  |
| o-Xylene                                      | ND     |           | ug/m3 | 2.0 |     | 1               |  |  |  |  |  |  |
| Naphthalene                                   | ND     |           | ug/m3 | 2.0 |     | 1               |  |  |  |  |  |  |
| C9-C12 Aliphatics, Adjusted                   | ND     |           | ug/m3 | 14  |     | 1               |  |  |  |  |  |  |
| C9-C10 Aromatics Total                        | ND     |           | ug/m3 | 10  |     | 1               |  |  |  |  |  |  |



### Project Name: CFI - WASHINGTON AVE Project Number: 1042

# Lab Number: L1100508 Report Date: 01/28/11

#### Sample Receipt and Container Information

Were project specific reporting limits specified? YES

#### Reagent H2O Preserved Vials Frozen on: NA

# Cooler Information Custody Seal Cooler

N/A Present/Intact

| Container Info | ormation             |        |     | Temp |      |                |                                       |
|----------------|----------------------|--------|-----|------|------|----------------|---------------------------------------|
| Container ID   | Container Type       | Cooler | рΗ  |      | Pres | Seal           | Analysis(*)                           |
| L1100508-01A   | Canister - 2.7 Liter | N/A    | N/A |      | Y    | Present/Intact | APH-10(30),FIXGAS(30),TO15-<br>LL(30) |
| L1100508-02A   | Canister - 2.7 Liter | N/A    | N/A |      | Y    | Present/Intact | APH-10(30),FIXGAS(30),TO15-<br>LL(30) |
| L1100508-03A   | Canister - 2.7 Liter | N/A    | N/A |      | Y    | Present/Intact | APH-10(30),FIXGAS(30),TO15-<br>LL(30) |
| L1100508-04A   | Canister - 2.7 Liter | N/A    | N/A |      | Y    | Present/Intact | APH-10(30),FIXGAS(30),TO15-<br>LL(30) |
| L1100508-05A   | Canister - 2.7 Liter | N/A    | N/A |      | Y    | Present/Intact | APH-10(30),FIXGAS(30),TO15-<br>LL(30) |
| L1100508-06A   | Canister - 2.7 Liter | N/A    | N/A |      | Y    | Present/Intact | CLEAN-FEE()                           |
| L1100508-07A   | Canister - 2.7 Liter | N/A    | N/A |      | Y    | Present/Intact | CLEAN-FEE()                           |
| L1100508-08A   | Canister - 2.7 Liter | N/A    | N/A |      | Y    | Present/Intact | CLEAN-FEE()                           |
| L1100508-09A   | Canister - 2.7 Liter | N/A    | N/A |      | Y    | Present/Intact | CLEAN-FEE()                           |
| L1100508-10A   | Canister - 2.7 Liter | N/A    | N/A |      | Y    | Present/Intact | CLEAN-FEE()                           |
| L1100508-11A   | Canister - 2.7 Liter | N/A    | N/A |      | Y    | Present/Intact | CLEAN-FEE()                           |
| L1100508-12A   | Canister - 2.7 Liter | N/A    | N/A |      | Y    | Present/Intact | CLEAN-FEE()                           |
| L1100508-13A   | Canister - 2.7 Liter | N/A    | N/A |      | NA   | Present/Intact | CLEAN-FEE()                           |



#### Project Name: CFI - WASHINGTON AVE

Project Number: 1042

### Lab Number: L1100508

#### **Report Date:** 01/28/11

#### GLOSSARY

#### Acronyms

- EPA · Environmental Protection Agency.
- LCS · Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD · Laboratory Control Sample Duplicate: Refer to LCS.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD · Matrix Spike Sample Duplicate: Refer to MS.
- NA · Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI · Not Ignitable.
- RL · Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

#### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

#### Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E · Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **G** The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- **H** The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- **Q** The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when

Report Format: Data Usability Report



### Project Name: CFI - WASHINGTON AVE

Project Number: 1042

Lab Number: L1100508 Report Date: 01/28/11

#### Data Qualifiers

the sample concentrations are less than 5x the RL. (Metals only.)

- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report



Project Name: CFI - WASHINGTON AVE Project Number: 1042 
 Lab Number:
 L1100508

 Report Date:
 01/28/11

#### REFERENCES

- 48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.
- 51 Determination of Carbon Dioxide, Methane, Nitrogen and Oxygen from Stationary Sources. Method 3C. Appendix A, Part 60, 40 CFR (Code of Federal Regulations). June 20, 1996.
- 96 Method for the Determination of Air-Phase Petroleum Hydrocarbons (APH), MassDEP, December 2009, Revision 1 with QC Requirements & Performance Standards for the Analysis of APH by GC/MS under the Massachusetts Contingency Plan, WSC-CAM-IXA, July 2010.

#### LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



### **Certificate/Approval Program Summary**

Last revised July 19, 2010 – Mansfield Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

#### Connecticut Department of Public Health Certificate/Lab ID: PH-0141.

*Wastewater/Non-Potable Water* (Inorganic Parameters: pH, Turbidity, Conductivity, Alkalinity, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Vanadium, Zinc, Total Residue (Solids), Total Suspended Solids (non-filterable), Total Cyanide. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables, Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, PAHs, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.)

Solid Waste/Soil (Inorganic Parameters: pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Organic Carbon, Total Cyanide, Corrosivity, TCLP 1311. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Volatile Organics, Acid Extractables, Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

#### Florida Department of Health Certificate/Lab ID: E87814. NELAP Accredited.

*Non-Potable Water* (Inorganic Parameters: SM2320B, EPA 120.1, SM2510B, EPA 245.1, EPA 150.1, EPA 160.2, SM2540D, EPA 335.2, SM2540G, EPA 180.1. <u>Organic Parameters</u>: EPA 625, 608.)

*Solid & Chemical Materials* (Inorganic Parameters: 6020, 7470, 7471, 9045, 9014. Organic Parameters: EPA 8260, 8270, 8082, 8081.)

Air & Emissions (EPA TO-15.)

#### Louisiana Department of Environmental Quality Certificate/Lab ID: 03090. NELAP Accredited.

*Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 120.1, 150.1, 160.2, 180.1, 200.8, 245.1, 310.1, 335.2, 608, 625, 1631, 3010, 3015, 3020, 6020, 9010, 9014, 9040, SM2320B, 2510B, 2540D, 2540G, 4500CN-E, 4500H-B, <u>Organic Parameters</u>: EPA 3510, 3580, 3630, 3640, 3660, 3665, 5030, 8015 (mod), 3570, 8081, 8082, 8260, 8270, )

Solid & Chemical Materials (Inorganic Parameters: 6020, 7196, 7470, 7471, 7474, 9010, 9014, 9040, 9045, 9060. <u>Organic Parameters</u>: EPA 8015 (mod), EPA 3570, 1311, 3050, 3051, 3060, 3580, 3630, 3640, 3660, 3665, 5035, 8081, 8082, 8260, 8270.)

Biological Tissue (Inorganic Parameters: EPA 6020. Organic Parameters: EPA 3570, 3510, 3610, 3630, 3640, 8270.)

#### Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA030.

Non-Potable Water (Inorganic Parameters: SM4500H+B. Organic Parameters: EPA 624.)

#### New Hampshire Department of Environmental Services Certificate/Lab ID: 2206. NELAP Accredited.

*Non-Potable Water* (Inorganic Parameters: EPA 200.8, 245.1, 1631E, 120.1, 150.1, 180.1, 310.1, 335.2, 160.2, SM2540D, 2540G, 4500CN-E, 4500H+B, 2320B, 2510B. <u>Organic Parameters</u>: EPA 625, 608.)

#### New Jersey Department of Environmental Protection Certificate/Lab ID: MA015. NELAP Accredited.

*Non-Potable Water* (<u>Inorganic Parameters</u>: SW-846 1312, 3010, 3020A, 3015, 6020, SM2320B, EPA 200.8, SM2540C, 2540D, 2540G, EPA 120.1, SM2510B, EPA 180.1, 245.1, 1631E, SW-846 9040B, 6020, 9010B, 9014 <u>Organic Parameters</u>: EPA 608, 625, SW-846 3510C, 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082 8260B, 8270C)

*Solid & Chemical Materials* (<u>Inorganic Parameters</u>: SW-846 6020, 9010B, 9014, 1311, 1312, 3050B, 3051, 3060A, 7196A, 7470A, 7471A, 9045C, 9060. <u>Organic Parameters</u>: SW-846 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082, 8260B, 8270C, 3570, 8015B.)

Atmospheric Organic Parameters (EPA TO-15)

Biological Tissue (Inorganic Parameters: SW-846 6020 Organic Parameters: SW-846 8270C, 3510C, 3570, 3610B, 3630C, 3640A)

#### New York Department of Health Certificate/Lab ID: 11627. NELAP Accredited.

*Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 310.1, SM2320B, EPA 365.2, 160.1, EPA 160.2, SM2540D, EPA 200.8, 6020, 1631E, 245.1, 335.2, 9014, 150.1, 9040B, 120.1, SM2510B, EPA 376.2, 180.1, 9010B. <u>Organic Parameters</u>: EPA 624, 8260B, 8270C, 608, 8081A, 625, 8082, 3510C, 3511, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 9040B, 9045C, SW-846 Ch7 Sec 7.3, EPA 6020, 7196A, 7471A, 7474, 9014, 9040B, 9045C, 9010B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8081A, DRO 8015B, 8082, 1311, 3050B, 3580, 3050B, 3035, 3570, 3051, 5035, 5030B.)

Air & Emissions (EPA TO-15.)

Rhode Island Department of Health Certificate/Lab ID: LAO00299. NELAP Accredited via LA-DEQ.

Refer to MA-DEP Certificate for Non-Potable Water.

Refer to LA-DEQ Certificate for Non-Potable Water.

Texas Commission of Environmental Quality Certificate/Lab ID: T104704419-08-TX. NELAP Accredited.

*Solid & Chemical Materials* (<u>Inorganic Parameters</u>: EPA 6020, 7470, 7471, 1311, 7196, 9014, 9040, 9045, 9060. <u>Organic Parameters</u>: EPA 8015, 8270, 8260, 8081, 8082.)

Air (Organic Parameters: EPA TO-15)

U.S. Army Corps of Engineers

Department of Defense Certificate/Lab ID: L2217.01.

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312,3051, 6020, 747A, 7474, 9045C,9060, SM 2540G, ASTM D422-63. <u>Organic Parameters</u>: EPA 3580, 3570, 3540C, 5035, 8260B, 8270C, 8270 Alk-PAH, 8082, 8081A, 8015 (SHC), 8015 (DRO).

Air & Emissions (EPA TO-15.)

#### Analytes Not Accredited by NELAP

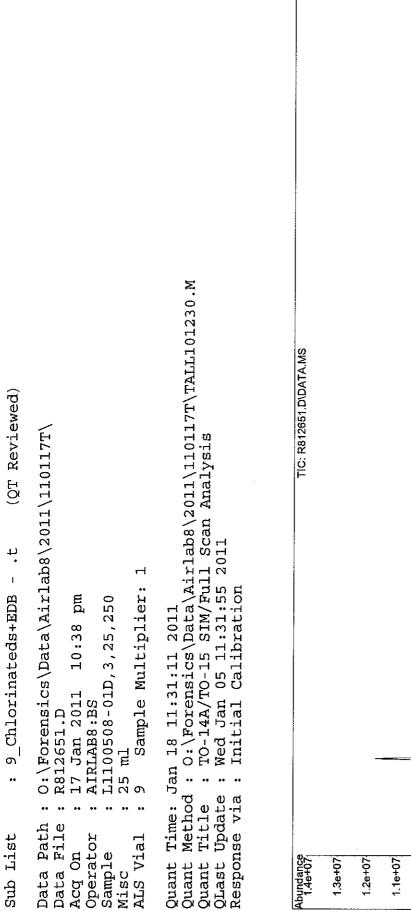
Certification is not available by NELAP for the following analytes: 8270C: Biphenyl.

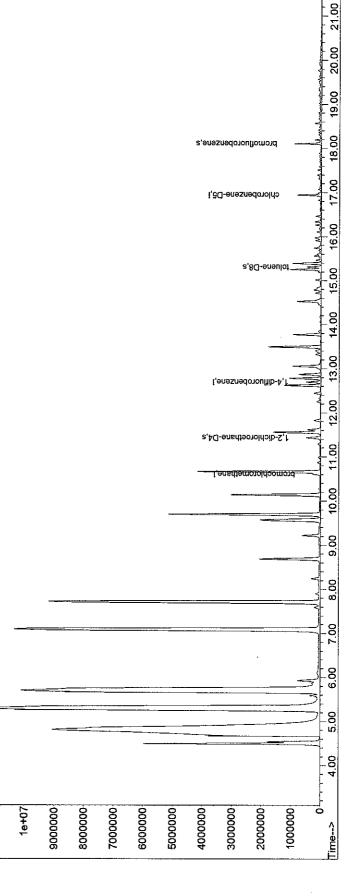
|                                                                                                                 |                   |                                                                                                                                                          |                                                             |                                                  |   |                    |               |                     |                      |                                          |                       |                                               |                                    | S    | erial                                          | _No:0                    | 1281                                                               | 114:5              | 51                                  |                                               |                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|---|--------------------|---------------|---------------------|----------------------|------------------------------------------|-----------------------|-----------------------------------------------|------------------------------------|------|------------------------------------------------|--------------------------|--------------------------------------------------------------------|--------------------|-------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------|
| JUL -                                                                                                           |                   | *SAMPLE MATRIX CODES                                                                                                                                     | 计分词表 通信 "你这么是''<br>""你是''''"""""""""""""""""""""""""""""""" | 中心の 大学 あ か き ち ち ち ち ち ち ち ち ち ち ち ち ち ち ち ち ち ち |   | 4 56-11            | <u>5-35</u> e | 2-25-8              | 1 55-19              | ALPHA Lab ID<br>(Lab Use Only) Sample ID | AIIO                  | Other Project Specific Requirements/Comments: | Email: Lete, M. Seen Arw Mane, Cou | Fax: | Phone: 207-822-6366                            | DanHanz, ME              |                                                                    | Client Information | TEL: 508-822-9300 FAX: 508-822-3288 |                                               | AIR A                                                                                                 |
| 20 11 11 21 1 20 1 1 20 1 1 20 1 1 20 1 1 20 1 1 20 1 1 20 1 1 20 1 1 20 1 1 20 1 1 20 1 1 20 1 1 20 1 1 20 1 1 | Relightugened By: | AA = Ambient Air (Indoor/Outdoor)<br>SV = Soil Vapor/Landfill Gas/SVE<br>Other = Please Specify                                                          |                                                             |                                                  |   | 5- 62- 1211 1111 × |               | 1 1200 1210 -29 -5  | 1/10 1057 1107-29 -3 | Collectic<br>Ime End Time                | Columns Below Must Be | nments:                                       | Date Due:                          | -    | Turn-Around Time                               | ALPHA Quote #:           | 6472                                                               | the                | Project Name: CFI-WACHINGTON AND    | Project Information                           |                                                                                                       |
| 0 tro gy                                                                                                        | Received By: Da   | Container Type                                                                                                                                           |                                                             |                                                  |   | k + + + 247 330 K  | 1 1 318 449 K | SV SB 27 1724 161 X | 5V 5B 27 552 10 K    | Sample Sampler's Can ID ID-Flow A        | Filled Out            |                                               | Box Contains 3 unued               | Ć    | Report to: (If different than Project Manager) | Additional Deliverables: | (Default based on Regulatory Criteria Indicated)<br>Other Formats: |                    | -                                   | <b>Report Information - Data Deliverables</b> | - Date Rec'd in:Lab:メガントルグの内子のサイトーンのTere Rec'd in:Lab:メガントルグライト・マイト・マートーンのTere Rec'd in:Lab:メガントルグライト |
| ///// Interest and Conditions.                                                                                  |                   | Please print clearly, legibly and completely. Samples can not be up logged in and turnaround time to the top the top top top top top top top top top top |                                                             |                                                  | 5 | 2 8                |               | *                   |                      | -15                                      | SASES G               |                                               | ANALYSIS                           |      | MEDER YUR VILD                                 | - 3                      |                                                                    |                    | Same as Client info PO #:           | Billing Information                           | ALPHA Job # 21100508                                                                                  |

# **TO-15**

Í

2


Page:


2011

15:48:58

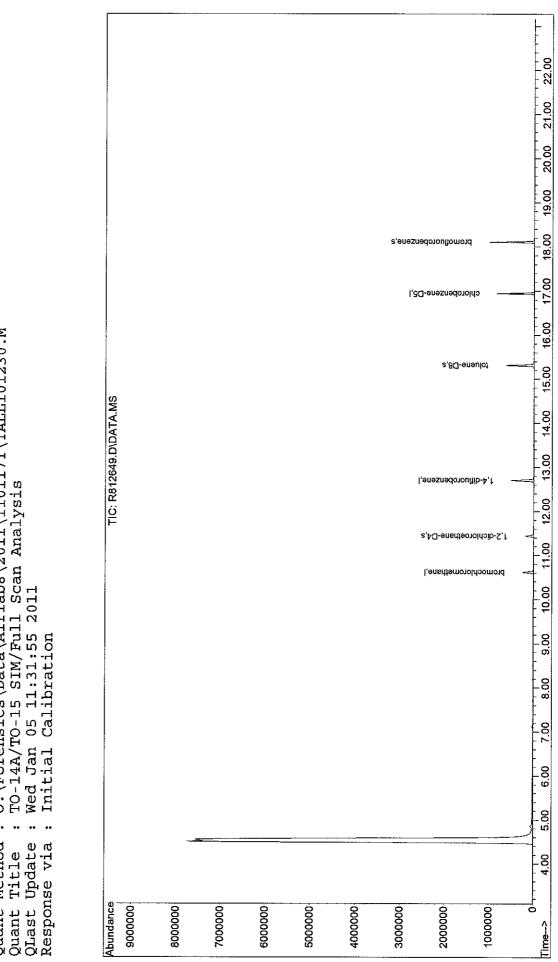
TALL101230.M Tue Jan 18

22.00

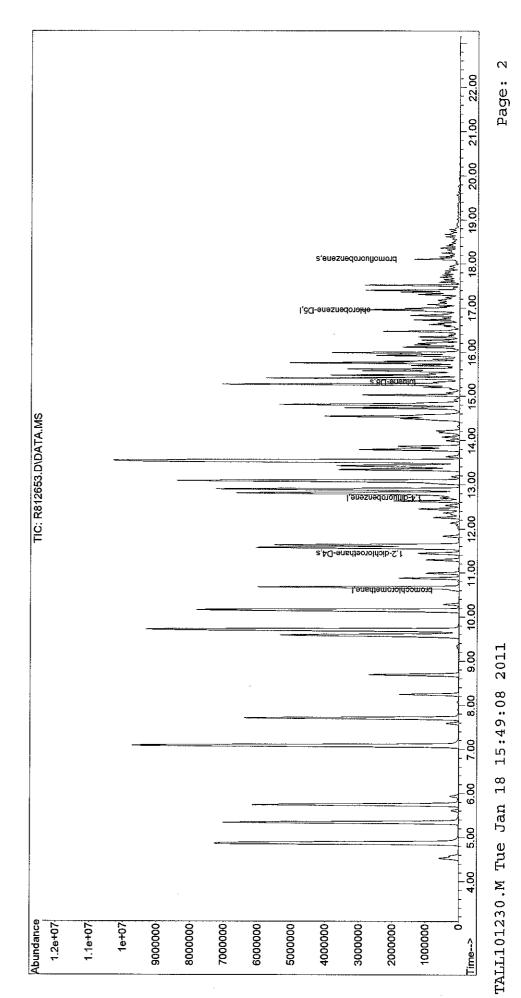




Page 49 of 65


2

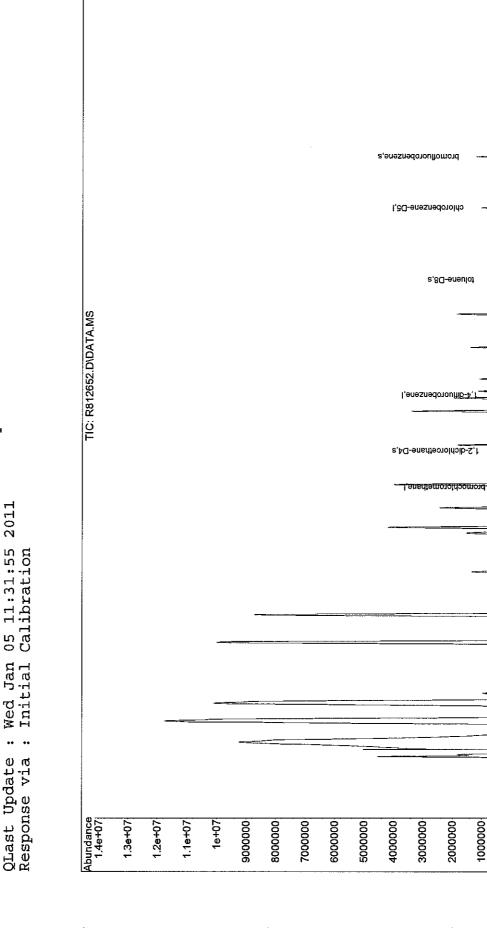
Page:


2011

15:48:53

TALL101230.M Tue Jan 18




Quant Time: Jan 18 11:28:44 2011 Quant Method : O:\Forensics\Data\Airlab8\2011\110117T\TALL101230.M Quant Title : TO-14A/TO-15 SIM/Full Scan Analysis (QT Reviewed) 0:\Forensics\Data\Airlab8\2011\110117T\ ب • 1 Sample Multiplier: L1100508-02D, 3, 125, 250 9\_Chlorinateds+EDB 9:26 pm 17 Jan 2011 AIRLAB8:BS R812649.D 125 ml •• ω Data Path Data File Sub List Operator ALS Vial Acq On Sample Misc



Quant Time: Jan 18 11:31:52 2011 Quant Method : 0:\Forensics\Data\Airlab8\2011\110117T\TALL101230.M Quant Title : T0-14A/T0-15 SIM/Full Scan Analysis (QT Reviewed) 0:\Forensics\Data\Airlab8\2011\110117T\ Wed Jan 05 11:31:55 2011 بر L1100508-03D,3,0.7905,250 50 ml of can dilution Sample Multiplier: 1 I Initial Calibration 9\_Chlorinateds+EDB 11:50 pm 17 Jan 2011 AIRLAB8:BS R812653.D •• 11 QLast Update Response via Data Path Data File Sub List Operator ALS Vial Acq On Sample Misc

Page 51 of 65

Quant Time: Jan 18 11:31:29 2011 Quant Method : 0:\Forensics\Data\Airlab8\2011\110117T\TALL101230.M Quant Title : TO-14A/TO-15 SIM/Full Scan Analysis (QT Reviewed) 0:\Forensics\Data\Airlab8\2011\110117T\ Wed Jan 05 11:31:55 2011 ч. ۳ł Sample Multiplier: ł 9\_Chlorinateds+EDB 11:14 pm L1100508-04D, 3, 25, 250 17 Jan 2011 AIRLAB8:BS R812652.D 25 ml 10 •• Data Path Data File List Operator ALS Vial Acq On Sample Misc Sub



2

Page:

22.00

21.00

20,00

19.00

18.00

17.00

16.00

15.00

14.00

13.00

12.00

11.00

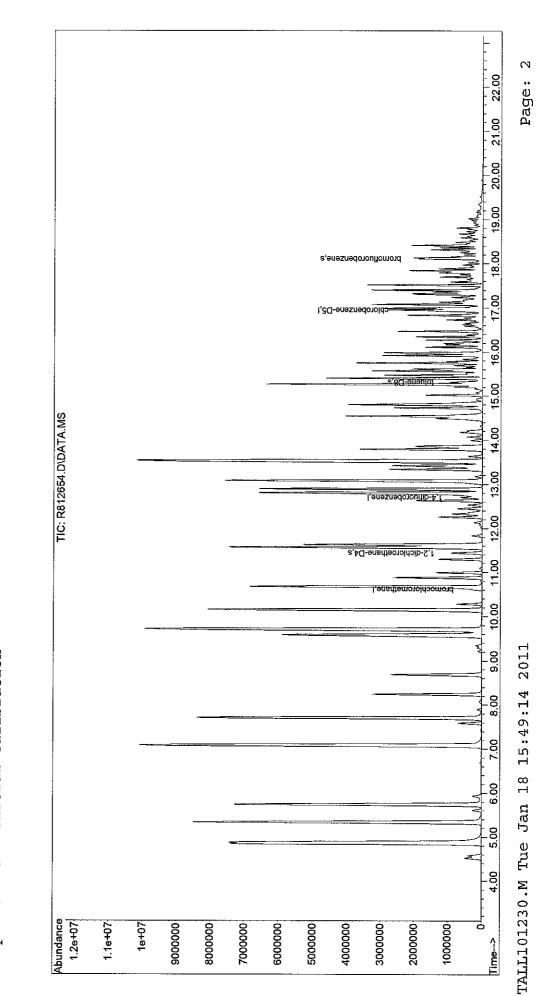
10.00

9.00

7.00

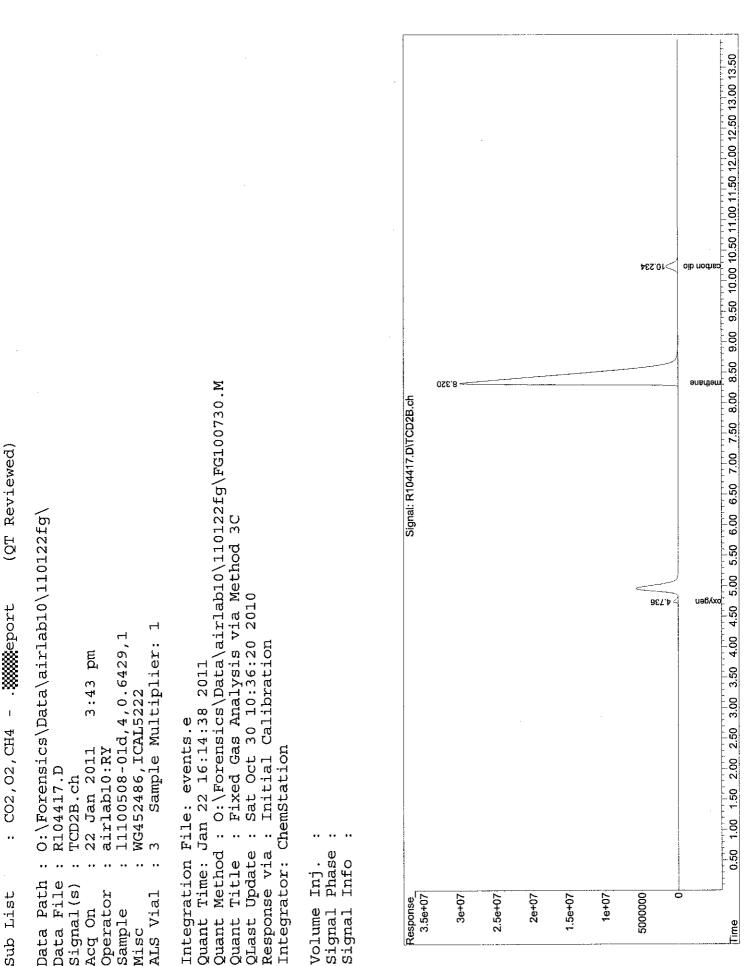
6.00

5.00


4.00

Time-->

ċ

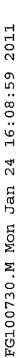

8.0

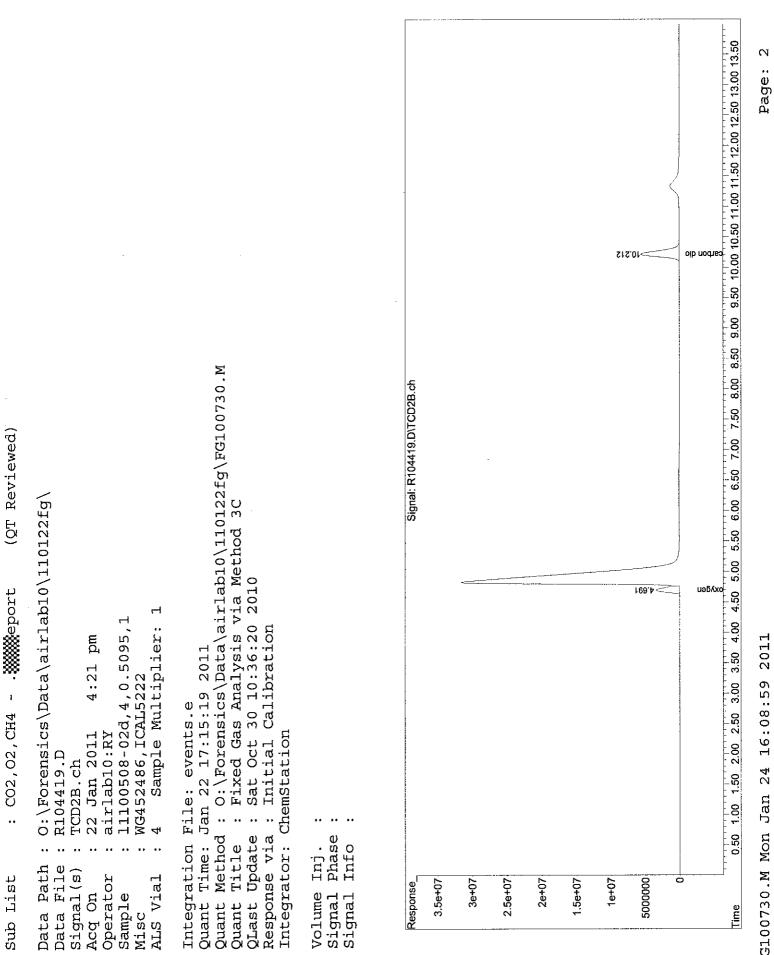
ar a aller bar of the same and the aller and in the second of the second and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon

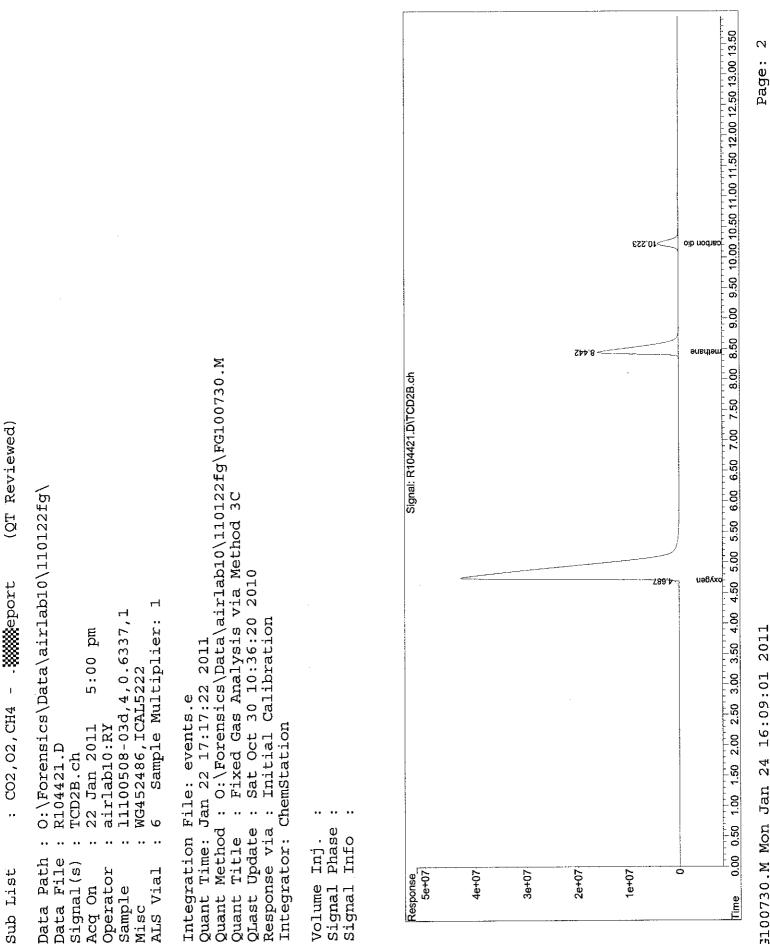


Time: Jan 18 11:32:29 2011 Method : 0:\Forensics\Data\Airlab8\2011\110117T\TALL101230.M Title : TO-14A/TO-15 SIM/Full Scan Analysis (QT Reviewed) 0:\Forensics\Data\Airlab8\2011\110117T\ : Wed Jan 05 11:31:55 2011 : Initial Calibration 4 L1100508-05D,3,0.8050,250 50 ml of can dilution Sample Multiplier: 1 I 9\_Chlorinateds+EDB 12:26 am 18 Jan 2011 AIRLAB8:BS R812654.D 12 •• Quant Method Response via QLast Update File Data Path List Operator ALS Vial Acq On Sample Quant Quant Data Misc Sub

# **Fixed Gases**

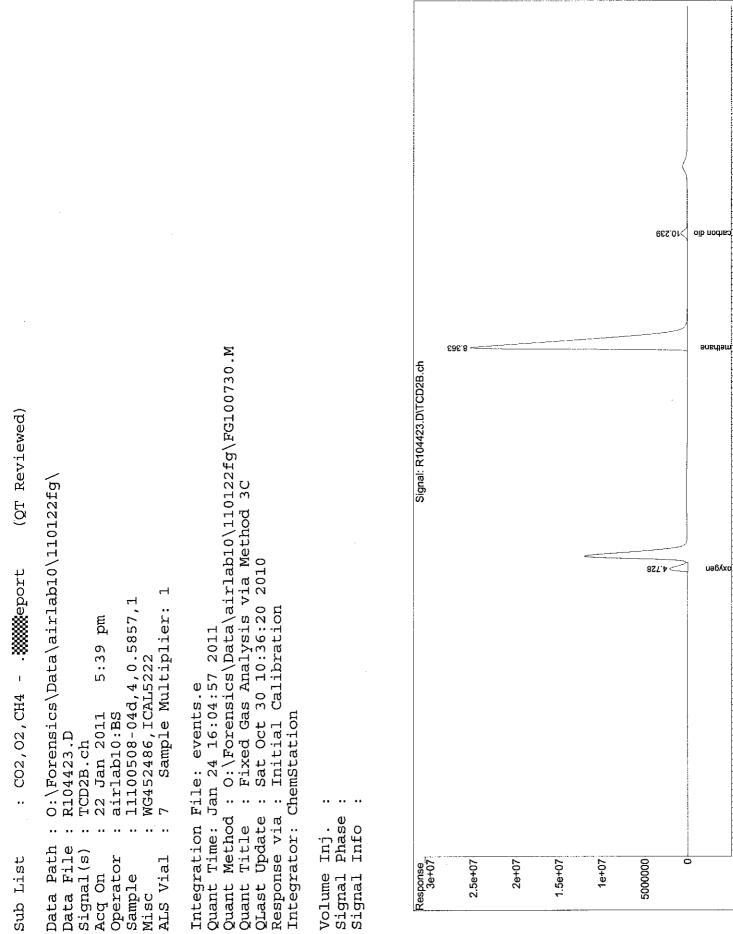




Page 55 of 65


Serial\_No:01281114:51

2

Page:



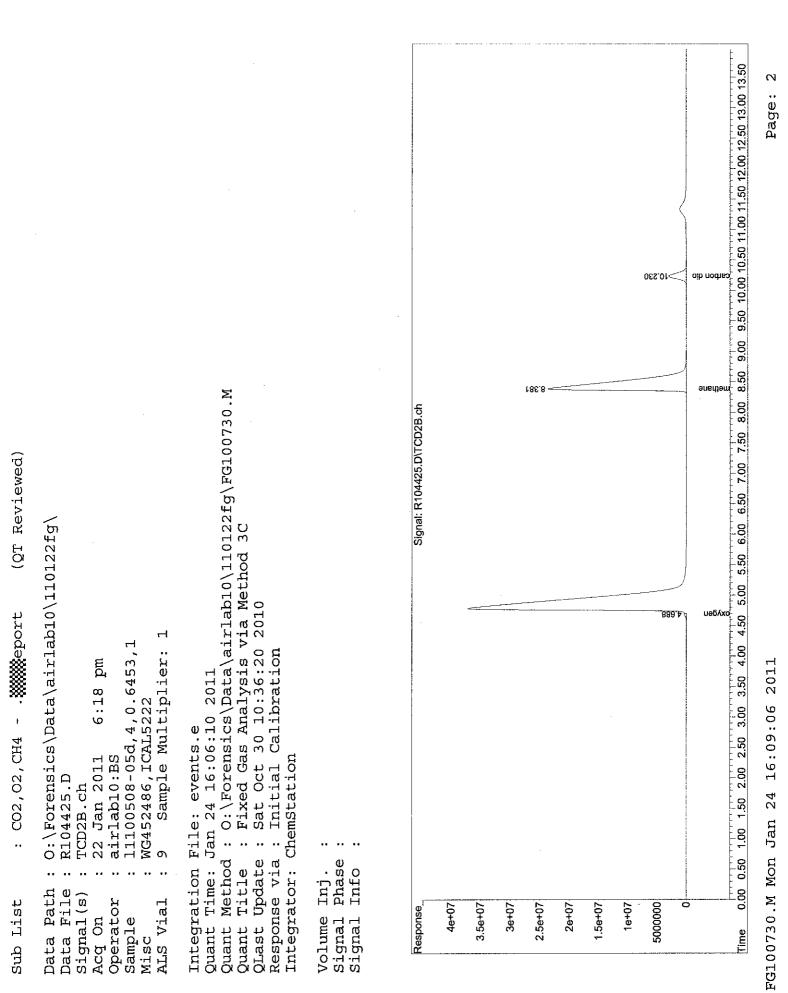





FG100730.M Mon Jan 24 16:09:01 2011

Page 57 of 65

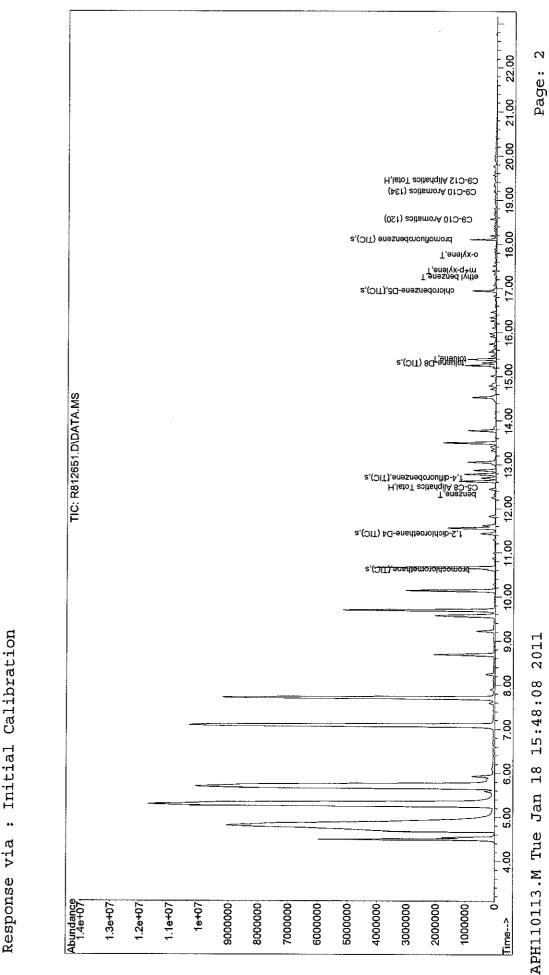



FG100730.M Mon Jan 24 16:09:03 2011

Time

0.50 1.00 1.50 2.50 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50

2


Page:



Page 59 of 65

# APH

.



: 0:\Forensics\Data\Airlab8\2011\110117A\APH110113.M : APH Analysis 0:\Forensics\Data\Airlab8\2011\110117A\ Thu Jan 13 16:27:41 2011 Initial Calibration Ч Sample Multiplier: Шď L1100508-01D,3,25,250 WG451825,ICAL5589 Time: Jan 18 11:17:46 2011 10:38 17 Jan 2011 AIRLAB8:BS R812651.D თ Method Update Title Data Path Data File Operator ALS Vial Acq On Sample QLast Quant Quant Quant Misc

(QT Reviewed)

.ion Report

1

APH\_STD\_M

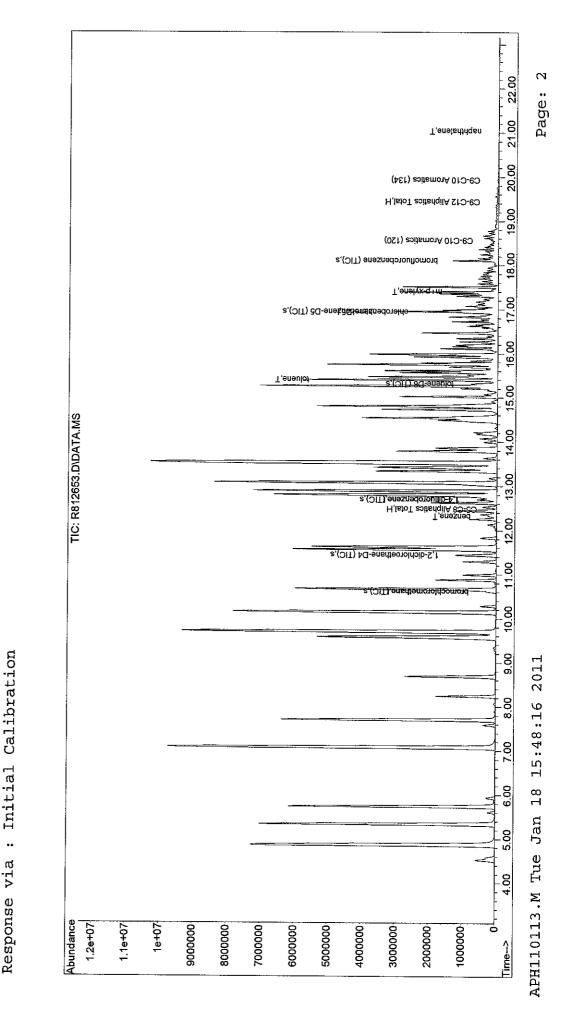
••

Sub List

: 0:\Forensics\Data\Airlab8\2011\110117A\APH110113.M (QT Reviewed) 0:\Forensics\Data\Airlab8\2011\110117A\ APH Analysis Thu Jan 13 16:27:41 2011 .ion Report Ч Sample Multiplier: L1100508-02D,3,125,250 WG451825,ICAL5589 9:26 pm Time: Jan 18 11:16:29 2011 1 : APH\_STD\_M 17 Jan 2011 AIRLAB8:BS R812649.D ω Method QLast Update Title Data Path Data File Sub List Operator ALS Vial Acq On Sample Quant Quant Quant Misc

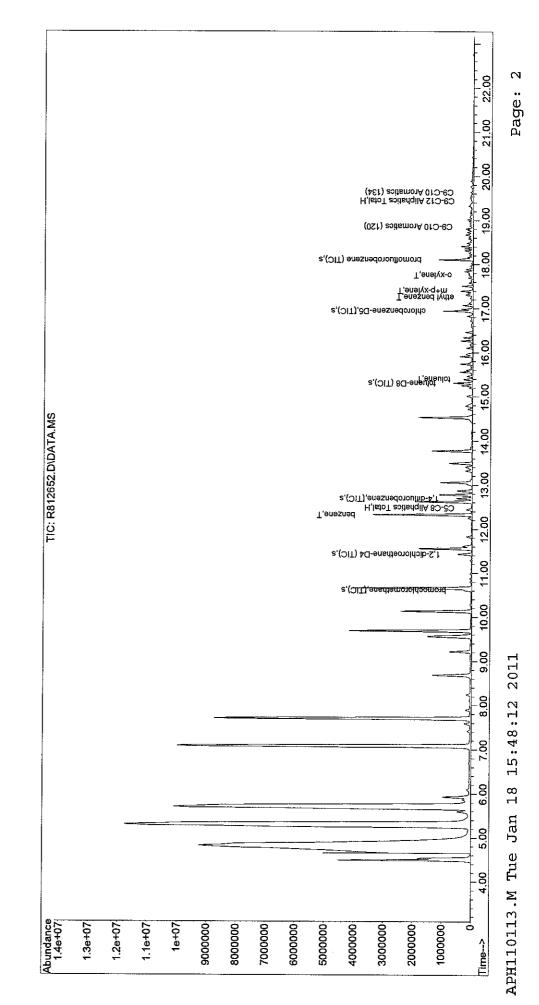
: Initial Calibration

Response via


22.00 21.00 20.00 H, listoT epitishqilA S1O-90 19.00 (65F) \$3H\$FM8AA 8F3-63 18.00 bromofluorobenzene (TIC),s T,enelγx-q+m 17.00 e,(OIT), co-enscredoroldo 16.00 2,(OIT) 80-eneuter 15.00 TIC: R812649.D\DATA.MS 14.00 13.00 12.00 2,C-dichloroethane-D4 (TIC),s 11.00 bromochloromethane,(T(C),s 10.00 T, nethyl tert butyl ether, T 9.00 8.00 7,00 6.00 APH110113.M Tue Jan 18 5.00 4.00 Abundance 0000006 8000000 ò 6000000 5000000 4000000 3000000 2000000 1000000 700000 Time-->

 $\sim$ 

Page:


15:48:04 2011

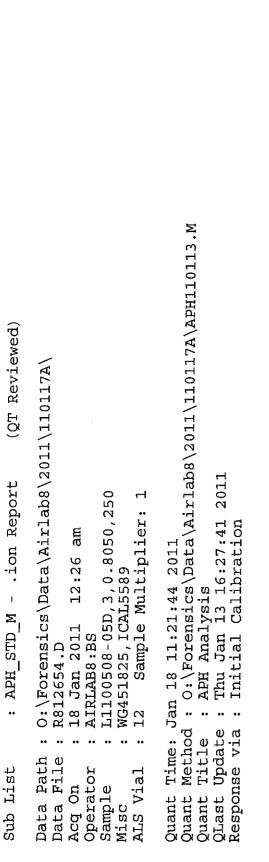
Page 62 of 65

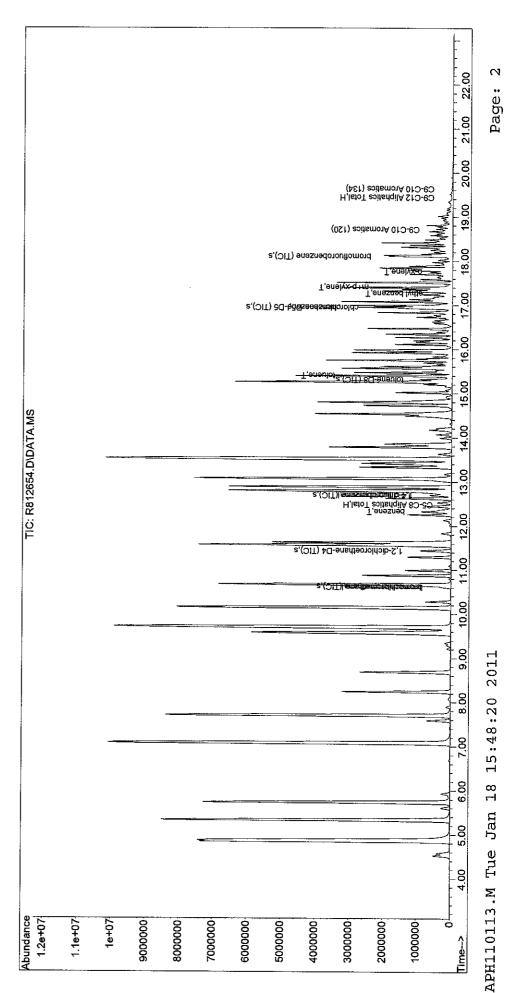


Method : 0:\Forensics\Data\Airlab8\2011\110117A\APH110113.M (QT Reviewed) 0:\Forensics\Data\Airlab8\2011\110117A\ Thu Jan 13 16:27:41 2011 Initial Calibration .ion Report L1100508-03D,3,0.7905,250 WG451825,ICAL5589 Н Sample Multiplier: 11:50 pm Time: Jan 18 11:20:28 2011 APH Analysis ī : APH\_STD\_M 17 Jan 2011 AIRLAB8:BS R812653.D •• 11 QLast Update •• Title Data Path Data File Misc ALS Vial Operator Sub List Acq On Sample Quant Quant Quant

Page 63 of 65




: 0:\Forensics\Data\Airlab8\2011\110117A\APH110113.M (QT Reviewed) 0:\Forensics\Data\Airlab8\2011\110117A\ Thu Jan 13 16:27:41 2011 .ion Report Ч Sample Multiplier: L1100508-04D,3,25,250 WG451825,ICAL5589 11:14 pm Time: Jan 18 11:18:32 2011 APH Analysis ι APH\_STD\_M 17 Jan 2011 AIRLAB8:BS R812652.D •• л 1 Method QLast Update Title Data Path Data File Sub List Operator ALS Vial Acq On Sample Quant Quant Quant Misc


Calibration

Initial

••

Response via





Page 65 of 65